965 research outputs found

    DESIGN OF SAFER + ENCRYPTION ALGORITHM FOR BLUETOOTH TRANSMISSION

    Get PDF
    In this paper, a VLSI design and  implementation for the high-end SAFER+ encryption algorithm is presented. The combination of security, and high speed implementation, makes SAFER+ a very good choice for wireless systems. The SAFER+ algorithm is a basic component in the authentication Bluetooth mechanism. The relation between the algorithm properties and the VLSI architecture are described. Performance of the algorithm is evaluated based on the data throughput,frequency and security level.The results show that the modified SAFER plus algorithm has enhanced security compared to the existing algorithms

    Generalised and Versatile Connected Health Solution on the Zynq SoC

    Get PDF
    This chapter presents a generalized and versatile connected health solution for patient monitoring. It consists of a mobile system that can be used at home, an ambulance and a hospital. The system uses the Shimmer sensor device to collect three axes (x, y and z) accelerometer data as well as electrocardiogram signals. The accelerometer data is used to implement a fall detection system using the k-Nearest Neighbors classifier. The classification algorithm is implemented on various platform including a PC and the Zynq system on chip platform where both programmable logic and processing system of the Zynq are explored. In addition, the electrocardiogram signals are used to extract vital information, the signals are also encrypted using the Advanced Encryption Standard and sent wirelessly using Wi-Fi for further processing. Implementation results have shown that the best overall accuracy reaches 90% for the fall detection while meeting real-time performances when implemented on the Zynq and while using only 48% of Look-up Tables and 22% of Flip-Flops available on chip

    A Study of Wireless Network Security

    Get PDF
    I intend to make a survey in wireless data security since wireless networks are very common, both for organizations and individuals. Many laptop computers have wireless cards pre-installed. The ability to enter a wireless network has great benefits. However, wireless networking has many security issues. Hackers have found wireless networks relatively easy to break into, and even use wireless technology to crack into wired network. As a result, it\u27s very important that enterprises define effective wireless security policies that guard against unauthorized access to important resources. My survey research may involve these following aspects: wireless network architecture, data security in wireless networks, secure data storage in wireless networks and so forth

    Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview

    Get PDF
    The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered

    The Applications of the Internet of things in the Medical Field

    Get PDF
    The Internet of Things (IoT) paradigm promises to make “things” include a more generic set of entities such as smart devices, sensors, human beings, and any other IoT objects to be accessible at anytime and anywhere. IoT varies widely in its applications, and one of its most beneficial uses is in the medical field. However, the large attack surface and vulnerabilities of IoT systems needs to be secured and protected. Security is a requirement for IoT systems in the medical field where the Health Insurance Portability and Accountability Act (HIPAA) applies. This work investigates various applications of IoT in healthcare and focuses on the security aspects of the two internet of medical things (IoMT) devices: the LifeWatch Mobile Cardiac Telemetry 3 Lead (MCT3L), and the remote patient monitoring system of the telehealth provider Vivify Health, as well as their implementations

    Deteção de intrusões de rede baseada em anomalias

    Get PDF
    Dissertação de mestrado integrado em Eletrónica Industrial e ComputadoresAo longo dos últimos anos, a segurança de hardware e software tornou-se uma grande preocupação. À medida que a complexidade dos sistemas aumenta, as suas vulnerabilidades a sofisticadas técnicas de ataque têm proporcionalmente escalado. Frequentemente o problema reside na heterogenidade de dispositivos conectados ao veículo, tornando difícil a convergência da monitorização de todos os protocolos num único produto de segurança. Por esse motivo, o mercado requer ferramentas mais avançadas para a monitorizar ambientes críticos à vida humana, tais como os nossos automóveis. Considerando que existem várias formas de interagir com os sistemas de entretenimento do automóvel como o Bluetooth, o Wi-fi ou CDs multimédia, a necessidade de auditar as suas interfaces tornou-se uma prioridade, uma vez que elas representam um sério meio de aceeso à rede interna do carro. Atualmente, os mecanismos de segurança de um carro focam-se na monitotização da rede CAN, deixando para trás as tecnologias referidas e não contemplando os sistemas não críticos. Como exemplo disso, o Bluetooth traz desafios diferentes da rede CAN, uma vez que interage diretamente com o utilizador e está exposto a ataques externos. Uma abordagem alternativa para tornar o automóvel num sistema mais robusto é manter sob supervisão as comunicações que com este são estabelecidas. Ao implementar uma detecção de intrusão baseada em anomalias, esta dissertação visa analisar o protocolo Bluetooth no sentido de identificar interações anormais que possam alertar para uma situação fora dos padrões de utilização. Em última análise, este produto de software embebido incorpora uma grande margem de auto-aprendizagem, que é vital para enfrentar quaisquer ameaças desconhecidas e aumentar os níveis de segurança globais. Ao longo deste documento, apresentamos o estudo do problema seguido de uma metodologia alternativa que implementa um algoritmo baseado numa LSTM para prever a sequência de comandos HCI correspondentes a tráfego Bluetooth normal. Os resultados mostram a forma como esta abordagem pode impactar a deteção de intrusões nestes ambientes ao demonstrar uma grande capacidade para identificar padrões anómalos no conjunto de dados considerado.In the last few years, hardware and software security have become a major concern. As the systems’ complexity increases, its vulnerabilities to several sophisticated attack techniques have escalated likewise. Quite often, the problem lies in the heterogeneity of the devices connected to the vehicle, making it difficult to converge the monitoring systems of all existing protocols into one security product. Thereby, the market requires more refined tools to monitor life-risky environments such as personal vehicles. Considering that there are several ways to interact with the car’s infotainment system, such as Wi-fi, Bluetooth, or CD player, the need to audit these interfaces has become a priority as they represent a serious channel to reach the internal car network. Nowadays, security in car networks focuses on CAN bus monitoring, leaving behind the aforementioned technologies and not contemplating other non-critical systems. As an example of these concerns, Bluetooth brings different challenges compared to CAN as it interacts directly with the user, being exposed to external attacks. An alternative approach to converting modern vehicles and their set of computers into more robust systems is to keep track of established communications with them. By enforcing anomaly-based intrusion detection this dissertation aims to analyze the Bluetooth protocol to identify abnormal user interactions that may alert for a non conforming pattern. Ultimately, such embedded software product incorporates a self-learning edge, which is vital to face newly developed threats and increasing global security levels. Throughout this document, we present the study case followed by an alternative methodology that implements an LSTM based algorithm to predict a sequence of HCI commands corresponding to normal Bluetooth traffic. The results show how this approach can impact intrusion detection in such environments by expressing a high capability of identifying abnormal patterns in the considered data

    Residential access control system using QR code and the IoT

    Get PDF
    This paper presents a residential access control system (RACs) using QR codes and the internet of things (IoT) to improve security and help house owners. The contribution of this paper is that it proposes two mechanisms in the authentication phase and the verification phase, respectively, to enhance residential access control. The main idea is using cryptography between smartphones and access control devices. The cryptography compares secret codes on the key server via the internet. The RACs can notify a user of the residential access status through the LINE application and show the statuses of devices through the network platform for the internet of everything (NETPIE) in real-time. We compare this system’s performance with that of the current access control methods in terms of security and access speed. The results show that this system has more security and has an access speed of 5.63 seconds. Moreover, this system is safer and more flexible than the comparative methods and suitable for contactless authentication

    Improved Bluetooth Key Exchange using Unbalanced RSA

    Get PDF
    In this thesis, a new protocol is proposed for the Bluetooth Key Exchange. The proposed key exchange will make use of a public-key algorithm as compared to the currently existing key exchange which only uses symmetric ciphers. The public-key algorithm to be used is a modified version of the RSA algorithm called Unbalanced RSA . The proposed scheme will improve on the currently existing key exchange scheme by improving the security while trying to minimize computation time. The proposed protocol will also improve on a recent work which used the Diffie-Hellman algorithm for Bluetooth key exchange. In using the Diffie-Hellman algorithm the security was increased from the original Bluetooth key exchange but the computation time and difficulty of computations was also increased. Two Bluetooth devices that are trying to communicate can have a wide range of processor speeds and the use of the Diffie-Hellman protocol can cause a large delay at one user. The use of Unbalanced RSA in the proposed protocol will aim to remedy this problem. The aim of the proposed protocol is to eliminate the security risks from the original Bluetooth key exchange and also address the computation time issue with the enhanced Diffie-Hellman key exchange

    Survey and Analysis of Android Authentication Using App Locker

    Full text link
    Android Smart phones have gained immense popularity over the years and is undoubtedly more popular than other operating system phones. Following the similar lines android wear was introduced. Steadily android wear is making its way into our daily lives. It helps keep track of the sleep you have, helps you reach fitness goals, keeps track of phone and helps users have easy authentication. Due to the usage of smart lock which enables phone to be unlocked as long as connected to the android wear, this leads to almost no security on both the ends as android wear before Android 5.0 has no lock. We aim to produce the existing authentication methods in android phones and wear and the threats that plague both kinds of devices. As authentication is one of the major building blocks of security, through research we aim at designing a system for android phones which will be able to protect the sensitive data on devices which will be at risk through smart lock using encryption techniques. In this proposed system, the user would be able to decide which applications are needed to be secured when he is using smart lock. This application will enable lock for those user chosen applications as soon as the smart phone device is connected to android wear and similarly disables the lock when connection is disabled between the devices and communication between devices is made secure using encryption algorithms. This application does not interfere with easy phone authentication which users demand but it makes sure data is protected and users are authenticated with the help of multiple authentication layering
    corecore