22 research outputs found

    Neuromodulation Based Control of Autonomous Robots on a Cloud Computing Platform

    Get PDF
    In recent years, the advancement of neurobiologically plausible models and computer networking has resulted in new ways of implementing control systems on robotic platforms. The work presents a control approach based on vertebrate neuromodulation and its implementation on autonomous robots in the open-source, open-access environment of robot operating system (ROS). A spiking neural network (SNN) is used to model the neuromodulatory function for generating context based behavioral responses of the robots to sensory input signals. The neural network incorporates three types of neurons- cholinergic and noradrenergic (ACh/NE) neurons for attention focusing and action selection, dopaminergic (DA) neurons for rewards- and curiosity-seeking, and serotonergic (5-HT) neurons for risk aversion behaviors. This model depicts neuron activity that is biologically realistic but computationally efficient to allow for large-scale simulation of thousands of neurons. The model is implemented using graphics processing units (GPUs) for parallel computing in real-time using the ROS environment. The model is implemented to study the risk-taking, risk-aversive, and distracted behaviors of the neuromodulated robots in single- and multi-robot configurations. The entire process is implemented in a cloud computing environment using ROS where the robots communicate wirelessly with the computing nodes through the on-board laptops. However, unlike the traditional neural networks, the neuromodulatory models do not need any pre-training. Instead, the robots learn from the sensory inputs and follow the behavioral facets of living organisms. The details of algorithm development, the experimental setup and implementation results under different conditions, in both single- and multi-robot configurations, are presented along with a discussion on the scope of further work

    Learning Autonomous Flight Controllers with Spiking Neural Networks

    Full text link
    The ability of a robot to adapt in-mission to achieve an assigned goal is highly desirable. This thesis project places an emphasis on employing learning-based intelligent control methodologies to the development and implementation of an autonomous unmanned aerial vehicle (UAV). Flight control is carried out by evolving spiking neural networks (SNNs) with Hebbian plasticity. The proposed implementation is capable of learning and self-adaptation to model variations and uncertainties when the controller learned in simulation is deployed on a physical platform. Controller development for small multicopters often relies on simulations as an intermediate step, providing cheap, parallelisable, observable and reproducible optimisation with no risk of damage to hardware. Although model-based approaches have been widely utilised in the process of development, loss of performance can be observed on the target platform due to simplification of system dynamics in simulation (e.g., aerodynamics, servo dynamics, sensor uncertainties). Ignorance of these effects in simulation can significantly deteriorate performance when the controller is deployed. Previous approaches often require mathematical or simulation models with a high level of accuracy which can be difficult to obtain. This thesis, on the other hand, attempts to cross the reality gap between a low-fidelity simulation and the real platform. This is done using synaptic plasticity to adapt the SNN controller evolved in simulation to the actual UAV dynamics. The primary contribution of this work is the implementation of a procedural methodology for SNN control that integrates bioinspired learning mechanisms with artificial evolution, with an SNN library package (i.e. eSpinn) developed by the author. Distinct from existing SNN simulators that mainly focus on large-scale neuron interactions and learning mechanisms from a neuroscience perspective, the eSpinn library draws particular attention to embedded implementations on hardware that is applicable for problems in the robotic domain. This C++ software package is not only able to support simulations in the MATLAB and Python environment, allowing rapid prototyping and validation in simulation; but also capable of seamless transition between simulation and deployment on the embedded platforms. This work implements a modified version of the NEAT neuroevolution algorithm and leverages the power of evolutionary computation to discover functional controller compositions and optimise plasticity mechanisms for online adaptation. With the eSpinn software package the development of spiking neurocontrollers for all degrees of freedom of the UAV is demonstrated in simulation. Plastic height control is carried out on a physical hexacopter platform. Through a set of experiments it is shown that the evolved plastic controller can maintain its functionality by self-adapting to model changes and uncertainties that take place after evolutionary training, and consequently exhibit better performance than its non-plastic counterpart

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Exploring the landscapes of "computing": digital, neuromorphic, unconventional -- and beyond

    Get PDF
    The acceleration race of digital computing technologies seems to be steering toward impasses -- technological, economical and environmental -- a condition that has spurred research efforts in alternative, "neuromorphic" (brain-like) computing technologies. Furthermore, since decades the idea of exploiting nonlinear physical phenomena "directly" for non-digital computing has been explored under names like "unconventional computing", "natural computing", "physical computing", or "in-materio computing". This has been taking place in niches which are small compared to other sectors of computer science. In this paper I stake out the grounds of how a general concept of "computing" can be developed which comprises digital, neuromorphic, unconventional and possible future "computing" paradigms. The main contribution of this paper is a wide-scope survey of existing formal conceptualizations of "computing". The survey inspects approaches rooted in three different kinds of background mathematics: discrete-symbolic formalisms, probabilistic modeling, and dynamical-systems oriented views. It turns out that different choices of background mathematics lead to decisively different understandings of what "computing" is. Across all of this diversity, a unifying coordinate system for theorizing about "computing" can be distilled. Within these coordinates I locate anchor points for a foundational formal theory of a future computing-engineering discipline that includes, but will reach beyond, digital and neuromorphic computing.Comment: An extended and carefully revised version of this manuscript has now (March 2021) been published as "Toward a generalized theory comprising digital, neuromorphic, and unconventional computing" in the new open-access journal Neuromorphic Computing and Engineerin

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come
    corecore