932 research outputs found

    Cascade: a hardware alternative to bignums

    Get PDF
    technical reportThe Cascade hardware architecture for high/variable precision arithmetic is described. It uses a radix-16 redundant signed-digit number representation and directly supports single or multiple precision addition, subtraction, multiplication, division, extraction of the square root and computation of the greatest common divisor. It is object-oriented and implements an abstract class of objects, variable precision integers. It provides a complete suite of memory management functions implemented in hardware, including a garbage collector. The Cascadei hardware permits free tradeoffs of space versus time

    Precise garbage collection for C

    Get PDF
    Journal ArticleMagpie is a source-to-source transformation for C programs that enables precise garbage collection, where precise means that integers are not confused with pointers, and the liveness of a pointer is apparent at the source level. Precise GC is primarily useful for long-running programs and programs that interact with untrusted components. In particular, we have successfully deployed precise GC in the C implementation of a language run-time system that was originally designed to use conservative GC. We also report on our experience in transforming parts of the Linux kernel to use precise GC instead of manual memory management

    Towards co-designed optimizations in parallel frameworks: A MapReduce case study

    Full text link
    The explosion of Big Data was followed by the proliferation of numerous complex parallel software stacks whose aim is to tackle the challenges of data deluge. A drawback of a such multi-layered hierarchical deployment is the inability to maintain and delegate vital semantic information between layers in the stack. Software abstractions increase the semantic distance between an application and its generated code. However, parallel software frameworks contain inherent semantic information that general purpose compilers are not designed to exploit. This paper presents a case study demonstrating how the specific semantic information of the MapReduce paradigm can be exploited on multicore architectures. MR4J has been implemented in Java and evaluated against hand-optimized C and C++ equivalents. The initial observed results led to the design of a semantically aware optimizer that runs automatically without requiring modification to application code. The optimizer is able to speedup the execution time of MR4J by up to 2.0x. The introduced optimization not only improves the performance of the generated code, during the map phase, but also reduces the pressure on the garbage collector. This demonstrates how semantic information can be harnessed without sacrificing sound software engineering practices when using parallel software frameworks.Comment: 8 page

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    Subheap-Augmented Garbage Collection

    Get PDF
    Automated memory management avoids the tedium and danger of manual techniques. However, as no programmer input is required, no widely available interface exists to permit principled control over sometimes unacceptable performance costs. This dissertation explores the idea that performance-oriented languages should give programmers greater control over where and when the garbage collector (GC) expends effort. We describe an interface and implementation to expose heap partitioning and collection decisions without compromising type safety. We show that our interface allows the programmer to encode a form of reference counting using Hayes\u27 notion of key objects. Preliminary experimental data suggests that our proposed mechanism can avoid high overheads suffered by tracing collectors in some scenarios, especially with tight heaps. However, for other applications, the costs of applying subheaps---in human effort and runtime overheads---remain daunting

    Statistiline lähenemine mälulekete tuvastamiseks Java rakendustes

    Get PDF
    Kaasaegsed hallatud käitusaja keskkonnad (ingl. managed runtime environment) ja programmeerimiskeeled lihtsustavad rakenduste loomist ning haldamist. Kõige levinumaks näiteks säärase keele ja keskkonna kohta on Java. Üheks tähtsaks hallatud käitusaja keskkonna ülesandeks on automaatne mäluhaldus. Vaatamata sisseehitatud prügikoristajale, mälulekke probleem Javas on endiselt relevantne ning tähendab tarbetut mälu hoidmist. Probleem on eriti kriitiline rakendustes mis peaksid ööpäevaringselt tõrgeteta toimima, kuna mäluleke on üks väheseid programmeerimisvigu mis võib hävitada kogu Java rakenduse. Parimaks indikaatoriks otsustamaks kas objekt on kasutuses või mitte on objekti viimane kasutusaeg. Selle meetrika põhiliseks puudujäägiks on selle hind jõudluse mõttes. Käesolev väitekiri uurib mälulekete problemaatikat Javas ning pakub välja uudse mälulekkeid tuvastava ning diagnoosiva algoritmi. Väitekirjas kirjeldatakse alternatiivset lähenemisviisi objektide kasutuse hindamiseks. Põhihüpoteesiks on idee et lekkivaid objekte saab statistiliste meetoditega eristada mittelekkivatest kui vaadelda objektide populatsiooni eluiga erinevate gruppide lõikes. Pakutud lähenemine on oluliselt odavama hinnaga jõudluse mõttes, kuna objekti kohta on vaja salvestada infot ainult selle loomise hetkel. Väitekirja uurimistöö tulemusi on rakendatud mälulekete tuvastamise tööriista Plumbr arendamisel, mida hetkel edukalt kasutatakse ka erinevates toodangkeskkondades. Pärast sissejuhatavaid peatükke, väitekirjas vaadeldakse siiani pakutud lahendusi ning on pakutud välja ka nende meetodite klassifikatsioon. Järgnevalt on kirjeldatud statistiline baasmeetod mälulekete tuvastamiseks. Lisaks on analüüsitud ka kirjeldatud baasmeetodi puudujääke. Järgnevalt on kirjeldatud kuidas said defineeritud lisamõõdikud mis aitasid masinõppe abil baasmeetodit täpsemaks teha. Testandmeid masinõppe tarbeks on kogutud Plumbri abil päris rakendustest ning toodangkeskkondadest. Lisaks, kirjeldatakse väitekirjas juhtumianalüüse ning võrdlust ühe olemasoleva mälulekete tuvastamise lahendusega.Modern managed runtime environments and programming languages greatly simplify creation and maintenance of applications. One of the best examples of such managed runtime environments and a language is the Java Virtual Machine and the Java programming language. Despite the built in garbage collector, the memory leak problem is still relevant in Java and means wasting memory by preventing unused objects from being removed. The problem of memory leaks is especially critical for applications, which are expected to work uninterrupted around the clock, as running out of memory is one of a few reasons which may cause the termination of the whole Java application. The best indicator of whether an object is used or not is the time of the last access. However, the main disadvantage of this metric is the incurred performance overhead. Current thesis researches the memory leak problem and proposes a novel approach for memory leak detection and diagnosis. The thesis proposes an alternative approach for estimation of the 'unusedness' of objects. The main hypothesis is that leaked objects may be identified by applying statistical methods to analyze lifetimes of objects, by observing the ages of the population of objects grouped by their allocation points. Proposed solution is much more efficient performance-wise as for each object it is sufficient to record any information at the time of creation of the object. The research conducted for the thesis is utilized in a memory leak detection tool Plumbr. After the introduction and overview of the state of the art, current thesis reviews existing solutions and proposes the classification for memory leak detection approaches. Next, the statistical approach for memory leak detection is described along with the description of the main metric used to distinguish leaking objects from non-leaking ones. Follows the analysis of this single metric. Based on this analysis additional metrics are designed and machine learning algorithms are applied on the statistical data acquired from real production environments from the Plumbr tool. Case studies of real applications and one previous solution for the memory leak detection are performed in order to evaluate performance overhead of the tool

    System Description for a Scalable, Fault-Tolerant, Distributed Garbage Collector

    Full text link
    We describe an efficient and fault-tolerant algorithm for distributed cyclic garbage collection. The algorithm imposes few requirements on the local machines and allows for flexibility in the choice of local collector and distributed acyclic garbage collector to use with it. We have emphasized reducing the number and size of network messages without sacrificing the promptness of collection throughout the algorithm. Our proposed collector is a variant of back tracing to avoid extensive synchronization between machines. We have added an explicit forward tracing stage to the standard back tracing stage and designed a tuned heuristic to reduce the total amount of work done by the collector. Of particular note is the development of fault-tolerant cooperation between traces and a heuristic that aggressively reduces the set of suspect objects.Comment: 47 pages, LaTe
    corecore