1,456 research outputs found

    Evaluating Tessellation and Screen-Space Ambient Occlusion in WebGL-Based Real-Time Application

    Get PDF
    abstract: Tessellation and Screen-Space Ambient Occlusion are algorithms which have been widely-used in real-time rendering in the past decade. They aim to enhance the details of the mesh, cast better shadow effects and improve the quality of the rendered images in real time. WebGL is a web-based graphics library derived from OpenGL ES used for rendering in web applications. It is relatively new and has been rapidly evolving, this has resulted in it supporting a subset of rendering features normally supported by desktop applications. In this thesis, the research is focusing on evaluating Curved PN-Triangles tessellation with Screen Space Ambient Occlusion (SSAO), Horizon-Based Ambient Occlusion (HBAO) and Horizon-Based Ambient Occlusion Plus (HBAO+) in WebGL-based real-time application and comparing its performance to desktop based application and to discuss the capabilities, limitations and bottlenecks of WebGL 1.0.Dissertation/ThesisWebGL ProgramOpenGL ProgramMasters Thesis Computer Science 201

    High quality rendering of protein dynamics in space filling mode

    Get PDF
    Producing high quality depictions of molecular structures has been an area of academic interest for years, with visualisation tools such as UCSF Chimera, Yasara and PyMol providing a huge number of different rendering modes and lighting effects. However, no visualisation program supports per-pixel lighting effects with shadows whilst rendering a molecular trajectory in space filling mode. In this paper, a new approach to rendering high quality visualisations of molecular trajectories is presented. To enhance depth, ambient occlusion is included within the render. Shadows are also included to help the user perceive relative motions of parts of the protein as they move based on their trajectories. Our approach requires a regular grid to be constructed every time the molecular structure deforms allowing per-pixel lighting effects and ambient occlusion to be rendered every frame, at interactive refresh rates. Two different regular grids are investigated, a fixed grid and a memory efficient compact grid. The algorithms used allow trajectories of proteins comprising of up to 300,000 atoms in size to be rendered at ninety frames per second on a desktop computer using the GPU for general purpose computations. Regular grid construction was found to only take up a small proportion of the total time to render a frame. It was found that despite being slower to construct, the memory efficient compact grid outperformed the theoretically faster fixed grid when the protein being rendered is large, owing to its more efficient memory access patterns. The techniques described could be implemented in other molecular rendering software

    Ambient occlusion and shadows for molecular graphics

    Get PDF
    Computer based visualisations of molecules have been produced as early as the 1950s to aid researchers in their understanding of biomolecular structures. An important consideration for Molecular Graphics software is the ability to visualise the 3D structure of the molecule in a clear manner. Recent advancements in computer graphics have led to improved rendering capabilities of the visualisation tools. The capabilities of current shading languages allow the inclusion of advanced graphic effects such as ambient occlusion and shadows that greatly improve the comprehension of the 3D shapes of the molecules. This thesis focuses on finding improved solutions to the real time rendering of Molecular Graphics on modern day computers. The methods of calculating ambient occlusion and both hard and soft shadows are examined and implemented to give the user a more complete experience when navigating large molecular structures

    Combined surface and volumetric occlusion shading

    Get PDF
    Journal ArticleIn this paper, a method for interactive direct volume rendering is proposed that computes ambient occlusion effects for visualizations that combine both volumetric and geometric primitives, specifically tube shaped geometric objects representing streamlines, magnetic field lines or DTI fiber tracts. The proposed algorithm extends the recently proposed Directional Occlusion Shading model to allow the rendering of those geometric shapes in combination with a context providing 3D volume, considering mutual occlusion between structures represented by a volume or geometry

    Fast self-shadowing using occluder textures

    Get PDF
    A real-time self-shadowing technique is described. State of the art shadowing techniques that utilize modern hardware often require multiple rendering passes and introduce rendering artifacts. Combining separate ideas from earlier techniques which project geometry onto a plane and project imagery onto an object results in a new real-time technique for self-shadowing. This technique allows an artist to construct occluder textures and assign them to shadow planes for a self-shadowed model. Utilizing a graphics processing unit (GPU), a vertex program computes shadowing coordinates in real-time, while a fragment program applies the shading and shadowing in a single rendering pass. The methodology used to create shadow planes and write the vertex and fragment programs is given, as well as the relation to the previous work. This work includes implementing this technique, applying it to a small set of test models, describing the types of models for which the technique is well suited, as well as those for which it is not well suited, and comparing the techniqueâÂÂs performance and image quality to other state of the art shadowing techniques. This technique performs as well as other real-time techniques and can reduce rendering artifacts in certain circumstances

    Doctor of Philosophy

    Get PDF
    dissertationRay tracing presents an efficient rendering algorithm for scientific visualization using common visualization tools and scales with increasingly large geometry counts while allowing for accurate physically-based visualization and analysis, which enables enhanced rendering and new visualization techniques. Interactivity is of great importance for data exploration and analysis in order to gain insight into large-scale data. Increasingly large data sizes are pushing the limits of brute-force rasterization algorithms present in the most widely-used visualization software. Interactive ray tracing presents an alternative rendering solution which scales well on multicore shared memory machines and multinode distributed systems while scaling with increasing geometry counts through logarithmic acceleration structure traversals. Ray tracing within existing tools also provides enhanced rendering options over current implementations, giving users additional insight from better depth cues while also enabling publication-quality rendering and new models of visualization such as replicating photographic visualization techniques
    • …
    corecore