
UUCS-89-006

Cascade: A Hardware Alternative to
Bignums

T o n y M . C a r t e r

University of Utah

Dept, of Computer Science

3190 Merrill Engg. Building

Salt Lake City, Utah 84112

13 April 1988

C a s c a d e : A H a r d w a r e A l t e r n a t i v e t o B i g n u m s

TONY M. CARTER* (carter@cs.utah.edu)

University of Utah

Dept, of Computer Science

3190 Merrill Engineering Building

Salt Lake City, Utah 84112

K e yw o rd s : Variable Precision Arithmetic, Object-Oriented , Computer Arithmetic,
Computer Architecture, Signed-Digit Numbers

A b s tra c t. The Cascade hardware architecture for high/variable precision arithmetic
is described. It uses a radix-16 redundant signed-digit number representation and di
rectly supports single or multiple precision addition, subtraction, multiplication, divi
sion, extraction of the square root and computation of the greatest common divisor. It is
object-oriented and implements an abstract class of objects, variable precision integers.
It provides a complete suite of memory management functions implemented in hardware,
including a garbage collector. Th e Cascade hardware permits free tradeoffs of space
versus time.

1 Intro ductio n

Applications such as solid modeling of geometric objects [20], solving
complex sets of equations using Grobner bases [15], computer algebra [12]
and encryption/decryption [3] often involve the use of very high precision
arithmetic operations that generally must be implemented using the rel
atively low precision arithmetic units available in today’s computers. In
addition, the numbers used in such calculations are of variable length. For
example, in Grobner bases calculations, number lengths vary from a few
to several hundred decimal digits. In Thomas’ algorithm for combining b-
spline surfaces [20], numbers vary in length from a few to over one thousand
decimal digits. In encryption and decryption algorithms, the use of very
large primes is desirable thereby requiring very high precision arithmetic.

In the world of symbolic computation, Lisp bignums [21] are frequently

‘ This research was supported by D A R P A contract number DAAK11-84-K-0017. The
author thanks H. Melenk and W . Neun of F B Mathematik und Informatik der Fernuni-
versitat Hagen for running the bignum timing benchmarks on their Cray and Sun PSL
implementations.

mailto:carter@cs.utah.edu

2 TONY M. CARTER

used in solutions to problems such as these. There are actually two time
related problems encountered in such variable precision arithmetic software
packages:

• digit-serial arithmetic based on limited precision arithmetic units, and

• significant memory management overhead.

Software implementations of Lisp bignums are necessarily slow because
the limited precision, fixed word-widths of conventional processors require
a digit-serial computational model. Digit-serial algorithms for addition
and subtraction have O(n) time complexity and those for multiplication
and division have 0 (n2) complexity [13]. Secondly, storage management
in most Lisp systems is a time-consuming operation. This includes both
allocation of storage for variable precision numbers as well as increased
garbage collection costs. Generally, neither of these storage management
operations is directly supported in hardware.

Special hardware can be developed that will significantly accelerate al
gorithms that depend on the use of variable precision arithmetic. This
hardware should permit ready expansion of the width of the arithmetic
unit (and therefore the precision of arithmetic operands and results) to a
size that more nearly matches the precisions normally required in these
algorithms. The hardware should be linearly scalable in area with no time
penalty paid for addition and subtraction. The algorithms mentioned above
require hardware that is scalable from precisions of a few decimal digits to
potentially thousands of digits. An ideal hardware solution would have
0(1) time complexity for addition and subtraction, 0(n) time complexity
for multiplication and division-like operations with only 0(n) area cost. In
other words, significant time reduction should be achievable without paying
an inordinately high price in hardware.

Hardware solutions using conventional techniques such as the two’s com
plement number representation and fast carry lookahead are not viable
given such constraints. Full carry lookahead is impractical at large word
widths since it has an area complexity of 0 (n2) and, in many technologies,
actually exhibits a linear slowdown with the number of bits in the operand.
Even with a very small constant on the 0(n) time complexity of full carry
lookahead schemes, the area*time complexity of the full carry lookahead
approach is unacceptable at 0 (n3). If block carry lookahead is used, the
time complexity is reduced from 0(n) to O(logn), but the physical design
is still complicated since a tree of block carry lookahead units must be
used. In area, the block carry lookahead scheme has O(nlogn) complexity

which results in an area*time complexity of 0 (n log2 n) [22] which is still
unacceptable. An unconventional solution is required.

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 3

Cascade is a hardware architecture designed to accelerate operations on
an opaque, abstract class of objects: variable precision integers. It uses,
as described below, a redundant signed-digit number representation that
eliminates carry propagation, giving 0(1) time complexity for addition and
subtraction. It is linearly scalable in space so that the arithmetic unit can,
with reasonable cost, be expanded to the width required by the problems
being solved. It also directly and automatically supports multiple-precision
arithmetic operations when the physical word-width is inadequate to rep
resent a number. Cascade is based on a design for a variable precision
processor proposed by Chow in [9]. The radix-16 digit slice in Chow’s pro
cessor has previously been designed and implemented in VLSI [7], [10], [18].
The arithmetic unit in Cascade differs from the one proposed by Chow in
some simple, yet significant ways to better support division and extraction
of the square root.

In profiling a complex software system (Alpha_l [11]) written partially
in Lisp, we discovered that memory management for objects often required
more time than arithmetic (using double precision floating point). It is ap
parent that the cost of memory management frequently equals or exceeds
the cost of arithmetic computation so the speed of memory management
operations is at least as important as the speed of the arithmetic to the
overall performance of the system. Cascade includes hardware which allo
cates storage for numbers and which collects garbage, thereby completely
encapsulating variable precision integers.

2 R e p resen tin g N u m b e r s

Cascade uses only redundant, symmetric signed-digit numbers [2]; con
versions to and from the two’s complement number representation are per
formed as infrequently as possible and only when requested by an external
agent. The representation of numbers is a very important consideration for
both speed and circuit complexity.

As noted by Robertson [19], there are two critical parameters that de
scribe a digit-set or the set of values that can be represented by a single
digit. They are the diminished cardinality 6 which is the number of dis
tinct arithmetic values that a digit can represent minus one, and the offset
uj which is the distance of the most negative value from zero. In this pa
per we denote digit-sets using the notation < >. For example, normal
unsigned binary digits are represented as < 1.0 >= {0,1}. In particular
and for reasons described by Chow in [9], Cascade uses radix-16 < 20.10 >
digitsjbr which each digit can assume one of the 21 values in the following
set (X means —X):

4 TONY M. CARTER

These < 20.10 > digits are used in determining the architecture of the
arithmetic unit with respect to addition, subtraction and multiplication.

Of particular importance is that, through the properties of set addition,
digit sets may be represented as weighted sums of smaller digit^sets. For
example, a four-bit two’s complement number is represented as:

< 15.8 >=
8 < 1.1_> +4_<_1.0_> +2 < 1.0 > -I- < 1.0 >=

{8 ,7 ,6 ,5 ,4 ,5 ,2 ,1 ,0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 }

In Cascade, each < 20.10 > digit may be represented as

< 20.10 > =

4_< 4.2 > + <_4_2 >=
4{5,1,0,1,2} + {2,1,0,1,2}.

This makes it possible to model division using two limited-precision radix-4
steps rather than one radix-16 step [8]. Furthermore, each radix-4 < 4.2 >
digit is implemented as 2 < 1.1 > + < 2.0 > so that

< 20.10 > =

4 < 4.2 > + < 4.2 >=
8 < 1.1 > +4 < 2.0 > +2 <_1.1 > + < 2.0 >=

8{1,0} + 4{0,1,2} -f 2{1,0} + {0,1,2}.

This makes the design of the Cascade arithmetic circuitry possible using
Robertson’s Theory of Decomposition [19], [17] and its physical counter
part, Structured Arithmetic Tiling [4], [5] which deal only with binary and
ternary digit sets.

3 C a s c a d e ’s A rchitecture

As mentioned above, the Cascade hardware is essentially an opaque phys
ical implementation of an abstract class of objects, variable precision inte
gers. (Some modifications to its control chip would permit it to operate on
normalized fractions as well). It contains its own storage for both numbers
and memory management information. The sole connection to the outside
world is through a request/acknowledge message interface. Cascade nor
mally returns handles to variable precision integers, although it can return
the value of a variable precision integer in an extended two’s complement
form or in its internal number representation if necessary.

{10,9,5,7,3,5,4,3,5,1,0,1,2,3,4,5,6,7,8,9,10}.

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 5

Figure 1: The Cascade Architecture

Cascade is composed of two distinct module types as shown in figure
1. The first is a single control module which contains a control chip and
associated number management memory. The second is a set of 2N (N >
0) arithmetic modules each of which contain a single arithmetic chip and
associated digit memory. The control chip in the control module contains
a multi-faceted controller that:

• interacts with external agents via the message port,

• manages the available digit memory through hardware-resident mem
ory allocation and garbage collection algorithms,

• controls single and multiple precision arithmetic operations (+ , - , *
, -r- , y/, and gcd) on variable precision integers, and

• optimizes both memory management and common arithmetic opera
tions.

The control chip also contains model division hardware for the two-stage,
radix-16 division algorithm described in [8].

Cascade can, at the option of an external agent, return a handle to a
variable precision integer as soon as storage has been allocated but before
its value has been computed. This capability, known as arithmetic futures,

6 TONY M. CARTER

permits external agents that use the Cascade hardware to proceed without
having to wait for a value to be computed. Arithmetic futures are possi
ble because the Cascade hardware completely encapsulates all aspects of
variable precision integers; all references to these are via handles.

Figure 1 shows the architecture of Cascade. A detailed description of
this architecture and the operation of the hardware is presented in [6].
The signal loops labelled spO and spl are shift paths, capable of shifting
right or left by whole or half digits. The loops labelled dhl, ml, and ol
are transfer digit paths (in signed-digit arithmetic the transfer digit is the
analog of a carry). The bottom loop “±Ndp” is used for sign computation,
normalization detection and for controlling the insertion of a root digit
into an accumulating square root. At the top of each custom chip there is
a memory interface. The control chip originates all memory control signals
to both management memory and digit memory.

At the lower left of the control chip there is the message port which
consists of request/acknowledge lines and a twenty-bit data bus through
which handles, values and other information are passed between external
agents and the Cascade hardware. The control module generates a ten-bit
instruction word that is broadcast to the arithmetic modules where it is
decoded and applied to control points within the arithmetic chips. The
sdv signal is an open-drain bus driven by all the arithmetic chips. It is
used by the control chip to detect when an arithmetic operation results in
zero or other values that are represented as a single digit. The control chip
can then optimize storage use and subsequent arithmetic operations that
involve very common values such as 0, 1 and -1.

4 A r ith m e tic M o d u l e s

Each arithmetic module consists of a 16-digit (80-bit) wide digit memory
and a custom arithmetic chip containing a 16-digit slice of the arithmetic
datapath (roughly equivalent to 64-bits). Figure 2 shows the structure of
the arithmetic chip. The XL box encodes each six-signal < 20.10 > digit
as a five-signal < 31.10 > digit for storage in digit memory. The LX box
is the inverse of this operation. Thus the storage overhead in Cascade over
what would be required in a normal two’s complement system is only 25%.

The shift paths described above interface directly to four 16-digit (96-bit)
registers enabling any of these to be shifted. Each of these registers can
serve as input to either port of the arithmetic unit and can latch the output
of the arithmetic unit. Under control of the root digit position register, any
given digit in a register can store the value of the current root digit during
square root extraction. This permits the unknown root to be accumulated
in position, left to right.

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 7

80

Figure 2: Cascade’s Arithmetic Chip

8 TONY M. CARTER

The addition of two large numbers with opposite sign may result in a
number of much smaller magnitude. The size of this result cannot be
predicted before the operation, so the number of leading zeros must be
computed following each addition or subtraction. This calculation is done
in the sign computer/leading zeros counter by having each arithmetic chip
count the number of leading zeros in the segment of a number that it
contains. This will be a number between 0 and 16. The collection of
arithmetic chips then shifts these counts to the left using a shift path and
the control chip accumulates the number of leading zeros until a count of
less than 16 is encountered.

In a signed-digit number, the sign of a number is determined by the sign
of its most significant non-zero digit. The sign computer uses a priority
encoding scheme to find the sign of the most significant non-zero digit and
to report it to the control chip so that it can be cached in the descriptor for
that number. This is critical in accelerating comparison operations; if the
sign of two numbers is known as well as the number of digits in each, many
comparisons may be computed without a subtraction when the number of
digits differs.

The normalization sensor examines the three most significant digits of a
number to see if any more normalization operations are required. Under
control of an instruction received from the control module, the arithmetic
chip can detect radix-16, radix-4 or radix-2 normalization.

In the distribution box, the output of the arithmetic unit can be directly
connected to the digit-memory bus so the result of an arithmetic operation
can be stored to memory without first being moved into a register.

At the bottom is the arithmetic unit. It is composed of sixteen identical
radix-16 digit slices (described in section 4.1). The arithmetic unit contains
zero detecting circuits at all digital positions. It also contains a small
single digit value detecting circuit at the least significant digital position
to enable the detection of results that are represented as a single digit.
This permits the control module to detect values like 1, 0 and -1 as the
result of an arithmetic operation. When such values can be detected and
when an arithmetic future is not requested, storage need not be used for
them and operations such as multiplication by zero, one, two or four can
be dynamically optimized in the hardware.

4.1 T h e Radix-16 Digit Slice

The heart of the arithmetic chip is the radix-16 digit slice pictured in
figure 3. It has a conditional doubling circuit (an adder plus a multiplexor)
used during extraction of the square root. During square root extraction

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 9

using completion of the square, for which the recursion equation is

pj+1 = rPj - qj+1r ~ ^ (2 Q j + qj+1r~W+1)) ,

all root digits are doubled except the most recently generated, as indicated
by the root digit position register. This doubling circuit is not present in
the digit-slice proposed by Chow in [9].

A < 20.10 > digit is broadcast to all digital positions of the arithmetic
unit for use during multiplication, division and square-root extraction.
There, an elementary multiplier performs the radix-16 multiplication of
a multiplicand digit by the multiplier digit. The output of the elemen
tary multiplier is sent to the mO adder which transforms the result into a
16 < 12.6 > transfer digit, a < 8.4 > sum digit that is recombined in the ml
adder with the incoming < 12.6 > transfer digit to form a < 20.10 > digit,
and a 4 < 2.1 > digit that is passed on to the normal addition circuitry.
Just below the m l adder is a pair of multiplexors. During multiplication,
division and extraction of the square root these multiplexors pass on the
output of the multiplication circuitry.

There is a pair of conditional complementing circuits just below these
multiplexors to permit subtraction by addition of the complement, assisting
in division by permitting the recurrence equation pj+i = rpj — qj+id to be
computed in a single step. The location of these conditional complementing
has been changed from Chow’s proposed digit slice. Below the conditional
complementers is the two-level signed-digit addition circuitry, the aO adder
and the al adder.

5 Control M o d u l e

As mentioned above, the control module contains memory for managing
variable precision integers, a message port for interfacing with external
agents, a state machine that sequences operations for single and multiple
precision arithmetic operations, and a model division that generates radix-
16 quotient digits as described in [8]. The following sections describe the
message interface and the hardware-resident memory management scheme.

5.1 External Message Port

The interface to the Cascade hardware can be summarized by the set
of variable precision integer manager methods included as figure 4, most
of which relate directly to variable precision integers although some are
required to initialize and inquire about the status of the Cascade hardware.
In figure 4, “mvr” is shorthand for “multiple-value-return” indicating that
more than one cycle of the message port will be required to transfer the

TONY M. CARTER

addend

subtrahend

m u lt ip lie r d ig it m u ltip lic a n d

q u o tie n t d ig it d iv id e n d

ro o t d ig it ro o t

addend

addend

pa rtia l p ro d u c t

p a rtia l re m a ind e r

p a rtia l rad icand

d ifference

pa rtia l p ro d u c t

p a rtia l re m a in d e r

pa rtia l ra d ica nd

Figure 3: Cascade’s Digit Slice

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 11

(defun vpimgr::create (ms-16-bits ls-16-bits)
(defun vpimgr "destroy (Handle)
(defun vpimgr::assim (Handle)

(defun vpimgr::save (Handle)

(defun vpimgr::restore

(defun vpimgr:
(defun vpimgr:

(defun vpimgr:

(defun vpimgr:

(defun vpimgr:

(defun vpimgr:
(defun vpimgr:
(defun vpimgr:

:neg
:add

:sub

:mul

:div

:sqrt
:rem
:gcd

(defun vpimgr::cmp

(defun vpimgr:
(defun vpimgr:
(defun vpimgr:
(defun vpimgr:
(defun vpimgr:

:sign
: digits
:setreg
:getreg
gc

(descO descl #4D-chunks
&rest chunks)

(Handle ^optional f d i)
(Handle-add Handle-add
^optional f d)

(Handle-add Handle-sub
^optional f d)

(Handle-mpy Handle-mcd
^optional f d)

(Handle-num Handle-den
^optional f d)

(Handle-rad ^optional f d)

(Handle-u Handle-v
^optional f d)

(Handle-add Handle-sub
^optional d)

(Handle ^optional d)
(Handle ^optional d)
(Register Bit-Pattern)
(Register)
nil

(return Handle))
(return nil))
(mvr
#16B-chunks chunks))

(mvr descO descl
#4D-chunks chunks))

(return Handle))

(return Handle))
(return Handle-to-sum))

(return Handle-to-diff))

(return Handle-to-prod))

(return Handle-to-quot))

(return Handle-to-root))
(return Handle-to-rem))
(return Handle-to-gcd))

(return comparison))

(return sign-indicator))
(mvr ms-ndig ls-ndig))
(return nil))
(return Bit-Pattern))
(return nil))

Figure 4: Cascade’s Message Formats

results of the operation back to the host. The optional f, d and i parameters
indicate, respectively, that a future is desired, that the arguments (one or
both) are to be destroyed following the operation and that the operation
should be performed in place. These messages are received and replied to
through the external message port.

With the exception of the gc message, the transmission of a message to
Cascade and the return of a result always requires multiple cycles of the
message port. A single data transfer cycle of the message port suffices to
transmit the message name and any control flags (f, d and/or i). Most
messages also require one or two additional cycles to transmit the operands
to Cascade and one cycle for Cascade to return the result. Messages which
transfer values of variable precision integers (assim, save, restore) re-

12 TONY M. CARTER

The create message takes a single 32-bit two’s complement value as
an argument (passed in two 16-bit halves) and returns a handle to a new
variable precision integer whose value is equivalent to the argument. The
destroy message simply marks a variable precision integer as garbage.
The garbage collection and memory allocation algorithms will subsequently
reclaim and reuse the storage allocated to the destroyed number. The assim
message is essentially an inverse of create. It returns, as an extended (long)
two’s complement number, the value of a variable precision integer.

The save message returns three things, a 40-bit pseudo-descriptor con
taining the sign and number of digits in a variable precision integer, a
count of the number of transfers required to transmit the value of a vari
able precision integer (in internal format) in 4-digit chunks, and a series of
4-digit chunks. The restore message takes this information and rebuilds
a variable precision integer from it, returning a handle.

The neg, add, sub, mul, div, rem, sqrt and gcd messages take handles as
their arguments and return handles as a result. The cmp message returns a
comparison indicator (one of < ,> ,=) . The sign message returns the sign
of a number (either + or -) and the d ig its message returns the number
of digits in a variable precision integer.

The getreg and setreg messages are used to read and write setup regis
ters internal to the control chip. The gc message invokes Cascade’s garbage
collector and returns immediately (garbage collection is a future operation
— a big performance win). The receipt of subsequent messages is blocked
until the garbage collection has been completed. The registers can then be
read to find out how much free memory is available.

The external message port consists of a request/acknowledge signal pair
and a twenty-bit data bus. When an external agent wishes to send a mes
sage to the Cascade hardware, it first asserts its data and then raises the
request line. When the Cascade hardware is ready, it latches the data and
interprets it. When done, it raises the acknowledge line until the external
agent lowers the request line. The number of request/acknowledge cycles of
the external message port required to fully transmit a message and receive
the reply varies as described above. This interface permits the Cascade
hardware to be interfaced to any host with a minimal amount of extra
hardware to move data from the host’s bus to the Cascade hardware.

5.2 M e m o r y M anagem ent

Since the Cascade hardware is an opaque implementation of variable pre
cision integers and since variable precision integers are dynamically created
and destroyed, Cascade must perform its own memory management func-

quire a variable number of cycles.

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 13

tions. It contains two physically distinct, separately addressed memories:
management memory and digit memory. Management memory has a fixed
word-width (22 bits) while the word-width of digit memory is dictated by
the width of the arithmetic unit being built. The structure of the Cascade
arithmetic chip requires that digit memory be at least 16 digits wide. Each
digit in memory is represented by 5 bits, making digit memory at least 80
bits wide. To avoid the use of division in the Cascade memory management
scheme, Cascade requires that the arithmetic unit and its associated digit
memory be expanded by powers of two.

Agents external to Cascade refer to variable precision integers through
handles. This permits Cascade to relocate variable precision integers in a
hardware controlled garbage collection scheme. The use of handles rather
than a direct address also completely hides the implementation of variable
precision integers from the outside world. Most of the arithmetic methods
supported by Cascade require the allocation of at least one new variable
precision integer (multiplication and square root extraction require two and
division requires three).

The size of a handle is an important system design consideration. Ideally,
a handle would never be reused, but this is not practical. Consider the
following equation which, given the useful lifetime of a system (Ls) and the
steady-state frequency of object creation (Fc), indicates the number of bits
(Bh) required in a handle if handles are never reused.

B h = log2 (■£'*■?’z)

If, for example, a system is to have a useful lifetime of 10 years and a new
object is created every millisecond during that time then the size of a handle
would be 39 bits. Even to run for one day without reusing a handle under
an object creation frequency of only one thousand objects per second would
require 27 bit handles. Consider also that we need to mark each handle with
one bit, indicating that the object to which it refers has been destroyed.
This one management bit alone would require nearly 17 megabytes of stor
age every day for the useful lifetime of the system! Clearly, reusing handles
to objects is required in a practical and cost-effective system.

In the Cascade hardware, a handle is reusable as soon as the variable
precision integer to which it refers is destroyed. There are three concep
tually separate memory resident objects in Cascade: descriptor pointers
(referred to directly by a handle), descriptors (referred to by descriptor
pointers) and words of digits (referred to by descriptors). The descriptor
pointers and descriptors are contained in management memory while digits
are contained in digit memory.

14 TONY M. CARTER

Figure 5 shows the memory structure of Cascade. Cascade uses 20-
bit handles; it can only manage about 1 million specific variable precision
integers at any one time. The storage location in management memory
that is referred to by a handle contains three data items: a bit indicating
that the handle is currently free, a bit indicating that the variable precision
integer referred to through the handle has been destroyed but has not yet
been reclaimed by the garbage collector and a 20-bit reference to a variable
precision integer descriptor. This reference is converted to a pointer by
concatenating two extra bits on the end.

A variable precision integer descriptor contains four words (thus requiring
a 22-bit pointer since the required size of descriptor memory is four times
larger than that of the descriptor pointer memory). The first word contains
a garbage bit and a pointer to the related handle. The handle pointer
is used in the garbage collection algorithm which operates primarily on
descriptors but which must update some information in descriptor pointers.
The second word indicates the sign of and the number of significant digits in
the number. The remaining two words indicate the bounds of the variable
precision integer in digit memory. The third word is the address of the
most significant word in digit memory and the fourth is the address of the
least significant word in digit memory. This structure limits the size of digit
memory to 4 mega-words. It also “limits” the size of any single variable
precision integer to 2 mega-digits.

Digit memory is allocated from the top down. The Cascade hardware
maintains a register containing a pointer to the top-most available word in
digit memory. The garbage collection algorithm compresses all non-garbage
descriptors to the top of management memory and all non-garbage digit-
words to the top of digit memory.

Handles refer to descriptor pointers that are allocated from zero up.
Cascade maintains a register containing the handle last allocated. The
circular handle reuse algorithm tries to find a free handle from that point
up to the top of descriptor pointer space and back around to that point.
The use of the circular handle reuse algorithm dictates that the initial
allocation pattern will proceed from the bottom of the handle namespace
to the top. It is based on the assumption that older variable precision
integers are more likely to be destroyed than ones that were just created.
The circular handle reuse algorithm permits the allocation of space for
a new variable precision integer to be made as rapidly as possible. In
addition to using free handles that have either never been used or have
been garbage collected, the allocation algorithm will also reuse free handles
that have been used but which have not been subjected to the garbage
collector if there is enough digit memory already allocated. The destruction
of a variable precision integer consists simply of marking it as free and as

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 15

Figure 5: Cascade’s Memory Organization

16 TONY M. CARTER

garbage (in both the descriptor pointer and the descriptor). The storage
for it will automatically be directly reused or garbage collected in Cascade
using the pseudo-coded allocation and garbage collection algorithms that
follow below. The statements in {} are not valid Common Lisp.

(defun vpimgr::allocate_vpi (op vpil vpi2)
(le t ((w 0) (h 0) (free-handle 0))

(setf w (maximum-result-size-in-words op vpil vpi2))

'/, search for a usable handle and enough d ig it memory

(loop with h from (1+ last-handle-allocated)
to last-handle-allocated
by 1

do (when (and -(handle h is free}
{handle h does not refer to garbage}
{there are at least w words of d ig it

memory available})
{assign the next free descriptor to handle h}
{assign w words of d ig it memory to that descriptor}
{make handle h not free}
(return h))

(when (and {handle h is free}
{handle h does refer to garbage}
{that garbage has at least w words of

d ig it memory})
{make handle h not free}
{make handle h not contain garbage}
(return h))

(when ({handle h is free}) '/, keep searching, avoid gc
(setf free-handle h))

(when ({there are no free handles})
• (return {an error indicating no free handles}))

(when (= h top-handle) (setf h bottom-handle)))

V, there is a free handle but not enough d ig it memory

(collect_garbage)
(when ({there is enough d ig it memory available after gc})

{assign the next free descriptor to handle free-handle}
{assign w words of d ig it memory to that descriptor}
{make handle free-handle not free}
(return free-handle)))

(return {am error indicating not enough d ig it memory}))

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 17

(defun vpimgr: :collect.garbage) ()
(le t ((d n il) '/, temp descriptor ptr

(distance-descriptors-rise 0)
(distance-digits-rise 0)
(u 0)
(w 0))

(loop with d from top-descriptor
downto top-available-descriptor

do (setf w {\# of words of d ig it memory referenced by d>)
(if ({d contains garbage})

(progn
(incf distance-descriptors-rise)
(incf distance-digits-rise w)
{re-init descriptor d>
{re-init the descriptor-pointer that refers to d})

(progn
{move d upwards by distance-descriptors-rise}
(setf u

{\# of UNUSED d ig it words referred to by d})
(incf distance-that-digits-rise u)
{move each of the USED d ig it memory words referred

to by d upwards by distance-digits-rise}
{adjust the msw and lsw pointers of d to reference

the relocated block of d ig it memory})))
(incf top-of-available-digit-memory distance-digits-rise)
(incf top-available-descriptor distance-descriptors-rise)))

These memory management algorithms are quite simple to implement in
hardware. When we restrict the width in digits of an a Cascade arithmetic
unit to be a power of two, a simple 22-bit two’s complement adder and a
shift register (or barrel shifter) suffice to implement the arithmetic required
for memory management. A few registers for holding handles, descriptor
pointers, descriptors and a few other useful quantities are required. The
sequencing is done via a state machine that controls the complete Cascade
system including memory management, arithmetic operations and inter
facing with external agents. The state machine can be implemented to
perform certain portions of the memory management algorithms in parallel
such as storing the previous and fetching the next descriptor for garbage
collection while moving words in digit memory for the current descriptor.

Physically, management memory is bifurcated and contains both descrip
tors and descriptor pointers (which never move and are referred to by han
dles). Descriptors are maintained such that there are no crossing pointers

18 TONY M. CARTER

into digit memory, thereby facilitating garbage collection.

The memory management strategy attempts to avoid garbage collection
if at all possible. If a number has been destroyed but has not yet been
reclaimed by the garbage collector and if it has adequate storage for the
next result it will be reused immediately without garbage collection. A
setup register in the control chip permits less than 4 megawords of real
memory to be installed in the system.

5.3 M o d el Division

The SRT division algorithm used in Cascade is described in [8]. The
model division used a three digit estimate of the divisor and a two digit
estimate of the partial remainder. The three digit estimate of the divisor
is stored in a special register since multiples of it must be constantly com
puted as part of the model division. The model division produces radix-16
quotient digits that are broadcast to all arithmetic chips where they are
multiplied by the divisor and subtracted from the current partial remain
der in a recursion step. The computation of the quotient digits takes place
with very limited precision while the computation of the next partial re
mainder is a full-precision multiply/subtract operation.

6 P e r fo r m a n c e Estim ates

A software model of this architecture has been simulated to verify cor
rectness of the control algorithms for the arithmetic operations. Detailed
SPICE [16] simulation of the individual arithmetic circuit modules (called
operators) that make up the arithmetic unit have been done. Cascade’s
estimated operation execution times are summarized in Table 1. Message
reception is not accounted for in this table since procedure call overhead
was factored out in the performance benchmarks. These timing estimates
are based on a slightly pessimistic 25 MHz clock rate.

The quotient/root digit selection hardware has not yet been fully de
signed so the speed of division and square-root extraction cannot be deter
mined exactly. However, we estimate that quotient digit selection can be
done in approximately 240 ns. With the exception of the first four digits
of the root, root digit selection is as fast as quotient digit selection.

A critical issue in addition and subtraction is memory access time since
three or four memory cycles are required (two to fetch the operands and
one or two to store the result). If fast static RAM is not used as sug
gested in table 1 then the times for addition and subtraction slow down
dramatically. In general, memory cycle time has less effect on the execu
tion times of single-precision multiplication and division than on addition

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 19

Table 1: Operation Delays

Descriptor Fetch id 160 ns
Descriptor Store 160 ns
Operand Fetch* */ 40 ns
Result Allocation* U 80 ns
Result Store* u 40 ns
Raw Add (N digit)* i+ 40 ns
Raw Mul (1 digit) U 120 ns
Raw Div (1 Q digit) */ 320 ns

Raw Sqrt(l R digit) V 360 ns

Compute Sign/Nd t±Nd f(iV/16)"| * 200 ns
Add (N digits) 2tel “i“ 480 + r(A716)l * 200 ns
Mul (N digits) 2 td + to + Nt* 480 + N * 120 ns
Div (N Quot. digits) ltd + 2to + Ntj 640 + N * 320 ns

Sqrt (N Root digits) td + 2 to + 480 + N * 360 ns

* Can be easily overlapped with td anc /or <£>.

and subtraction.

Memory management functions are dependent on the speed of memory
as well as on dynamically varying distributions of allocated memory blocks.
Depending on memory speed, it will take approximately 200 nanoseconds
to retrieve a descriptor given a handle. The allocation of a new descriptor
when a search for an unused descriptor is not required would take approxi
mately 240 ns. A complete scan of a maximally sized management memory
to find a free handle would require approximately 60 milliseconds; in the
average case, this operation would take around 1 microsecond. Garbage
collection takes about 600 nanoseconds for garbage numbers and about 1.2
microseconds for numbers still in use (exclusive of the time to move digits
which depends on the average size of a number). Considering an average
case where half of the numbers are garbage with 2 words in each number,
about 960 nanoseconds will be required for each descriptor. In the infre
quently occurring worst case, allocation involving garbage collection would
take approximately one second.

Table 2 shows measured performances of HP Common Lisp (Rev. 2.01),
Lucid Common Lisp (HP Rev. A.2.01), Utah’s Portable Standard Lisp
and the estimated performance of the Cascade hardware for operand sizes
varying between 1 and 1023 radix-16 digits. The operations studied in this
table are addition, multiplication, division and extraction of the square
root. The functions computed were n + 1 for addition, n * (n — 1) for

20 TONY M. CARTER

multiplication, (ra/3) for division and isqrt(n) for square root extraction.
These were all taken so that measurement error was less than 0.5%. In
HP Common Lisp, care was taken to avoid garbage collections during the
measurements since the time function does not factor it out. The overhead
for loop control and function application was factored out so that only the
time involved in the arithmetic function computation is included. The code
used in these measurements is shown schematically as follows:

(defvar nMMMM (- (expt 16 (1- MMHH) 1))

(d e f u n n u l l - f n (x y) n i l)

(d e f u n a d d - fn (x y) (+ x y »
(d e f u n m u l- f n (X y) (* x y))

(d e f u n d i v - f n (x y) (/ X y »
(d e f u n s q r t - f n (x y) (i s q r t x))

(d e f u n t im in g (n jE x y)

(g c)

(time-subtract
(time (dotimes (i n) (apply f (l i s t x y))))
(time (dotimes (i n) (apply 'nu ll- fn (l i s t x y))))))

Figures 6, 7, 8 and 9 plot these raw results and give a more intuitive
feel for the results. There are several anomalies in the charts that de
serve explanation. First, from the timings of division in Lucid Common
Lisp, it is evident that a convergence division algorithm is being used. Sec
ond, measurements were made starting within the fixnum number range,
so the measured performances of Lisp arithmetic exhibit a discontinuity in
the curve where the computation enters the domain of bignums. Third,
multiplication in Lucid Common Lisp exhibits an abnormal peak when
log2 (digits +1) is 3. This is most likely due to multiplying two fixnums
and having a bignum result for every partial product as well as the final re
sult. The peak is probably due to excessive number conversion overhead. It
could most likely be eliminated by preconverting the two fixnum arguments
to bignums and then proceeding with the multiplication.

7 C o n clu sio n

Cascade is a hardware architecture designed specifically for performing
arithmetic operations on high/variable precision integers. Relative to Com
mon Lisp bignums running on a professional workstation, it is possible to
realize speed improvements of several orders of magnitude in arithmetic
computations involving bignums. The use of the Cascade hardware should

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 2 1

accelerate bignum addition by two to three orders of magnitude over the
number ranges considered in this paper. Multiplication will be accelerated
by one and one-half to three orders of magnitude. Division will be acceler
ated by two orders of magnitude at relatively small number sizes and by one
and one-half orders of magnitude at larger number sizes. Square root will
be accelerated by between two and five orders of magnitude. Additional
state-machine circuitry and possibly some additional arithmetic circuitry
could render it possible to compute other functions (natural logarithm, ex
ponential, tangent or cotangent, sine, cosine and arctangent) on bignums
with the same kind of performance increase seen for square root using the
algorithms proposed by DeLugish [14].

The Cascade hardware exhibits only a moderate performance increase
over worst-case optimized PSL [1] bignums running on a CRAY XMP; 20
30 times for addition, 10-20 times for multiplication, and only very small
increases for division. It must be noted that the Cray PSL implementa
tion of bignums has been optimized to utilize the Cray vector registers
while PSL on other machines is straight Lisp code. If a more average case
analysis were done it is expected that a fourfold decrease in running times
for PSL bignums running on a CRAY XMP would be seen, making the
Cascade hardware at best only a few times faster. The Cascade hardware,
however, would cost significantly less and could easily be attached to a pro
fessional workstation making high-performance bignum arithmetic available
to a much larger community. Its linear extensibility in space permits free
tradeoffs of time versus space. The inclusion of hardware memory manage
ment functions in the object-oriented Cascade processor also implies that
garbage collection time and memory usage in Common Lisp running on
a professional workstation would be significantly reduced for applications
that rely heavily on bignum arithmetic. This directly and significantly im
pacts user response time, which for interactive systems is the main concern.

TONY M. CARTER

Table 2: Performance Comparisons

Op. Opnd
Sixc

(digits)

Per Operation Execution Times (in jiS)
HP CL

(HP 9000/350)
Lund CL

(HP 9000/350)
PSL

(Sun 4/260)
PSL

(Sun 3/60)
PSL

(Cray)
Uasoftrto

(«»•)
1 6.55 3.64 6'.65' 19.93 6.46 6.6ft

Add 3 5.92 3.01 7.23 20.06 0.39 0.68
Add 7 21.86 4.33 84.70 355.80 1.11 0.68
Add 15 136.70 105.20 65.62 262.80 19.54 0.68
Add 31 163.90 113.30 73.78 294.10 21.78 0.88
Add 63 219.50 126.10 82.96 319.60 40.84 1.28
Add 127 322.10 180.80 96.56 369.90 64.24 2.08
Add 255 540.80 257.00 130.60 459.70 143.80 3.68
Add 511 1038.00 427.10 185.00 696.30 80.00 6.88
Add 1023 1855.00 779.90 304.50 1109.00 132.40 13.28

Mul 1 12.80 13.47 9.96 24.85 0.63 0.60
Mul 3 12.59 12.93 10.84 25.94 0.56 0.84
Mul 7 324.10 227.70 75.02 335.70 19.93 1.32
Mul 15 672.90 103.30 81.76 307.10 13.70 2.28
Mul 31 2287.00 162.70 268.90 703.90 21.88 4.20
Mul 63 8669.00 385.60 710.60 1713.00 37.11 8.04
Mul 127 34200.00 1170.00 2523.00 5127.00 51.56 15.72
Mul 255 136200.00 4270.00 9456.00 16680.00 87.50 31.08
Mul 511 415750.00 16490.00 31030.00 58650.00 500.00 61.80
Mul 1023 2320000.00 64600.00 68000.00 137700.00 1500.00 123.24

Div 1 37.64 118.10 11.93 28.02 1.34 0.96
Div 3 37.84 253.30 15.05 28.53 1.34 1.60
Div 7 37.43 532.50 250.10 437.90 2.29 2.88
Div 15 13660.00 968.50 327.90 363.20 25.51 5.44
Div 31 40920.00 1114.00 747.10 390.10 29.30 10.56
Div 63 107900.00 1333.00 1162.00 498.10 46.88 20.80
Div 127 291900.00 1821.00 2890.00 510.00 54.69 41.28
Div 255 859000.00 2830.00 4420.00 850.00 93.75 82.24
Div 511 2852000.00 4881.00 9265.00 1190.00 125.00 164.16
Div 1023 10320000.00 9192.00 17680.00 2040.00 500.00 328.00

Sqrt 1 150.80 83.01 0.84
Sqrt 3 399.90 202.60 1.20
Sqrt 7 5507.00 405.30 1.92
Sqrt 15 44480.00 23280.00 3.36
Sqrt 31 188900.00 66720.00 6.24
Sqrt 63 1100000.00 172500.00 12.00
Sqrt 127 7682000.00 476000.00 23.52
Sqrt 255 58340000.00 1357000.00 46.56
Sqrt 511 458500000.00 4221000.00 92.64
Sqrt 1023 3635000000.00 14840000.00 184.80

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS

L e n g t h in D ig i t s

Figure 6: Addition/Subtraction Performance

L e n g t h in D ig i t s

Figure 7: Multiplication Performance

24 TONY M. CARTER

L e n g t h i n D ig it s

Figure 8: Division Performance

L e n g t h in D ig i t s

Figure 9: Square-Root Performance

CASCADE: A HARDWARE ALTERNATIVE TO BIGNUMS 25

R eferences

1. Anderson, J. W., Galway, W. H., Kessler, R. R., Melenk, H., and Neun,
W. Implementing and optimizing lisp for the cray. IEEE Software (July

1987) 74-83.

2. Avizienis, A. Signed-digit number representations for fast parallel
arithmetic. IRE Transactions on Electronic Computers, EC-10, 9 (Sep.

1961) 389-400.

3. Brassard, G. Modern Cryptography. Springer-Verlag (1988).

4. Carter, T. M. Structured Arithmetic Tiling of Integrated Circuits.
PhD thesis, Department of Computer Science (Dec. 1983).

5. Carter, T. M. Structured arithmetic tiling of integrated circuits. In
Proceedings of the 8th Symposium on Computer Arithmetic, Como,
ITALY (May 1987) 41-48.

6. Carter, T. M. Cascade: hardware for high/variable precision arith

metic. In Proceedings of the 9th Symposium on Computer Arithmetic,
Santa Monica, CA (Sep. 1989).

7. Carter, T. M. and Hollaar, L. A. The implementation of a radix-16
digit-slice using a cellular vlsi technique. In Proceedings IEEE Int‘l
Conference on Computer Design, Port Chester, NY (Nov. 1983) 688

691.

8. Carter, T. M. and Robertson, J. E. Radix-16 Signed-Digit Division.
Technical Report UUCS-88-004, University of Utah, Department of
Computer Science (Apr. 1988).

9. Chow, C. Y. F. A Variable Precision Processor Module. PhD thesis,
Department of Computer Science (1980).

10. Chow, C. Y. F. A variable precision processor module. In Proceedings
IEEE In t’l Conference on Computer Design, Port Chester, NY (Nov.
1983) 692-695.

11. Group, CAGD Research. Alpha.1 User’s Manual. University of Utah,
Department of Computer Science (1983).

12. Hearn, A. C. The reduce program for computer algebra. In Proceed
ings 3rd Colloquium on Advanced Computing Methods in Theoretical
Physics, CNRS, Marseilles, France (June 1983) A—V—1-19.

26 TONY M. CARTER

13. Knuth, D. W. The Art of Computer Programming. Volume 2: Seminu-
merical Algorithms, Addison-Wesley (1981) chapter 4, 250-265.

14. Lugish, B. G. De. A Class of Algorithms for Automatic Evaluation
of Certain Elementary Functions in a Binary Computer. PhD thesis,
University of Illinois at Urbana-Champaign (June 1970).

15. Melenk, H., Moller, H. M., and Neun, W. On Grobner Bases Com
putation on a Supercomputer Using REDUCE. Preprint SC 88-2, FB
Mathematik und Informatik der Fernuniversitat Hagen (Jan. 1988).

16. Nagel, L. W. SPICE2: A Computer Program to Simulate Semicon
ductor Circuits. Memo ERL-M520, University of California, Berkeley
(May 1975).

17. Robertson, J. E. A systematic approach to the design of structures
for arithmetic. In Proceedings of the bth Symposium on Computer
Arithmetic (May 1981) 35-41.

18. Robertson, J. E. Design of the combinational logic for a radix-16 digit-
slice for a variable precision processor module. In Proceedings IEEE
In t‘l Conference on Computer Design, Port Chester, NY (Nov. 1983)
696-699.

19. Robertson, J. E. A Theory of Decomposition of Structures for Binary
Addition and Subtraction. Report UIUCDCS-R-81-1004, University of
Illinois at Urbana-Champaign (Jan. 1983).

20. Thomas, S. W. Modeling Volumes Bounded by B-Spline Surfaces. PhD
thesis, University of Utah (1984).

21. White, J. L. Reconfigurable, retargetable bignums: a case study in ef
ficient, portable lisp system building. In Proceedings ACM Conference
on Lisp and Functional Programming (1986) 174-191.

22. Zuras, D. and McCallister, W. H. Balanced delay trees and combina
tional division in vlsi. IEEE Journal of Solid-State Circuits, SC-21, 5
(Oct. 1986) 814-819.

