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Semiclassical study of the vibrational excitation of H, in 
collision with He 

G W F Drake? and C S LinS 
t Department of Physics and $ Department of Chemistry, University of Windsor, Windsor. 
Ontario, Canada 

Received 14 August 1973 

Abstract. The vibrational excitation and dissociation probabilities of H, in a collinear 
collision with He are calculated, using the semi-classical time-dependent method along with 
the accurate H, molecular potential of Kolos and Wolniewicz. The complete set of bound 
and continuum eigenfunctions are represented in terms of a truncated basis set of harmonic 
oscillator functions. The' results differ significantly from the Morse potential quantum 
mechanical calculations of Clark and Dickinson. In addition, a state-dependent interaction 
potential is suggested to allow for the different average sizes of the H, molecule in its initial 
and final states. The state dependent potential greatly enhances the transition probabilities 
to highly excited states and the continuum. 

1. Introduction 

In much of the early work on the vibrational excitation of diatomic molecules in collision 
with atoms (see Takayanagi 1963, 1965 and Rapp and Kassal 1969 for reviews), the 
internal motion of the molecule is approximated by a harmonic oscillator. Following the 
work of Mies (1964). Hunding (1970), and Morse and LaBrecque (1971), Clark and 
Dickinson (1973) have performed exact quantum mechanical calculations based on a 
Morse potential model which show that the harmonic oscillator results are often in 
error by an order of magnitude or more. 

Even the Morse oscillator approximation is questionable for excited vibrational 
levels since the Morse potential does not have the correct asymptotic form. For example, 
the H, potential used by Clark and Dickinson (1973) possesses eighteen bound states 
instead of the correct number fifteen. In a previous paper (Lin and Drake 1972) we 
suggested a procedure in which the hamiltonian is diagonalized in a truncated basis set 
of harmonic oscillator wavefunctions in order to represent accurately the complete set 
of bound and continuum anharmonic vibrational eigenfunctions in a convenient 
analytical form. The best available vibrational potential can be used, and if the harmonic 
oscillator basis set is sufficiently large, all the bound states are accurately represented, 
and the higher-lying states provide a discrete variational representation for the dis- 
sociation continuum. Closed-channel continuum states are then easily included in a 
close-coupling calculation and transition probabilities into the continuum can be 
obtained. 

In this paper, the method is applied in the time-dependent formalism to the collinear 
collision of a hydrogen molecule with a helium atom. The hydrogen molecule is chosen 
because it has only 15 bound vibrational levels and the effects of anharmonicity became 
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apparent at low vibrational quantum number. Also excitation to vibrational levels near 
the dissociation limit can be studied in a basis set of modest size. In addition, we test a 
suggested state dependent interaction potential which allows for the different sizes of the 
anharmonic molecule in its initial and final states. 

2. Theory 

The semiclassical time-dependent method outlined in this section is basically that of 
Rapp and Sharp (1965), but the details are repeated to make clear the modifications 
that have been made. Consider a diatomic molecule BC in collision with a structureless 
atom A as shown in figure 1. In the time-dependent formalism, the solution to the 
Schrodinger equation 

is expanded in the form 

and y is the internal vibrational coordinate. The time-dependent potential V(y ,  t )  is 
obtained from the interaction potential V(y ,  x) between the collision partners as discussed 
below. Substituting expansion (2) into (l), one obtains the set of coupled differential 
equations 

n 

where 

and 
f .  I n  = C . - f n .  1 (6) 

The set of coupled equations is solved numerically for the time-dependent coefficients 
a,(t) subject to the initial conditions 

lak(- c o ) i 2  = 1 

laj( - m)I2 = 0 i f j  # k .  
(7) 
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The quantity P k - j  = la,(m)12 is then the probability for a transition from state k to 
state j .  

Following our previous suggestion (Lin and Drake 1972), the vibrational functions 
$ n  are expanded in terms of a truncated set of harmonic oscillator functions 

where 

and 4 = c ~ ' / ~ ( y - y ~ ) .  The parameters yo and CI are not determined a priori, but can be 
chosen to give a good overall representation of the anharmonic oscillator spectrum. The 
coefficients cnk in (8) are determined by the conditions 

The en are then variational upper bounds to the exact eigenvalues of H,. 
In this work, a 60-term harmonic expansion is used, together with the theoretical H 2  

vibrational potential of Kolos and Wolniewicz (1965, 1968). Since our aim is to  study 
transitions to  all bound states and the low-lying continuum, the parameters y o  and U 
are chosen to give good overall agreement with the exact eigenvalues of Kolos and 
Wolniewicz. The values used are yo = 1.4011 and CI = 9.765 in atomic units. Table 1 
gives the eigenvalues relative to the dissociation limit, together with the expectation 
values y n  = (t,hnly1$,,) of the internuclear separation. The accuracy of the eigenvalues 
is much better than can be attained with a Morse potential. 

Table 1. Energies and expectation values of y for H, 

v E(0)a E(UIb ( * L I Y l i " > b  
(cm- ' )  (cm- ' )  ( a 4  

0 - 361 18.09 - 361 1 1.90 1.4748 
1 - 31956.03 - 31948.08 1.5722 
2 - 28029.39 - 28020.21 1.6742 
3 -24333.25 - 24322.39 1.7819 
4 - 20864.57 - 2085149 1,8964 
5 - 17622.33 - 17609.89 2.021 1 
6 - 14607.84 - 14595.90 2,1634 
7 - 11 825.02 - 11813.91 2.3313 
8 -9281.13 - 9270.74 2,5020 
9 - 6987.48 -6978.34 2.5975 

10 - 4960.67 - 4952.61 2.7090 
11 - 3223.54 - 3216.97 3.0674 
12 - 1808.00 - 1803.03 3.4257 
13 - 759.02 - 755.97 4.0113 
14 - 138.86 - 11 3.86 4.8817 

a Kolos and Wolniewicz (1965, 1968). 
Present work. 
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The He-H, interaction potential is chosen to have the purely repulsive nearest 
neighbour form 

V Y ,  x) = Vo exp[ - (x - YY)/Ll (12) 
where y = mC/(mB + mc) and L is a parameter determining the range of the interaction. 
In order to compare our results with other calculations, we make the usual choice 
L = 0.2 A. 

In the semiclassical approach, the time-dependent potential V ( y ,  t )  experienced by 
the quantum oscillator is obtained from V(y ,  x) by integrating the classical equation of 
motion for the x coordinate (Rapp and Kassal 1968). If the molecule is held fixed at a 
particular internuclear separation j j  during the generation of the classical trajectory 
for x, then the potential (12) yields the time-dependent form 

V(y ,  t )  = Vo sech' exp(yvL) (2) 
where Y = y-B and vo is the initial relative velocity. The value of Vo depends on 
assumptions made about the nature of the collisions of atom A with the molecule BC. 
If BC is treated as a rigid unit (infinite binding energy) then 

mA(mB + m C )  m =  
mA + mB + m, 

In the opposite extreme suggested by Mahan (1970), the binding energy of BC is neglected 
and Vo is determined by allowing A to collide elastically with B alone. In this case 

(16) V -1 
0 - zCLv; 

with 

The latter choice is the one made by Heidrich, Wilson and Rapp (1971) in their approxi- 
mate semiclassical ITFITS procedure. Results obtained with the two extreme choices are 
compared in the following section. 

The value of j in (13) is not well defined because the molecule is oscillating throughout 
the collision. In a completely coupled semiclassical calculation, the molecule is allowed 
to oscillate during the generation of the classical trajectories, with the transition proba- 
bilities depending on the initial phase of the oscillator (Locker and Wilson 1970). Since 
the results must then be phase-averaged, this considerably increases the complexity 
of the calculation. We therefore approximate j j  by its expectation value y ,  = ($,lyl~),,) 
in the calculation of the diagonal matrix elements &,(t), and by ( y ,  +ym)/2 in the calcula- 
tion of the off-diagonal matrix elements Km(t). For an anharmonic oscillator, y ,  becomes 
progressively larger with increasing vibrational quantum number and remains well- 
defined for continuum states in our finite basis set representation. This procedure may 
approximate the phase averaged results of a completely coupled semiclassical calculation. 
Physically, one expects the anharmonic oscillator to spend a greater percentage of its 
time at large internuclear separations with increasing vibrational quantum number, and 
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our choice for ensures that the principle of detailed balance is satisfied if the initial state 
is an excited state. Explicitly, the potential energy matrix elements are 

K,(t) = V, sech'( $) U,, (18) 

U,, can be evaluated analytically using formulae given by Rapp and Sharp (1963). 
Results obtained from the above procedure are compared with those obtained from the 
conventional choice y,, = y e ,  where ye  is the equilibrium internuclear separation, in 
the following section. 

3. Results and discussion 

Calculations were performed for three distinct cases. In the first (case I), we make the 
traditional choices p = re and V, = mvi/2,  with m given by equation (15). In the second 
(case 11), V, is changed to V, = pui/2, with p given by equation (17). In the third (case 111), 
V, = mvi /2  and p = y,, as given by equation (20). As a check on the numerical pro- 
cedures, we first reproduced the 4-state time-dependent harmonic oscillator calculations 
of Rapp and Sharp (1963) using their approximation to the interaction matrix elements. 

The results for case I are given in table 2 for several total energies (including the 
ground state vibrational energy) in units of hoe/2 .  Although 60 eigenfunctions are 

Table 2. Transition probabilities Po,, for case I (see text)a 

Eb 

U 
_ _  
0 
1 
2 
3 
4 

E 
U 

~ 

0 
1 
2 
3 
4 
5 
6 
7 
8 

4 6 8 10 

0.9978 0,9802 0.9343 0,8588 
0.0022 0.0196 0,0632 0,1300 

0.0002 0.0025 0,0103 
0.000 1 0.0008 

0~0001 

12 16 18 21 

~ 

0.76 14 0,5518 0.4669 
0.2101 0 3719 0,4328 
0.0247 0,0568 0.071 7 
0.0034 0.0145 0.0188 
0,0004 0,0040 0.0071 

0,0009 0.0022 
0 0002 0.0005 

0~0001 

0,3921 
0.4664 
0,1063 
0.0210 
0,0088 
0,0038 
0.001 3 
0.0003 
0~0001 

~~~ ~~ 

a Results obtained with the first 10 eigenfunctions listed in table 1. 
E is the total energy (including the ground state vibrational energy) in units of hwJ2. 
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obtained from the harmonic oscillator basis set, we retained only as many as needed for 
convergence in the solution of the time-dependent equations. Except for transitions to 
high vibrational levels, the results tend to fall between the Morse oscillator and harmonic 
oscillator results of Clark and Dickinson (1973), but differ significantly from either. The 
total energy required to dissociate H, is about 17.4hwe/2. At E = 20, the probability of 
transitions to the continuum is extremely small. As a check on the numerical accuracy, 
the transition probabilities sum to unity to at least the number of figures quoted in all 
cases, and detailed balance is satisfied to the same accuracy. 

The results of case I1 are given for one energy in table 3. Evidently, the replacement 
of m by p in the calculation of V, changes the larger transition probabilities by only a 
few percent. 

Table 3. Transition probabilities Po,, for case I 1  at E = 1M0,/2 

c 

0 0,8486 
1 0.1357 
2 0,0143 
3 0.00 13 
4 0~0001 

The results for case 111 given in table 4 show much more drastic changes. The 
transition probabilities to highly excited states are greatly enhanced and the dissociation 
probability becomes significant. The latter quantity is obtained by summing the 

Table 4. Transition probabilities Po,, for case 111 (see text) 

E 8  10 12 14 16 21 26 
c 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

no. of 
states 

P d j S b  

0,5644 
0,3022 
0,0989 
0.0262 
0.0063 
0.0015" 
0,0003" 
0~0001" 

20 

0.3229 
0,329 1 
0.1972 
0.09 17 
0.0370 
0.0140 
0,0052" 
0~0020" 
0,0007" 
0~0002" 
0~0001" 

25 

0.1612 
0,2560 
0,2332 
0.1601 
0,0926 
0,0490 
0,025 1 
0,0127 
0.0060" 
0,0024" 
0.00 10" 
0,0004" 
0.0001" 

30 

0,0731 
0,1610 
0.2010 
0.1 840 
0,1388 
0.0947 
0,0617 
0,0391 
0.0232 
0,0119" 
0,0058" 
0.0026" 
0.00 12a 
0.0006a 
0.0005a 
0.0008" 
30 

0.031 1 
0.0881 
0.1415 
0,1617 
0,1493 
0.1248 
0,0981 
0.0743 
0,0537 
0.0336 
0,0192 
0,0097 
0.0047" 
0.0027" 
0.0026" 
0.0048" 
30 

0,003 1 
0,0137 
0.0374 
0.0590 
0.077 1 
0,0970 
0,1018 
0,1024 
0.1150 
0.1102 
0.0837 
0,0504 
0.0281 
0.0199 
0.0240 
0.0772 
30 

0~0002 
0.0021 
0.0087 
0.0108 
0.0229 
0,0429 
0,0420 
0,0452 
0.0887 
0,1228 
0.1 104 
0,071 8 
0.0430 
0.0355 
0.0512 
0,3020 
30 

a Transitions to these states are energetically forbidden. 
PdlS is the sum of all transition probabilities to states above the dissociation limit 
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transition probabilities into all the discrete variational states lying above the dissociation 
threshold. Larger numbers of states were required for case JII ,  but numerical overflow 
problems encountered in cases I and I1 with the same numbers of states were no longer 
present. 

For purposes of comparison, we repeated the semiclassical (case I) calculation with 
a Morse potential approximation to the exact molecular potential. The results shown 
in table 5 establish a connection with the quantum mechanical results of Clark and 
Dickinson (1973) obtained with the same Morse potential. It is clear that the semi- 
classical method seriously overestimates the small transition probabilities, but the larger 
transition probabilities agree quite well. However the semiclassical values for Po, 
obtained with the exact potential are uniformly larger than the Morse potential results 
for E 2 8. For example at E = 16, the exact potential yields a Po,, about 50 % larger 
than the Morse potential value calculated either semiclassically or quantum mechanically. 

Table 5.  Comparison of semiclassical (case I )  and quantum mechanical transition proba- 
bilities Po,, for the exact and morse potentials 

E 6  8 10 12 16 
v 

1 0,0196” 0.0632 0.1 300 0.2101 0.3719 
0,0269 0,0591 0.1 123 0,1698 0,2663 
0,0073 0.0315 0,0739 0.129 0,245 

2 0.0002 0,0025 0.0103 0.0247 0,0568 
0.0004 0.0027 0,0099 0.0241 0.07 12 
2 x 0.0002 0.001 7 0,0066 0,0338 

a The first entry is the semiclassical result with the exact potential. The second entry is the 
semiclassical result with the Morse potential. The third entry is the quantum mechanical 
result of Clark and Dickinson (1973) with the Morse potential. 

4. Discussion 

The results of case I indicate that transition probabilities obtained from an accurate 
intermolecular potential differ significantly from the Morse oscillator results of Clark 
and Dickinson (1973). This is to be expected if the Morse potential does not contain the 
correct number of bound states. While the semiclassical and quantum methods of 
calculation agree for the larger transition probabilities, the Morse oscillator values 
appear to underestimate Po,, in the energy range 12 to 16 by about as much as the 
harmonic oscillator results tabulated by Clark and Dickinson overestimate Po,, . A 
full quantum calculation using the exact potential is in progress. 

As shown by case I11 the choice j j  = y,, leads to much larger transition probabilities 
to highly excited states and the continuum. In addition, the distribution of probability 
over the vibrational levels is much flatter. The method involves, in effect, a state- 
dependent potential which allows for the larger average size of the anharmonic molecule 
in excited states, while maintaining the principle of detailed balance. The state-dependent 
potential partially compensates for the different interactions of the colliding particle 
with the molecule in its initial and final states. 
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