
Georgia Southern University

Digital Commons@Georgia Southern

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of

Summer 2014

Neuromodulation Based Control of Autonomous Robots
on a Cloud Computing Platform
Cameron Muhammad

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd

 Part of the Acoustics, Dynamics, and Controls Commons, Bioelectrical and
Neuroengineering Commons, Controls and Control Theory Commons, Digital
Communications and Networking Commons, Electro-Mechanical Systems Commons, and
the Systems Engineering Commons

Recommended Citation
Muhammad, Cameron, "Neuromodulation Based Control of Autonomous Robots on a Cloud
Computing Platform" (2014). Electronic Theses and Dissertations. 1203.
https://digitalcommons.georgiasouthern.edu/etd/1203

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N.
Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/231?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/231?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/298?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1203?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

NEUROMODULATION BASED CONTROL OF AUTONOMOUS ROBOTS ON A CLOUD
COMPUTING PLATFORM

By

CAMERON MUHAMMAD

 (Under the Direction of Biswanath Samanta)

ABSTRACT

In recent years, the advancement of neurobiologically plausible models and computer

networking has resulted in new ways of implementing control systems on robotic platforms. The

work presents a control approach based on vertebrate neuromodulation and its implementation

on autonomous robots in the open-source, open-access environment of robot operating system

(ROS). A spiking neural network (SNN) is used to model the neuromodulatory function for

generating context based behavioral responses of the robots to sensory input signals. The neural

network incorporates three types of neurons- cholinergic and noradrenergic (ACh/NE) neurons

for attention focusing and action selection, dopaminergic (DA) neurons for rewards- and

curiosity-seeking, and serotonergic (5-HT) neurons for risk aversion behaviors. This model

depicts neuron activity that is biologically realistic but computationally efficient to allow for

large-scale simulation of thousands of neurons. The model is implemented using graphics

processing units (GPUs) for parallel computing in real-time using the ROS environment. The

model is implemented to study the risk-taking, risk-aversive, and distracted behaviors of the

neuromodulated robots in single- and multi-robot configurations. The entire process is

implemented in a cloud computing environment using ROS where the robots communicate

wirelessly with the computing nodes through the on-board laptops. However, unlike the

traditional neural networks, the neuromodulatory models do not need any pre-training. Instead,

the robots learn from the sensory inputs and follow the behavioral facets of living organisms.

The details of algorithm development, the experimental setup and implementation results under

different conditions, in both single- and multi-robot configurations, are presented along with a

discussion on the scope of further work.

INDEX WORDS: Artificial neural networks, Cloud computing, Cloud Robotics, CUDA, GPU,
Izhikevich Spiking Neuron, Neuromodulation, Neurorobotics, Parallel computing, Robot
Operating System, ROS, Parallel processing, Spiking neural networks.

NEUROMODULATION BASED CONTROL OF AUTONOMOUS ROBOTS ON A CLOUD
COMPUTING PLATFORM

By

CAMERON MUHAMMAD

B.S., Georgia Southern University, 2011

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial

Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

STATESBORO, GEORGIA

2014

iii

©2014

CAMERON MUHAMMAD

All Rights Reserved

iv

NEUROMODULATION BASED CONTROL OF AUTONOMOUS ROBOTS ON A CLOUD
COMPUTING PLATFORM

By

CAMERON MUHAMMAD

 Major Professor: Biswanath Samanta, Ph.D.

 Committee: Biswanath Samanta, Ph.D.

 Jordan Shropshire, Ph.D.

 Anoop Desai, Ph.D.

Electronic Version Approved:

July 2014

v

DEDICATION

To Mom, Ronelka, and Kayleigh for all of their support.

To Dad for always keeping my spirits up and showing what work ethic I needed to succeed in
life. Rest in Peace.

vi

ACKNOWLEDGEMENTS

I would like to thank Dr. Biswanath Samanta for his guidance and support over the past two
years on this project.

I would also like to thank all of my family and friends at Georgia Southern University.

vii

TABLE OF CONTENTS

	
ACKNOWLEDGEMENTS ... vi

LIST OF FIGURES .. x

ABBREVIATIONS .. xv

CHAPTER 1 . INTRODUCTION .. 1

1.1 Effects of Neuromodulation .. 1

1.2 Scope of Present Work .. 1

1.3 Organization of Thesis .. 3

CHAPTER 2 . LITERATURE REVIEW ... 5

2.1. Artificial Neural Networks ... 5

2.2 The First Artificial Neural Network .. 7

2.3 Second Generation Artificial Neural Networks .. 9

2.3.1 The Perceptron ... 9

2.3.2 The Multilayer Perceptron ... 10

2.4 Realism and the Newest Generation of ANN .. 11

2.5 The Izhikevich Model .. 13

2.6 Parallel Programming and GPU based Computing ... 15

2.7 Robot Operating System (ROS) ... 15

2.8 Cloud Computing .. 16

CHAPTER 3 . RESEARCH METHODOLOGY ... 18

3.1 Robotic Platform ... 18

3.2 ROS code platform .. 19

3.3 Simple Neuromodulation Model and States .. 20

3.4 Spiking Neuromodulation Model and States ... 23

3.5 Cloud Computing Configuration .. 26

CHAPTER 4 . EXPERIMENTAL RESULTS AND DISCUSSIONS ... 27

4.1 Simple Neuron Model (Single Robot) ... 27

4.1.1 Risk-Aversive Robot .. 27

4.1.2 Risk-Taking Robot ... 30

4.1.3 Distracted Robot .. 33

viii

4.2 Simple Neuron Model (Two Robots) ... 36

4.2.1 Risk Aversive Robot with Risk Taking Robot ... 36

4.2.2 Risk Aversive Robot with Risk Aversive Robot.. 38

4.2.3 Risk Aversive Robot with Distracted Robot .. 40

4.2.4 Risk Taking Robot with Risk Taking Robot .. 42

4.2.5 Risk Taking Robot with Distracted Robot ... 44

4.3 Simple Neuron Model (Three Robots) .. 46

4.3.1 Two Risk Aversive Robots with One Risk Taking Robot ... 47

4.3.2 Two Risk Taking Robots with One Risk Aversive Robot ... 50

4.4 Simple Neuron Model (Four Robots) .. 53

4.4.1 Two Risk Aversive Robots with Two Risk Taking Robots ... 53

4.4.2. Two Risk Taking Robots with One Risk Aversive Robot and One Distracted Robot 55

4.3 Spiking Neuron Model (Single Robot) .. 59

4.5.1 Risk-Aversive Robot .. 62

4.5.2 Risk-Taking Robot ... 64

4.5.3 Distracted Robot .. 66

4.6 Spiking Neuron Model (Two Robots) .. 68

4.6.1 Risk Aversive Robot with Risk Taking Robot ... 68

4.6.2 Risk Aversive Robot with Risk Aversive Robot.. 70

4.6.3 Risk Aversive Robot with Risk Distracted Robot .. 72

4.6.4 Risk Taking Robot with Risk Taking Robot .. 74

4.6.5 Risk Taking Robot with Distracted Robot ... 76

4.7 Spiking Neuron Model (Three Robots) ... 78

4.7.1 Two Risk Aversive Robots with One Risk Taking Robot ... 78

4.7.2 Two Risk Taking Robots with One Risk Aversive Robot ... 80

4.8 Spiking Neuron Model (Four Robots) ... 82

4.8.1 Two Risk Aversive Robots with Two Risk Taking Robots ... 82

4.8.2. Two Risk Taking Robots with One Risk Aversive Robot and One Distracted Robot 83

4.9 Discussion of Results .. 86

CHAPTER 5 . CONCLUSIONS AND RECOMMENDATIONS ... 87

5.1 Summary of the Present Work ... 87

5.2 Scope of Future Work ... 88

ix

REFERENCES ... 89

APPENDICIES ... 91

Appendix A .. 91

SOFTWARE IMPLEMENTATION OF NEUROMODULATED NETWORK IN ROS-
COMPATIBLE C++ ... 91

EXAMPLE OF SPIKING NEURAL NETWORK SIMULATION CODE IN C++ 122

MATLAB CODE TO RUN AN IZHIKEVICH PULSE TRAIN ... 132

Appendix B .. 134

PICTURES OF ROBOT MOTION .. 134

Appendix C .. 135

LIST OF PUBLICATIONS .. 135

x

LIST OF FIGURES

Figure 2.1. A typical neuron. Sources: (Ramòn y Cajal 1909) and (Kistler and Gerstner 2002, 3) 6
Figure 2.2. A typical synaptic connection. Sources: (Ramòn y Cajal 1909) and (Kistler and Gerstner
2002, 3) ... 6

Figure 2.3. A typical form of an EPSP and IPSP. Sources: (Gerstner 1999) .. 7

Figure 2.4. A block diagram representation of the TLU. Source: (Turner 2012, 10) 8

Figure 2.5. A model of an MLP ANN. Source: (Turner 2012, 13) .. 10

Figure 2.6. Spike after-potential. Source: (Turner 2012, 13) .. 12

Figure 2.7. Integrate-and-fire model. Source: (Kistler and Gerstner 2002, 94) .. 13

Figure 2.8. Hodgkin-Huxley model. Source: (Kistler and Gerstner 2002, 34) ... 14

Figure 2.9 ROS node layout .. 16

Figure 2.10 ROS master node layout .. 16

Figure 2.11 The layout of a Cloud Computing network involving robots .. 17

Figure 3.1 The Turtlebot with Kinect and Laptop .. 19

Figure 3.2 ROS code structure layout ... 20

Figure 3.3 The structure of the simple neural simulation model (J. L. Krichmar 2012). 21

Figure 3.4 The structure of the spiking neural simulation model ... 25

Figure 4.1 Events during the robot motion (Single Robot, Risk Aversive) .. 28

Figure 4.2 Activity of ACh/NE during the robot motion (Single Robot, Risk Aversive)........................... 28
Figure 4.3 The activity of DA and 5-HT neurons during the robot motion (Single Robot, Risk Aversive)
 .. 29

Figure 4.4 Activity of State Neurons greater than threshold (0.67) (Single Robot, Risk Aversive) 29

Figure 4.5 State transition during the robot motion (Single Robot, Risk Aversive) 30

Figure 4.6 Events during the robot motion (Single Robot, Risk Taking) ... 31

Figure 4.7 Activity of Ach/NE during the robot motion (Single Robot, Risk Taking)............................... 31

Figure 4.8 The activity of 5-HT and DA neurons during the robot motion (Single Robot, Risk Taking) .. 32

Figure 4.9 Activity of state neurons greater than threshold (0.67) (Single Robot, Risk Taking) 32

Figure 4.10 State transition during the robot motion (Single Robot, Risk Taking) 33

Figure 4.11 Events during the robot motion (Single Robot, Distracted) .. 34

Figure 4.12 Activity of Ach/NE during the robot motion (Single Robot, Distracted) 34

Figure 4.13 The activity of 5-HT and DA neurons during the robot motion (Single Robot, Distracted) ... 35

Figure 4.14 Activity of state neurons greater than threshold (0.67) (Single Robot, Distracted) 35

Figure 4.15 State transition during the robot motion (Single Robot, Distracted) 35

Figure 4.16 Events during the robot motion (Two Robots, Risk-Aversive, Risk-Taking) 36

Figure 4.17 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-Taking) 37
Figure 4.18 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-Aversive,
Risk-Taking) ... 37
Figure 4.19 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive, Risk-
Taking) .. 37

Figure 4.20 State transition during the robot motion (Two Robots, Risk-Aversive, Risk-Taking) 38

xi

Figure 4.21 Events during the robot motion (Two Robots, Risk-Aversive, Risk-Aversive) 38

Figure 4.22 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-Aversive) 39

Figure 4.23 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-Aversive) 39
Figure 4.24 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive, Risk-
Aversive) ... 39

Figure 4.25 State transition during the robot motion (Two Robots, Risk-Aversive, Risk-Aversive) 40

Figure 4.26 Events during the robot motion (Two Robots, Risk-Aversive and Distracted) 40

Figure 4.27 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive and Distracted) . 41
Figure 4.28 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-Aversive
and Distracted) .. 41
Figure 4.29 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive and
Distracted) ... 42

Figure 4.30 State transition during the robot motion (Two Robots, Risk-Aversive and Distracted) 42

Figure 4.31 Events during the robot motion (Two Robots, Risk-Taking and Risk-Taking) 43

Figure 4.32 Activity of ACh/NE during the robot motion (Two Robots, Risk-Taking and Risk-Taking) . 43
Figure 4.33 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-Taking and
Risk-Taking) ... 43
Figure 4.34 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Taking and Risk-
Taking) .. 44

Figure 4.35 State transition during the robot motion (Two Robots, Risk-Taking and Risk-Taking) 44

Figure 4.36 Events during the robot motion (Two Robots, Risk-Taking and Distracted) 45

Figure 4.37 Activity of ACh/NE during the robot motion (Two Robots, Risk-Taking and Distracted) 45
Figure 4.38 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-Taking and
Distracted) ... 45
Figure 4.39 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Taking and
Distracted) ... 46

Figure 4.40 State transition during the robot motion (Two Robots, Risk-Taking and Distracted) 46

Figure 4.41 Events during the robot motion (Three Robots, Two Risk Aversive/One Risk Taking) 47
Figure 4.42 Activity of ACh/NE during the robot motion (Three Robots, Two Risk Aversive/One Risk
Taking) .. 48
Figure 4.43 The activity of DA and 5-HT neurons during the robot motion (Three Robots, Two Risk
Aversive/One Risk Taking) .. 48
Figure 4.44 Activity of state neurons greater than threshold (0.67) (Three Robots, Two Risk
Aversive/One Risk Taking) .. 49
Figure 4.45 State transition during the robot motion (Three Robots, Two Risk Aversive/One Risk Taking)
 .. 49

Figure 4.46 Events during the robot motion (Three Robots, Two Risk Taking/One Risk Aversive) 50
Figure 4.47 Activity of ACh/NE during the robot motion (Three Robots, Two Risk Taking/One Risk
Aversive) ... 51
Figure 4.48 The activity of DA and 5-HT neurons during the robot motion (Three Robots, Two Risk
Taking/One Risk Aversive) .. 51

xii

Figure 4.49 Activity of state neurons greater than threshold (0.67) (Three Robots, Two Risk Taking/One
Risk Aversive) .. 52
Figure 4.50 State transition during the robot motion (Three Robots, Two Risk Taking/One Risk Aversive)
 .. 52

Figure 4.51 Events during the robot motion (Four Robots, Two Risk Aversive/Two Risk Taking) 53
Figure 4.52 Activity of ACh/NE during the robot motion (Four Robots, Two Risk Aversive/Two Risk
Taking) .. 54
Figure 4.53 The activity of DA and 5-HT neurons during the robot motion (Four Robots, Two Risk
Aversive/Two Risk Taking) .. 54
Figure 4.54 Activity of state neurons greater than threshold (0.67) (Four Robots, Two Risk Aversive/Two
Risk Taking).. 55
Figure 4.55 State transition during the robot motion (Four Robots, Two Risk Aversive/Two Risk Taking)
 .. 55

Figure 4.56 Events during the robot motion (Four Robots, Two Risk Taking/One Risk Aversive/One
Distracted) ... 56
Figure 4.57 Activity of ACh/NE during the robot motion (Four Robots, Two Risk Taking/One Risk
Aversive/One Distracted) .. 57
Figure 4.58 The activity of DA and 5-HT neurons during the robot motion) (Four Robots, Two Risk
Taking/One Risk Aversive/One Distracted) ... 57
Figure 4.59 Activity of state neurons greater than threshold (0.67) (Four Robots, Two Risk Taking/One
Risk Aversive/One Distracted) ... 58
Figure 4.60 State transition during the robot motion (Four Robots, Two Risk Taking/One Risk
Aversive/One Distracted) .. 58

Figure 4.61 Result of Object Detected input into the SNN network... 59

Figure 4.62 Result of Dock Beam input into the SNN network ... 60

Figure 4.63 Result of Low Battery input into the SNN network .. 60

Figure 4.64 Result of Bump input (serotonin and dopamine) into the SNN network 61

Figure 4.65 Result of Bump input (serotonin) into the SNN network .. 61

Figure 4.66 Result of Bump input (dopamine) into the SNN network ... 62

Figure 4.67 Event inputs into the ROS-SNN simulation program (Risk Aversive) 63

Figure 4.68 Neuromodulator activity of the ROS-SNN simulation program (Risk Aversive) 63

Figure 4.69 State transitions of the ROS-SNN simulation program (Risk Aversive) 64

Figure 4.70 Event inputs into the ROS-SNN simulation program (Risk Taking) 65

Figure 4.71 Neuromodulator activity of the ROS-SNN simulation program (Risk Taking) 65

Figure 4.72 State transitions of the ROS-SNN simulation program (Risk Taking) 66

Figure 4.73 Event inputs into the ROS-SNN simulation program (Distracted) .. 66

Figure 4.74 Neuromodulator activity of the ROS-SNN simulation program (Distracted) 67

Figure 4.75 State transitions of the ROS-SNN simulation program (Distracted) 67
Figure 4.76 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-Risk
Taking) .. 68
Figure 4.77 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Taking).. 69

xiii

Figure 4.78 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-Risk
Taking) .. 69
Figure 4.79 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-Risk
Aversive) ... 70
Figure 4.80 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Aversive) .. 71
Figure 4.81 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-Risk
Aversive) ... 71
Figure 4.82 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-Distracted)
 .. 72

Figure 4.83 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Distracted) ... 73
Figure 4.84 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Distracted) ... 73
Figure 4.85 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Taking-Risk-Taking)
 .. 74

Figure 4.86 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk Taking).. 75
Figure 4.87 State transitions of the ROS-SNN simulation program (Two Robots, Risk Taking-Risk
Taking) .. 75
Figure 4.88 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Taking-Risk-Taking)
 .. 76

Figure 4.89 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk Taking).. 77
Figure 4.90 State transitions of the ROS-SNN simulation program (Two Robots, Risk Taking-Risk
Taking) .. 77
Figure 4.91 Event inputs into the ROS-SNN simulation program (Three Robots, Two Risk Aversive/One
Risk Taking).. 78
Figure 4.92 Neuromodulator activity of the ROS-SNN simulation program (Three Robots, Two Risk
Aversive/One Risk Taking) .. 79
Figure 4.93 State transitions of the ROS-SNN simulation program (Three Robots, Two Risk
Aversive/One Risk Taking) .. 79
Figure 4.94 Event inputs into the ROS-SNN simulation program (Three Robots, Two Risk Taking/One
Risk Aversive) .. 80
Figure 4.95 Neuromodulator activity of the ROS-SNN simulation program (Three Robots, Two Risk
Taking/One Risk Aversive) .. 81
Figure 4.96 State transitions of the ROS-SNN simulation program (Three Robots, Two Risk Taking/One
Risk Aversive) .. 81
Figure 4.97 Event inputs into the ROS-SNN simulation program (Four Robots, Two Risk Aversive/Two
Risk Taking).. 82
Figure 4.98 Neuromodulator activity of the ROS-SNN simulation program (Four Robots, Two Risk
Aversive/Two Risk Taking) .. 83

xiv

Figure 4.99 State transitions of the ROS-SNN simulation program (Four Robots, Two Risk Aversive/Two
Risk Taking).. 83
Figure 4.100 Event inputs into the ROS-SNN simulation program (Four Robots, Two Risk Taking/One
Risk Aversive/One Distracted) ... 84
Figure 4.101 Neuromodulator activity of the ROS-SNN simulation program (Four Robots, Two Risk
Taking/One Risk Aversive/One Distracted) ... 85
Figure 4.102 State transitions of the ROS-SNN simulation program (Four Robots, Two Risk Taking/One
Risk Aversive/One Distracted) ... 85

xv

ABBREVIATIONS

5-HT – Serotonin

ACh – Acetylcholine

ANN – artificial neural network

CPU – central processing unit

CUDA – Compute Unified Device Architecture

DA - Dopamine

EPSP – excitatory post-synaptic potential

GPU – graphics processing unit

IPSP – inhibitory post-synaptic potential

MLP – multilayer perceptron

NE - Noradrenergic

SNN – spiking neural network

TLU – threshold logic unit

1

CHAPTER 1 . INTRODUCTION

1.1 Effects of Neuromodulation

As any type of organism moves through its surrounding environment, it is constantly taking in

and evaluating external stimuli. Based on the present condition of the organism, its knowledge of

the environment, and the type of stimuli encountered, an actual physical action may need to take

place. A key part of this reaction is the transmission of electrical signals and chemicals across

various neuronal systems. The existence of neurotransmitters allows for the focusing, filtering,

and assessment of an organism’s current situation and decision-making for action selection.

Within the cerebral cortex, acetylcholine (ACh) is used to increase focus and responsiveness to

certain stimuli, almost like a form of tunnel vision. Without this neurotransmitter, the organism

loses the ability to parse through and prioritize multiple incoming stimuli. When multiple

iterations of the same stimuli occur over a short period of time, the neurotransmitter

norepinephrine (NE) can suppress the effect of the stimuli in order to prioritize new and novel

events happening within the organism’s environment (J. L. Krichmar 2008). Serotonin (5-HT)

based systems modulate how much risk-aversive actions are taken by the organism (Cox and

Krichmar 2009). Dopamine (DA) based systems are the opposite and tend toward reward-

seeking actions which lead to risk-taking behavior by the organism (J. L. Krichmar 2012).

1.2 Scope of Present Work

While previous work has mainly focused simulating the effects of vertebrate neuromodulation on

robotic platforms using simple artificial neurons (Prince 2013; Prince and Samanta 2013; J. L.

Krichmar 2012) there has not been any in-depth research on the effects of using modern

biologically realistic neural networks based on spiking neural network (SNN) for autonomous

control of multiple robots in a cloud computing environment. Actual vertebrate brains consist of

millions of neurons working in tandem (Kistler and Gerstner 2002) to create a responsive

2

network. The main hypothesis of this research is whether a modern spiking neural network-cloud

computing model is an effective control system based on vertebrate neuromodulation compared

to a simple artificial neural network for an autonomous robot. The implementation of the SNN

model can be facilitated with the current trend of parallel computing algorithms based on

graphics processing units (GPU). In both cases, the networks in question would show action

selection mechanisms for the robots in association with the activity levels of the

neuromodulatory systems that would be influenced by the sensory inputs from the environment.

To test the hypothesis, the overall goal of this work was to model a behavioral control system

based on the principles of vertebrate neuromodulation using SNN and implement it on

autonomous mobile robotic platforms in a cloud computing environment making use of open-

source, open-access software platform of robot operating system (ROS). The distinct objectives

of this work were:

 To develop SNN model suitable for GPU based implementation,

 To implement the SNN model in a ROS-cloud computing environment on

autonomous robotic platforms,

 To study the behaviors of the neuromodulated robots in single- and multi-robot

configurations under different modes,

 To compare the results of neuromodulation models based on the simple neuron model

and the SNN.

In this study, the performance of a simple untrained neural network model implemented on a

robotic platform was compared to the performance of a spiking neural network (SNN) model

implemented on the same robotic platform. First the simple neuron model was created using

Robot Operating System (ROS)-compatible C++ code. The simple neuron model consisted of an

input layer of “event” neurons, a second layer of neurotransmitters, and an output layer of

“states”. Next the code was run on a Turtlebot robotic base. Turtlebot is an open-source robotic

platform consisting of an iClebo Kobuki base, a Microsoft Kinect sensor, mounting plates, and

an on-board laptop running the Ubuntu distribution of Linux with the ROS platform already

installed. In ROS environment, it was possible to reuse multiple open-source libraries of codes

developed for general purpose robotics on the Turtlebot platform.

3

After running several simulations with the simple neural network in multi-robot environments,

the spiking neural network (SNN) model implemented on a GPU became the focal point of the

study. The open-access SNN simulator developed for off-the-shelf hardware was applied to two

PCs using NVIDIA GPUs for the parallel processing of computational neuron models. The SNN

simulator used neuron models based off the Izhikevich neurons, it was meant to be biologically

realistic (four different parameters were used to define the spiking patterns of the neuron) yet

relatively easy to compute for large number of neurons (Izikevich 2003).

Using this SNN simulator integrated with the ROS structure used before, the behavior of the

robotic bases used in this study were evaluated in single-robot and multi-robot environments.

From there, the amount of spiking in each group of neurons (ranging anywhere from 100 to

1,000 neurons in one group) was recorded and used for autonomous action selection as the robots

moved around the environment.

1.3 Organization of Thesis

The rest of the thesis is organized in the following order:

Chapter 2 is the literature review covering three different areas. First the background of many

different artificial neural network types is explained to track the progression of ANNs from their

beginnings to the current neuron models. Then the individual components of the spiking neural

network simulation are explained from biologically realistic nature of the neuron models to their

implementation on parallel computing platforms. Finally the systems that handle the integration

of the neural network models onto a cloud computing platform are analyzed and explained in full

detail.

Chapter 3 covers the research methodologies used in this study. The discussion of research

methodology was divided into several sections. The first section deals with the functional

description of the robotic platform used to implement the neural control schemes of this study.

The second section lays out the actual code configuration of the ROS networking platform. The

third section presents the simple neural network model of the neuromodulation based control

4

algorithm used in this study. The fourth section presents the evolution of the neural network

model into something more biologically realistic leading to the SNN based model. The final

section gives the technical details of the cloud computing configuration used in this study.

Chapter 4 presents the details of the implementation results along with discussions of results. For

the first set of results the simple neural network was implemented to obtain experimental results

that demonstrated the neuronal responses and the behavioral states of the robot for three modes,

namely, (i) risk aversive, (ii) risk taking, and (iii) distracted modes. Results were recorded for

both single- and multi-robot configurations. For the next set of results, the same steps as the first

were applied again but with a spiking neural network (SNN) model. Results detailing the action

selection and decision making of the single- and multi-robot configurations, under different

modes are presented. Results of comparisons between the simple neuron model and the SNN

model are discussed as well.

The final chapter provides a summary of the present work and the scope of future work. Each of

the objectives of the work is addressed. The results are summarized to show that each of the

objectives was met. Finally, ideas for possible future work are discussed.

Appendices A through C provide additional information related to the work. Appendix A

presents the software implementation of the neuromodulation based neural network. Appendix B

shows the snapshots of robot motion in three different modes. Publications resulting from the

present work are listed in Appendix C.

5

CHAPTER 2 . LITERATURE REVIEW

2.1. Artificial Neural Networks

Before one delves into the field of spiking neural networks, there needs to be an introduction to

artificial neural networks (ANN) in general. The field of artificial neural network is one that

consists of vast and numerous types and applications that can be confusing to a newcomer from a

primarily engineering background. Using a biological model based on the layout of actual

neurons, it is possible to create entire networks that allow control over a certain function or

object, adapting to a specific situation.

The typical basic neuron is made up of three key components: the soma, axon, and dendrites.

The input of the neuron begins with the dendrites receiving electronic pulses from the outputs of

different neurons. These pulses are sent from the dendrites to the soma, which collects all of

these pulses. Once the total number sum of all the inputs sent to the soma reach above a certain

threshold, the neuron sends a pulse through its output, called the axon. A typical neuron has one

axon but multiple dendrites. These pulses (usually of about 100 mV and 1-2 milliseconds in

duration) are usually called spikes. There is no physical connection between the dendrites and

the axons of different neurons. Instead there is a small gap called the synaptic cleft where

chemical reactions activated by the axons allow ions from the surrounding fluid to pass through

to the dendrites. These chemicals are called neurotransmitters. On the axonal side of the synapse

(pre-synaptic connection), the neurotransmitter molecules go across the cleft to fit into receptors

on the dendrites (post-synaptic connection). This acts as a system to permit the ion flow to

happen. Post-synaptic signals can be positive or negative in value. They are commonly referred

to an excitatory post-synaptic potentials (EPSP) or inhibitory post-synaptic potentials (IPSP).

Figure 2.1 on the next page shows a typical neuron. Figure 2.2 on the next page shows the

location of a synapse (the synapse is the name of the actual location of the axon/dendrite

chemical connection; the cleft is the actual gap). Figure 2.3 shows a typical form of an EPSP and

IPSP.

6

Figure 2.1. A typical neuron. Sources: (Ramòn y Cajal 1909) and (Kistler and Gerstner 2002, 3)

Figure 2.2. A typical synaptic connection. Sources: (Ramòn y Cajal 1909) and (Kistler and

Gerstner 2002, 3)

7

Figure 2.3. A typical form of an EPSP and IPSP. Sources: (Gerstner 1999)

2.2 The First Artificial Neural Network

ANNs are based upon this layout which was first popularized by Walter Pitts and Warren

McCulloch in 1943. Called the Threshold Logic Unit (TLU) (McCulloch and Pitts 1943),

weighed inputs are connected to a soma-like summation function. The output of the summation

function is then sent to a threshold function. When the value sent to the threshold is above a

certain pre-set value, the threshold function outputs a logical 1 or true signal. When the value is

below the pre-set threshold the value sent by the threshold function is a logical 0 or false signal.

Figure 2.4 on the next page shows a block diagram representation of the TLU.

8

Figure 2.4. A block diagram representation of the TLU. Source: (Turner 2012, 10)

In Figure 2.4, the x are the inputs, and the variables w and b are the weights and biases applied to

the inputs. There is no theoretical limit to the amount of inputs a single TLU can have. The

values sent to the summation function are weighed and have applied biases to replicate how

certain values are more meaningful than others in different applications.

For example, a neuron can be set up to replicate the thought processes of a child wanting to play

with a small red toy. The inputs to a TLU are logical values (true or false) describing certain

objects such as roundness, the color red, and lightness in weight. The weights and biases are set

higher on input values signifying roundness and the color red. A heavy black book would have

no chance of inducing a true value for the artificial neuron. A heavy purple rubber square toy

would have a better chance than the book but the neuron still would not have a true output in this

case. A lightweight, rubber square toy with a red color would have a higher chance than the

heavier purple toy due to having the desired input color but would still be filtered out by the

neuron due to the emphasis also placed on desired output roundness. A small red ball would

reach all three requirements of the child’s desires and would result in the neuron outputting a true

value.

9

2.3 Second Generation Artificial Neural Networks

This landmark research by McCulloch and Pitts is credited for beginning the entire field of

artificial neural networks. As the ANN field grew, there was concern that the McCulloch/Pitts

model was too simple a model to follow. Thus began the second generation of neural network

innovation, with changes made to the activation functions of neural networks. With traditional

threshold functions, it was impossible to use them with analog signals. However, with

continuous threshold functions this was an option. Following the trend of complexity replacing

simplicity, this new generation of neural networks was able to perform digital computations with

a smaller amount of neurons than the first generation along with their analog signal handling

capabilities (Vreeken 2003).

2.3.1 The Perceptron
Further revisions were made to the TLU design by Frank Rosenblatt at the Cornell Aeronautical

Laboratory in 1957. In his published research Rosenblatt presented the perceptron (Rosenblatt

1958), a TLU with a learning algorithm. According to the perceptron learning algorithm, the

basic artificial neuron would be fed “training” data with the desired outputs for that data.

Through multiple iterations of calculations, the weights for each input were adjusted until they

converged on one set of weights to give the desired output for each input. The perceptron

“learned” how to adapt to the given data and came up with a relationship that would always lead

to the desired output.

To go back to the previous example with the child and the toys, a perceptron would constantly be

fed the inputs and desired outputs of the different objects (small red ball – true, heavy black

book, purple ball, red square – false). The learning algorithm would constantly increase or

decrease the weight put on each input until the weights could no longer change. The state

reached here would be the final value for a specific given “learning rate”. Not only could the

perceptron self-learn but also the speed at which it did could be adjustable. Also, similar to TLU,

the number of possible inputs to the perceptron was theoretically infinite.

With this innovation, it was thought possible to invent self-taught logical gates but it was quickly

discovered that there were patterns that the perceptron could not be trained to recognize. In

particular, it was found impossible to create the equivalent of an XOR logical gate using a

10

perceptron. This revelation led to a massive amount of disinterest in ANN research that lasted

until the 1980s.

2.3.2 The Multilayer Perceptron
In the 1980s, interest rose in the field again after it was discovered that grouping interconnected

networks of perceptrons could overcome the logical limitations of only one perceptron. This

configuration was also a closer representation of how the actual biological neuron was used in

the brain. By adding layers of neurons (groups of neurons that are all interconnected with one

another) to the input and the introduction of a new weight changing method called

backpropagation (using differential equations to find the change in weights instead of the simple

adding and subtracting seen in the single perceptron model) it was possible to create networks

that could be trained to find relationships for more sophisticated applications. These are

commonly called multilayer perceptron (MLP) artificial neural networks. Figure 2.5 below

shows a simplified model of an MLP ANN.

Figure 2.5. A model of an MLP ANN. Source: (Turner 2012, 13)

With new sparked interest in the ANN field, new artificial neuron models appeared to take

advantage of not only the new methods but the increasingly available processing and computing

power found in new technology that was growing more powerful and complex as the years went

on.

11

2.4 Realism and the Newest Generation of ANN

The third generation of ANNs seeks to replicate the biological functions of neurons even further

by analyzing the timing of the signals sent out by the artificial neurons. In previous generations

of ANNs, it was discovered that a higher input in a network resulted in a faster frequency of

pulses sent out. The average frequency of these pulses could be calculated and associated with a

specific input value. This method of encoding value is called rate coding. In spiking neural

networking (SNN) the focus is spent on when these pulses are sent instead of how many. This is

called spike coding. The unique nature of the spiking neural network means that multiple forms

of information can be sent in one pulse train. For instance, a sequence of pulses could contain

information describing a signal such as amplitude and frequency. Having multiple data streams

in one message mirrors how the brain works in real-life. When looking around in the world

multiple signals such as light, color, and sound come to all of us at the same time. We are able to

process these mixed signals naturally without being confused about which signal our brain is

sending us.

When a neuron fires an output, a negative potential follows the quick positive rise that has

previously been discussed. It is from this negative after-pulse that the neuron begins to slowly

return to normal. The duration of this negative after-pulse is called the refractory period. During

this time, the neuron cannot fire another output spike. This is seen below in Figure 2.6.

12

Figure 2.6. Spike after-potential. Source: (Turner 2012, 13)

The time taken in this refractory period can be modeled mathematically in order to create an

equation to model the current state of a neuron. This can be seen in equation 2.1 below.

∑
∈

 (2.1)

In this equation ui(t) is the current membrane potential of a neuron i, h(t) is whatever external

influence that may affect the membrane (number of ion channels activated by neurotransmitters

for example), ni is the scaling factor of the membrane potential and t(f) represents all of times that

neuron i fired. The unique nature of the spiking neural network requires that values fed into one

must be in the form of spikes or an external influence must be placed upon the membrane

potential. Equation 2.1 shows the latter.

13

2.5 The Izhikevich Model

Two spiking neural network models commonly used are the integrate-and-fire model and the

Hodgkin-Huxley model. In the integrate-and-fire model, the neuron is the equivalent to a

capacitor in parallel with a resistor. An impulse is sent through a low pass filter and the output is

compared to a threshold. If the output value is at or above the threshold the circuit outputs a

pulse. This is seen in Figure 2.7.

Figure 2.7. Integrate-and-fire model. Source: (Kistler and Gerstner 2002, 94)

In the Hodgkin-Huxley model, which was first studied on the vastly larger neurons of squids, the

cell membrane is seen as a capacitor and the sodium and potassium ion channels present in the

surrounding liquid are seen as resistors. When a current is injected into the cell membrane

current could either charge the capacitor or go through the different ion channels. This can be

seen in Figure 2.8 below. From this model, mathematical models are created with several

parameters that can accurately describe the nature of a spiking neuron. However, solving for all

these parameters can be mathematically intensive.

14

Figure 2.8. Hodgkin-Huxley model. Source: (Kistler and Gerstner 2002, 34)

For the purposes of this study, the model used for simulating a large number of spiking neural

networks (SNN) is the Izhikevich model (Izhikevich 2003). This model is seen as a compromise

between the computational simplicity of the integrate-and-fire neurons and the biological

accuracy of the Hodgkin-Huxley neuron. In the Izhikevich model, the neuron is represented by

the following equations.

0.04 5 140 (2.2)

 (2.3)

	 	 30	 , 		
	 ←

	 ←

In these equations, v is the memory potential of the neuron and u is the membrane recovery

variable. The parameter a is the time scale of the recovery variable. The parameter b is the

sensitivity of the recovery variable to the fluctuations of the membrane potential. The parameter

c is the after-spike reset value of the membrane potential. The parameter d is the after-spike reset

value of the recovery variable and I is the thalamic current input. Changing the values of I, a, b,

c, and d changes the dynamics of the spiking neuron being simulated.

15

2.6 Parallel Programming and GPU based Computing

To simulate SNN models, a new method of mass computation and simulation was developed on

a previously unused hardware. In the PC gaming industry, expensive graphics cards have been

used to give gamers virtual worlds with life-like graphics and effects for years. These powerful

number-crunching processors have to constantly calculate and update graphics, lighting,

modeling, and player input data for the latest games. In recent years, movements to harness the

computing power of graphics cards to power neural network simulations (Nageswaran , Dutt, et

al., Efficient simulation of large-scale spiking neural networks using CUDA graphics processors

2009) have caught steam. This technique also matches how the thought processes in the brain

work since both graphics cards and the brain process in parallel. In the brain, this allows animals

to process more than one sense at a time and to multitask between actions. In computers, this

allows the graphics cards to off-load math-intensive processes from the CPU and run multiple

iterations of a single simulation at once. For instance, in a simulation that tracks the number of

spikes in a SNN simulation, the CPU most go through multiple iterations one-by-one while

storing and writing the processes that happen. In a properly setup GPU (graphics processing unit)

simulation, a single “thread” could handle one iteration of the program, while another thread

would compute the next iteration at the same time, while the next thread would handle the next

computation, etc. This leads to a highly efficient way of simulating a large number of spiking

neurons.

2.7 Robot Operating System (ROS)

The Robot Operating System (ROS) is an open-source software framework designed for the

development of customized robotic applications (ROS.org | Powering the world's robots 2013).

Aimed at both robotic hobbyists and researchers, many codes for hardware platforms are

managed in “packages” which are uploaded online for anyone to use on ROS-compatible

systems. This also allows the constant reuse of flexible codes. ROS uses data communication in

the form of “topics” and “messages” among program nodes. Messages have a simple data

structure, comprising typed fields and supporting standard primitive types (integer, floating

point, Boolean, etc.). Topics are named buses over which nodes exchange messages. Hardware

16

adapted to an ROS system can tap several data streams (topics) at one time. By subscribing to the

ROS nodes that are publishing the necessary data (messages), the robot sensor data can be used

as necessary. For instance, a topic named “color” could carry a hexadecimal message describing

a certain shade of blue between a camera and a laptop node. All node connections are peer-to-

peer connections governed by one central node (the “roscore”) that makes sure data handshakes

and data types throughout the network are all valid. Figure 2.9 and figure 2.10 show the layouts

of ROS nodes and master nodes.

Figure 2.9 ROS node layout

Figure 2.10 ROS master node layout

2.8 Cloud Computing

Cloud computing is simply the method of running an application or some other program on a

server instead of a local machine. The spiking neural networks (SNN) involved in this study

require large volumes of computation due to (1) a more biologically realistic neural model of the

Izhikevich neuron and (2) the large number of neurons involved in the simulation. Therefore the

laptops involved in the on-board processing of the robots only transmit sensory data to a cloud

computing solution where the neuromodulatory code and GPU parallel processors are located.

17

To facilitate this, the on-board laptops and cloud servers are connected by Wi-Fi using a

commercial off-the-shelf Linksys E2500 router. Figure 2.11 shows a schematic of a cloud

computing network with robots, the configuration is, in general, termed cloud robotics.

Figure 2.11 The layout of a Cloud Computing network involving robots

Server

Server

Server

Switch

Wireless
Router

Robot

 Cloud Platform

Robot Robot

18

CHAPTER 3 . RESEARCH METHODOLOGY

3.1 Robotic Platform

Turtlebots (TurtleBot 2013) were used as the mobile robotic platforms in the present study (Fig.

1). Each Turtlebot (Figure 3.1) comes with the following components to create an integrated

package for robot development: (i) an iClebo Kobuki robotic base containing infrared sensors, an

internal gyroscope, and other actuators for moving the Turtlebot through its environment; (ii) a

Microsoft Kinect for motion sensing and object recognition to parse visual inputs for the neural

network, and (iii) an Asus X201E laptop with an Intel Celeron 847 CPU running the 64-bit

Ubuntu distribution of the Linux operating system. All of these components are connected to one

another through USB. ROS uses the concepts of “nodes” and “topics” to allow for the selection

of data streams (such as depth image data, positional point-clouds, movement speed, etc.) to be

read and have commands written to over a Wi-Fi network. While the Turtlebot moved around its

environment, several onboard sensors were used as inputs to on-board ROS-compatible C++

code that was stored on the Asus laptop. The purpose of the laptop and code was to pass on these

sensory data to the cloud network through the ROS framework and to receive neural information

from the cloud network. A front “bump” sensor recorded whether or not the front of the robot hit

an object. The internal battery was constantly monitored for voltage levels and if dropped to a

critical level activated a simulated red flag within the network. The Microsoft Kinect was used as

a rangefinder through the use of depth images sent to the laptop at a rate of 30Hz that were used

to generate a 2-D laser scan of the environment in front of it. This allowed the Kinect to have an

effective range of 10 meters to 0.45 meters in front of the camera. There is a docking station used

for not only charging the robotic base but also influencing the robot to “go home” and search for

the base, by interacting with three IR sensors on the Turtlebot’s base.

19

Figure 3.1 The Turtlebot with Kinect and Laptop

3.2 ROS Code Platform

The Robot Operating System (ROS) code structure in this study was done in C++ and made the

Turtlebot’s on-board laptop, Microsoft Kinect sensor, and Kobuki base as the key nodes within

the different network configurations (with the on-board simple neural network or the off-board

GPU based SNN). The main program flow in ROS (Figure 3.2) followed that the Microsoft

Kinect node sent sensory data and the Kobuki node sent important diagnostic data to the on-

board laptop to be used as inputs for the neural network. If the neural network used was within

the on-board laptop, the on-board calculations were made and movement data containing the

appropriate action was sent to the Kobuki base. If the neural network used was on the cloud

server, the sensory data received from the Kinect was sent to the cloud network through the

laptop and the robot waited for a response back from the cloud node. Once the cloud node

returned with the correct response, this was sent to the Kobuki base through the on-board laptop

which sent the appropriate action commands to the mobile robotic base.

20

Figure 3.2 ROS code structure layout

3.3 Simple Neuromodulation Model and States

The 3-layer neural network structure of Figure 3.3 was used to study how efficiently it would

perform to control an autonomous robot’s behavior, similar to (Prince and Samanta 2013).

Previous work with this model has been reported by (J. L. Krichmar 2012) in the field of

autonomous robotics. The model consisted of three groups of neurons - event neurons from

sensory signals, neuromodulatory neurons and behavior state neurons. The first layer of neurons

indicated the incidents happening in the real world environment for the robot. The entire

experiment was run to test how the robot would respond if any of events on the first layer took

place. This network structure was designed in such a way that it would be capable of

accommodating several events taking place simultaneously in the real world environment.

Microsoft
Kinnect
Node

Laptop
Node

Kobuki
Base
Node

Object

Cloud
Node

Wireless
Router

Turblebot

Base

Diagnostic

21

For this work, four events neurons were used. These event neurons wee simple activated

meaning if there was an event, it would be set as 1, and reset to 0 otherwise. These four events

were – OBJECT, BATTERY, BUMP, and BEAM. The robot swept in a 180 degree arc to read

the distances of objects in its environment. Event Object occurred if any of the distance

parameters were less than 0.52 m. Event Battery got triggered when the battery level of the robot

dropped below certain percentage (while running the experiment) since its last charge. Event

Bump neuron was initiated and triggered by the built-in bump sensor of the Kobuki Turtlebot

base when it physically bumped against any object. The Bump event was also activated if

distance measured by any of the parameters was less than 0.72 m. Event Beam was triggered

when one or more of the infrared emitters of the robot’s docking “home” base were detected.

Figure 3.3 The structure of the simple neural simulation model (J. L. Krichmar 2012).

22

The neuromodulatory layer consisted of four ACh/NE neurons, one for each event, one

dopaminergic neuron (DA), and one serotonergic neuron (5-HT). The last layer of four neurons

indicated the four different behavioral outputs as states. The four behavior states were: 1) Wall-

Following, 2) Open-field, 3) Explore Object, and 4) Find Home. There were also two sub-states

of Find Home called At Home and Leave Home when the actual docking station was found. The

simulation cycle time was about 14 s which accounted for the time to read sensor data, update

neural simulation, and send a command to the robot motors. The robot would stay on one of the

states at the end of each simulation cycle but kept switching in between those states based on

neuromodulatory response during the entire run period.

 The connection weights between event neurons and the state neurons were 1 and these weights

did not get updated. The connection weights between the event neurons to the ACh/NE neurons

were initialized at 1. The connections between event neurons and ACh/NE neurons were kept

depressive and both DA and 5-HT neurons were kept facilitative. The connection weights

between event neurons and neuromodulatory neurons go updated after the end of the every

simulation cycle especially when the robot was running in both risk-taking and risk-aversive

modes. In distracted behavior mode, the connection weights between the event neurons and the

neuromodulatory neurons were kept at 1 throughout the run period. The state neurons were

connected internally all-to-all. The connections indicated the intrinsic inhibitory weight

connections with value of -1 and intrinsic excitatory connections with a value of 0.5.

The relationships for neuronal activity, neuronal inputs and weight updating are presented briefly

here for completeness. The activation function for all neuromodulatory and state neurons was

governed by sigmoid function:

 (3.1)

where I was the input to the neuron, g was the gain of the function, and k denoted the simulation

cycle index. Since the activation function for all neurons were governed by the sigmoid function,

the activity values of these neurons remained within 0 to 1.

The input to the neurons for all the neuromodulatory neurons and the state neurons was given as:

23

∑ 1 (3.2)

 where b was the baseline input set to -1.0 for DA and 5-HT neurons, -0.5 for ACh/NE neurons,

and -1.0+rand (0.0,0.5) for state neurons, c(k) was set to the sum of DA and 5-HT neuronal

activity for inhibitory connections, otherwise c(k) was set to 1.0 [3]. p was the persistence set to

0.25 for all neurons and nm(k) is the neuromodulatory input into last layer of state neurons:

	∑ ∑ (3.3)

where nmi(k) was the neuromodulatory input into state neuron i, nl(k), was the activity of either

the DA or 5-HT neuron, wli(k) was the weight from neuromodulatory neuron l to state neuron i,

AChNEj(k) and ej(k) were the activities of ACh/NE and event neurons corresponding to event j,

and wji(k) was the weight from event neuron j to state neuron i.

The updating of the connection weights was based on both the occurred events and the synaptic

plasticity which was given by the following equation:

1 				 					 1																				

1 					
																																																																										

 (3.4)

where i was the index of the event neuron, j was the index of the 5-HT, DA, or ACh/NE neuron,

p was the amount of change in response to an event, and τ, which was set to 50, was a time

constant that governed the rate at which weights returned to their original value.

3.4 Spiking Neuromodulation Model and States

To integrate the biologically realistic Izhikevich artificial neuron model in the control system two

computers using NVIDIA graphics processing units (GPUs) with CUDA architecture are used for

parallel computing. Each computer used the same copy of a SNN simulator platform that was

optimized to take advantage of the parallel processing capability of the GPUs. The SNN

simulator used in this paper is a publicly available self-contained resource used in previous work

(Richert, et al. 2011). The simulator also uses a code interface based on neural group

construction. For every type of input into the neural network there would be a group of neurons

defined as “spike generators” to inject a start to the network. These generators would replicate

24

the stimuli a vertebrate’s brain would encounter when using “spike coding” (Verken 2003) as a

way of processing information. Then each of the neuromodulators used in the neural network

would be defined as individual groups of neurons in the spiking neuromodulation simulator with

the four Izhikevich parameters defining the spiking behavior of each group. . For this simulation,

all groups used the Regular Spiking Izhikevich model (Izhikevich 2003, 2) with parameters of a

= 0.02, b =0.2, c = -65.0, and d = 8.0.

The actual synaptic connections between each neurons group were defined as either inhibitory or

excitatory in nature. That is, whether or not an incoming spike from a pre-synaptic neuron would

increase or decrease the ability of the post-synaptic neuron to activate. The data flow for the

simulation was as follows: once the robot received its network inputs during its quarter-sweep,

the data would be transferred to a cloud computing platform waiting on said inputs. The

simulation created a “spike generator” group for each of the present stimuli. The simulated

spikes from the sensory inputs is sent to through the various pre-defined synaptic connections.

After the simulation was done for its one second run, the time and number of each event,

neuromodulator, and state neuron spike was recorded in a data file located on the cloud PC. A

MATLAB script was then run in the background to calculate the number of spikes of each type.

ROS, which handled the automation of the simulation process also handled transmitting the

number of resulting spikes back to the robot. Reading the number of spikes and taking in

consideration its surroundings, the robot took the appropriate (most active) action.

The synaptic connections between all groups of neurons were set as excitatory except for the

connection between the dopamine and serotonin groups. This synaptic connection was set to be

inhibitory, mirroring the opposing effect that each neuromodulator had on each other (J. L.

Krichmar 2013). Every excitatory connection had a weight of +1.0 and every inhibitory

connection had a weight of -1.0. Synaptic plasticity (Alexander and Sporns 2002) was included

to duplicate the phenomenon of a synaptic connection becoming stronger as it received constant

spikes between two neurons. The dopamine and serotonin groups totaled 1,000 neurons each.

The state neuron groups totaled 100 neurons each. The spike generating event inputs also totaled

100 neurons each. The ACh/NE group totaled 4 neurons (to facilitate as many spikes as possible

to induce the “tunnel vision” effect). Altogether there were up to 2,804 neurons simulated at any

time during the runs. The number of neurons used to represent each group came from the

25

increasing tradeoff between neuron complexities for stability. With neuron counts over 5,000 in

the simulation, output states and neuromodulator levels stopped correlating and the results

became more random. Simulation time of the network could be defined down to the millisecond

but for this study they were set to one second. The structure of the SNN model is shown in

Figure 3.4.

Figure 3.4 The structure of the spiking neural simulation model

Battery Neuron Group

Bump Neuron Group

Beam Neuron Group

Event Neuron

Groups

Neuromodulatory Neuron Groups
State Neuron Groups

Object Neuron Group

Wall Follow Neuron Group

Open Field Neuron Group

Explore Object Neuron Group

Home Neuron Group

ACh/NE Neuron Group

DA Neuron Group

5‐HT Neuron Group

26

3.5 Cloud Computing Configuration

To facilitate the necessary amount of computing power for the Spiking Neural Network cases,

two different PCs were used as cloud servers for the study. One server used an NVIDIA Tesla

K20c GPU as the parallel processing unit along with 32 GB of RAM and a six-core Intel E2620

CPU running a 64-bit partition of Ubuntu Linux. In the other server were two NVIDIA Tesla

C2075 GPUs within a PC using 16 GB of RAM and a quad-core Intel E5620 CPU also running

the 64-bit edition of Ubuntu Linux. Used to facilitate the data traffic between Turtlebot and

server was a Linksys E2500 router. Each server ran the Groovy Galapagos (sixth edition)

distribution of ROS.

27

CHAPTER 4 . EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Simple Neuron Model (Single Robot)

A series of experiments were run in a lab studio environment where many tables, chairs and

other solid objects were kept. Initially, 5 minutes of experiments were carried out to see the

robot’s behavioral performance under three different running conditions. 1) Risk aversive

behavior: Bumps were treated as potentially harmful by connecting bump event neurons to the 5-

HT neuron. 2) Risk taking behavior: Bumps were treated as novel and interesting by connecting

bump event neurons to the DA neuron. 3) Distracted behavior: The second condition was

repeated with the ACh/NE neurons kept always active (activity value =1).

4.1.1 Risk-Aversive Robot

During this mode of operation, in the neural network, the bump event neuron was connected to

the 5-HT neuron. Results of robot run in this mode are shown in Figure 4.1 through Figure 4.5.

As can be seen in Figure 4.1, the robot started off near an object and roamed until it was close to

a wall, resulting in two bump events. In Figure 4.2, the robot was near a wall and the home base

resulting in an increase of ACh/NE neural activity to focus on those events. And while both the

bump and beam events occurred again near the end of the run, the ACh/NE neural activity was

not as high since these events were not as novel as before. In Figure 4.3, while there were spikes

of dopamine throughout the run, there was a consistent value of serotonin through the middle of

the run. The neural activity as depicted in Figure 4.4, gives insight on how the states in Figure

4.5 were selected. The Wall Follow state is the default state and it was not until an object came

into view that another state was selected. A larger value of neural activity by the Explore Object

neuron over the Open-Field neuron resulted in the first state switch into briefly the Explore

Object state followed by detecting the home base. After constantly detecting the home base by

being in its field but not being able to find the charging portion of the base, an internal timer

ended the Find Home state as the robot left the search for home and continued to follow walls as

a way of avoiding danger. The neural activity in this run successfully mimicked a small animal

28

staying out of danger to find home, only breaking a pattern for a short while to explore a new

object for a very brief amount of time.

Figure 4.1 Events during the robot motion (Single Robot, Risk Aversive)

Figure 4.2 Activity of ACh/NE during the robot motion (Single Robot, Risk Aversive)

29

Figure 4.3 The activity of DA and 5-HT neurons during the robot motion (Single Robot, Risk

Aversive)

Figure 4.4 Activity of State Neurons greater than threshold (0.67) (Single Robot, Risk Aversive)

30

Figure 4.5 State transition during the robot motion (Single Robot, Risk Aversive)

4.1.2 Risk-Taking Robot

During this behavior mode of the robot, in the neural network the bump event neuron was

connected to the DA neuron making the event interesting and worth exploring. The results for

this mode are presented in Figure 4.6 through Figure 4.10.

As seen in Figure 4.6, in the risk-taking mode the robot had enough room to move around while

not running into many objects or walls, partly due to the fact that being in a more adventurous

mode kept it away from walls. There were two bump events halfway through the run and

meeting with an object near the home base towards the end of the run. In Figure 4.7, the ACh/NE

neural activity was focused first on the wall bump, then the home beam and then finally the

object near the home beam. In risk-taking mode, the bump event was linked to dopamine,

resulting in the spikes in dopamine activity. In Figure 4.8, when the home base was detected this

caused a spike in serotonin activity, but then this was drowned out by a larger spike in dopamine

activity when an object was detected near the end of the run. In Figure 4.9, the Open Field and

Explore Object neurons were most active in the beginning of the run with a spike in neural

activity of the Find Home neuron (explained the by the robot’s proximity to the base) and Wall

Follow neuron with a final spike of the Explore Object neuron to end the simulation. As seen in

Figure 4.10, once the transition from the default state of Wall Following was made most of the

time was spent exploring objects in the robot’s field of vision or roaming in the Open Field state.

Throughout the run there was not a single transition to any of the “home” states due to being

31

linked to serotonin based actions. The difference between the risk-adverse and risk-taking modes

can be illustrated by the two behavior switching figures (Figure 4.5 and Figure 4.10)

Figure 4.6 Events during the robot motion (Single Robot, Risk Taking)

Figure 4.7 Activity of Ach/NE during the robot motion (Single Robot, Risk Taking)

32

Figure 4.8 The activity of 5-HT and DA neurons during the robot motion (Single Robot, Risk

Taking)

Figure 4.9 Activity of state neurons greater than threshold (0.67) (Single Robot, Risk Taking)

33

Figure 4.10 State transition during the robot motion (Single Robot, Risk Taking)

4.1.3 Distracted Robot

The third condition was experimented to see how the robot behaved as its attention system was

marred. The third mode was a risk-taking subset to see how the robot behaved as its attention

system was always active. This had the effect of not allowing the robot to focus on a single

event. In Figure 4.11, the robot began the run around the home base and then had repeated events

around walls and objects. In Figure 4.12, the neural activity of the ACh/NE neurons was at their

maximum. As the distracted mode was a subset of the risk-taking mode, bumps were linked to

dopamine resulting in the large amount of dopamine-related neuromodulator activity in Figure

4.13. Due to the maximally active ACh/NE, the robot tried to respond to every frequent event

and was unable to ignore any unimportant events. This was why the robot was more prone to

switching between the states quicker than the risk-taking and risk-averse modes. Figure 4.11

through Figure 4.15 show the importance of the ACh/NE neurons in focusing attention for the

robot to respond to novel events as interesting and ignore the recurrent ones as uninteresting.

34

Figure 4.11 Events during the robot motion (Single Robot, Distracted)

Figure 4.12 Activity of Ach/NE during the robot motion (Single Robot, Distracted)

35

Figure 4.13 The activity of 5-HT and DA neurons during the robot motion (Single Robot,

Distracted)

Figure 4.14 Activity of state neurons greater than threshold (0.67) (Single Robot, Distracted)

Figure 4.15 State transition during the robot motion (Single Robot, Distracted)

36

4.2 Simple Neuron Model (Two Robots)

The procedure of the single-robot experiments was repeated but with a second Turtlebot added in

the room near the first one. Each Turtlebot used the same neuromodulation code but in

combination of various modes. Each combination of modes is listed below. Under each heading

Robot A was run in the first mode listed, while Robot B was run in the second mode. So for

instance, for Risk Aversive/Distracted, Robot A was in Risk Aversive mode and Robot B was in

Distracted mode.

4.2.1 Risk Aversive Robot with Risk Taking Robot

The results of this run demonstrated the predatory actions of Robot B (risk-taking) towards

Robot A (risk-aversive). Both robots experienced the same type of events. Figure 4.16 and 4.17

show the robots were near both the home base and multiple objects in their way but the actions

they took were very different. In Figure 4.20, Robot B saw Robot A and began to follow it in its

Explore Object state. On the other hand, Robot A only wanted to follow the wall to look for its

way back to the home base. Figure 4.18 and Figure 4.19 show the representative neural activity

leading to these actions. As Robot B was in a risk-taking mode, there was more dopamine-

related neural activity than serotonin-related neural activity during its run. The opposite was true

for the risk-aversive Robot A.

Figure 4.16 Events during the robot motion (Two Robots, Risk-Aversive, Risk-Taking)

37

Figure 4.17 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-
Taking)

Figure 4.18 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-
Aversive, Risk-Taking)

Figure 4.19 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive,
Risk-Taking)

38

Figure 4.20 State transition during the robot motion (Two Robots, Risk-Aversive, Risk-Taking)

4.2.2 Risk Aversive Robot with Risk Aversive Robot

With both Turtlebots in risk-aversive mode, they were placed close to one another near the

beginning of the run. During the run both robots avoided the other and instead followed walls in

order to avoid interaction with other objects. As seen in Figure 4.25, both robots briefly

transitioned to exploratory states (Open Field for Robot B and Explore Object for Robot A) but

most of the time was spent wall following with the occasional run to the home base. Both robots

constantly ran close to objects (Figure 4.21) but the ACh/NE neuron focus only lasted for a quick

spike (Figure 4.22) demonstrating its ability to filter out non-novel event inputs into the network.

As both were in risk-aversive mode, both robots had a high amount of serotonin levels

throughout this run (Figure 4.23).

Figure 4.21 Events during the robot motion (Two Robots, Risk-Aversive, Risk-Aversive)

39

Figure 4.22 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-
Aversive)

Figure 4.23 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-
Aversive)

Figure 4.24 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive,
Risk-Aversive)

40

Figure 4.25 State transition during the robot motion (Two Robots, Risk-Aversive, Risk-
Aversive)

4.2.3 Risk Aversive Robot with Distracted Robot

With one Turtlebot in risk-averse mode (Robot A) and one robot in distracted mode (Robot B),

one can see the lack of focus of the ACh/NE neurons for Robot B in Figure 4.27. Once again

while both robots detected the nearly the same events (Figure 4.26) the actions taken were

different (Figure 4.30). The risk-aversive robot stayeds in the Wall Follow mode for the entire

run. The distracted robot started in the default Wall Follow mode before spotting the risk-

aversive robot (the first Wall Follow to Explore Object state transition for Robot B in Figure

4.30) and following it for a few seconds before switching to Open Field and then spotting

another object in the distance. In Figure 4.28, the serotonin-related neural activity in Robot A

and the dopamine-related neural activity in Robot B were most active during the run as expected.

In Figure 4.29, the lack of focus for Robot B was demonstrated, explaining the quick transition

of states by Robot B from following Robot A to switching to Open Field to following another

object in the distance.

Figure 4.26 Events during the robot motion (Two Robots, Risk-Aversive and Distracted)

41

Figure 4.27 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive and
Distracted)

Figure 4.28 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-
Aversive and Distracted)

42

Figure 4.29 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive
and Distracted)

Figure 4.30 State transition during the robot motion (Two Robots, Risk-Aversive and Distracted)

4.2.4 Risk Taking Robot with Risk Taking Robot

Results for two robots, both in risk-taking mode, are presented in Figure 4.31 through Figure

4.35. With both Turtlebots in the risk-taking mode there were moments when one Turtlebot

would notice the other and followed it for a short amount of time. In Figure 4.35, where the

object Robot A wanted to explore was actually the Robot B. During this run Robot A saw a

human being during its course and went towards it. The human then walked away leaving Robot

A to its own devices. The infrared home base was also nearby during this run. Since both were in

a risk-taking operation, there was an abundance of dopamine activity on both robots.

43

Figure 4.31 Events during the robot motion (Two Robots, Risk-Taking and Risk-Taking)

Figure 4.32 Activity of ACh/NE during the robot motion (Two Robots, Risk-Taking and Risk-
Taking)

Figure 4.33 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-
Taking and Risk-Taking)

44

Figure 4.34 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Taking
and Risk-Taking)

Figure 4.35 State transition during the robot motion (Two Robots, Risk-Taking and Risk-Taking)

4.2.5 Risk Taking Robot with Distracted Robot

Results of one robot in risk-taking mode and the other in distracted mode are presented in Figure

4.36 through Figure 4.40. With one Turtlebot in risk-taking mode (Robot A) and one robot in

distracted mode (Robot B), the neural simulation played out with Robot A occasionally

following Robot B. As seen in Figure 4.40, both robots went into Explore Object with Robot B

switching quicker. The focusing on objects with higher activity levels for the ACh/NE neurons

of Robot A was evident as demonstrated in Figure 4.37.

45

Figure 4.36 Events during the robot motion (Two Robots, Risk-Taking and Distracted)

Figure 4.37 Activity of ACh/NE during the robot motion (Two Robots, Risk-Taking and
Distracted)

Figure 4.38 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-
Taking and Distracted)

46

Figure 4.39 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Taking
and Distracted)

Figure 4.40 State transition during the robot motion (Two Robots, Risk-Taking and Distracted)

4.3 Simple Neuron Model (Three Robots)

The procedure of the two-robot experiments were repeated but with one additional Turtlebot

added in the room near the first two when the runs started. Each Turtlebot used the same

neuromodulation code but in combination of various modes. Due to the large number of possible

combinations only a few are included as representative cases. Under each heading Robot A and

Robot B were run in the first mode listed, while Robot C was run in the second mode. So for

47

instance, for two Risk Aversive Robots/One Risk Taking, Robot A and Robot B were in Risk

Aversive mode and Robot C was in Risk Taking Mode.

4.3.1 Two Risk Aversive Robots with One Risk Taking Robot

Results are presented in Figure 4.41 through Figure 4.45. As expected from Risk Aversive robots

(Robot A and Robot B) there was an abundance of serotonin compared to the amount of

dopamine (Figure 4.43) and vice versa for the Risk Taking robot (Robot C). The constant contact

with the home base beam (Figure 4.41) led Robot B towards the Find Home state transitions

(Figure 4.45). Robot A occasionally broke away from its serotonergic based Wall Following

actions to follow Robot B home for a few seconds. Robot C constantly followed either Robot A

or Robot B across the room.

Figure 4.41 Events during the robot motion (Three Robots, Two Risk Aversive/One Risk
Taking)

48

Figure 4.42 Activity of ACh/NE during the robot motion (Three Robots, Two Risk Aversive/One
Risk Taking)

Figure 4.43 The activity of DA and 5-HT neurons during the robot motion (Three Robots, Two
Risk Aversive/One Risk Taking)

49

 Figure 4.44 Activity of state neurons greater than threshold (0.67) (Three Robots, Two Risk
Aversive/One Risk Taking)

Figure 4.45 State transition during the robot motion (Three Robots, Two Risk Aversive/One Risk
Taking)

50

4.3.2 Two Risk Taking Robots with One Risk Aversive Robot

Results are presented in Figure 4.46 through Figure 4.50. The neural activity for this case was

shown to be the exact opposite of the case before. The reactions and actions of Robot C were

mostly serotonergic in nature and the reactions/actions of Robot A were mostly dopaminergic in

nature. This can be seen in Figure 4.50 with Robot A going into exploratory modes for the entire

run (reacting to dopaminergic bumps and spotting objects as seen in Figure 4.46) with Robot C

looking for home in between stints of Wall Following. Robot B, the second risk taking robot in

the run, wandered off into an open area, therefore never receiving the necessary stimuli to break

out the default Wall Follow state.

Figure 4.46 Events during the robot motion (Three Robots, Two Risk Taking/One Risk
Aversive)

51

Figure 4.47 Activity of ACh/NE during the robot motion (Three Robots, Two Risk Taking/One
Risk Aversive)

Figure 4.48 The activity of DA and 5-HT neurons during the robot motion (Three Robots, Two
Risk Taking/One Risk Aversive)

52

Figure 4.49 Activity of state neurons greater than threshold (0.67) (Three Robots, Two Risk
Taking/One Risk Aversive)

Figure 4.50 State transition during the robot motion (Three Robots, Two Risk Taking/One Risk
Aversive)

53

4.4 Simple Neuron Model (Four Robots)

The format of the single-robot experiments were repeated but with four Turtlebots in the room

for each run. Each Turtlebot used the same neuromodulation code but in combination of various

modes. As with the three-robot case, due to the large amount of possible combinations only a

few are included in this report. Under each heading Robot A, B, C, D were run in the various

modes as listed respectively. For instance, for Two Risk Taking Robots/One Risk Aversive

Robot/One Distracted Robot, Robots A and B were in Risk Taking mode, Robot C was in Risk

Aversive mode, and Robot D was in Distracted mode.

4.4.1 Two Risk Aversive Robots with Two Risk Taking Robots

Results are presented in Figure 4.51 through 4.55. This case is similar to the Risk Aversive/Risk

Taking case done with two robots. As the Risk Aversive robots (Robots A and B) searched for

the home base (as seen in the events in Figure 4.51), the Risk Taking robots (Robots C and D)

occasionally took notice and followed (Figure 4.55). As expected, Robots A and B had mostly

serotonergic reactions and Robots C and D had mostly dopaminergic reactions (Figure 4.53).

Figure 4.51 Events during the robot motion (Four Robots, Two Risk Aversive/Two Risk Taking)

54

Figure 4.52 Activity of ACh/NE during the robot motion (Four Robots, Two Risk Aversive/Two
Risk Taking)

Figure 4.53 The activity of DA and 5-HT neurons during the robot motion (Four Robots, Two
Risk Aversive/Two Risk Taking)

55

Figure 4.54 Activity of state neurons greater than threshold (0.67) (Four Robots, Two Risk
Aversive/Two Risk Taking)

Figure 4.55 State transition during the robot motion (Four Robots, Two Risk Aversive/Two Risk
Taking)

4.4.2. Two Risk Taking Robots with One Risk Aversive Robot and One Distracted Robot

Results are presented in Figure 4.56 through 4.60. As in all Distracted cases with the simple

neuron model, the ACh/Ne neurons were always active (Figure 4.57) and therefore the

56

corresponding robot’s (Robot D) ability to focus on a single input was impaired. This can be

seen in Figure 4.59 with the rapid spiking of neurons in Robot D’s network. Robots A and B (the

risk taking platforms) followed the usual Risk Taking exploratory behaviors while Robot C

mostly followed the wall (as expected from a risk aversive robot). Robot D mostly followed the

other robots (whichever one passed through its field of vision) around the room during its

distracted phase.

Figure 4.56 Events during the robot motion (Four Robots, Two Risk Taking/One Risk
Aversive/One Distracted)

57

Figure 4.57 Activity of ACh/NE during the robot motion (Four Robots, Two Risk Taking/One
Risk Aversive/One Distracted)

Figure 4.58 The activity of DA and 5-HT neurons during the robot motion) (Four Robots, Two
Risk Taking/One Risk Aversive/One Distracted)

58

Figure 4.59 Activity of state neurons greater than threshold (0.67) (Four Robots, Two Risk
Taking/One Risk Aversive/One Distracted)

Figure 4.60 State transition during the robot motion (Four Robots, Two Risk Taking/One Risk
Aversive/One Distracted)

59

4.3 Spiking Neuron Model (Single Robot)

The spiking neuron (SNN) model was tested to see the effects of different event inputs on the

neural activity in terms of number of spikes generated. Results are presented in Figure 4.61

through Figure 4.66. As can be seen in these figures, the neural activity spiked as soon as the

simulator was activated and then died off as the event input no longer was novel. This was due to

the effects of ACh/NE neurons on the neural network. As spiking became less active the number

of neurons considered to be “winning” actions was very low. As a result, the simulation in this

study was limited to one second.

Figure 4.61 Result of Object Detected input into the SNN network

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200
Serotonin (Red) vs. Dopamine (Blue) Spikes

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6
x 10

4

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

WallFollow/Find Home Spikes (red) vs. Openfield/Explore Spikes (blue)

60

Figure 4.62 Result of Dock Beam input into the SNN network

Figure 4.63 Result of Low Battery input into the SNN network

1 2 3 4 5 6 7 8 9
0

500

1000

1500
Serotonin (Red) vs. Dopamine (Blue) Spikes

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

1 2 3 4 5 6 7 8 9
0

2

4

6
x 10

4

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

WallFollow/Find Home Spikes (red) vs. Openfield/Explore Spikes (blue)

1 2 3 4 5 6 7 8 9
0

500

1000

1500
Serotonin (Red) vs. Dopamine (Blue) Spikes

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

1 2 3 4 5 6 7 8 9
0

2

4

6
x 10

4

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

WallFollow/Find Home Spikes (red) vs. Openfield/Explore Spikes (blue)

61

Figure 4.64 Result of Bump input (serotonin and dopamine) into the SNN network

Figure 4.65 Result of Bump input (serotonin) into the SNN network

1 2 3 4 5 6 7 8 9
0

500

1000

1500
Serotonin (Red) vs. Dopamine (Blue) Spikes

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

1 2 3 4 5 6 7 8 9
0

2

4

6
x 10

4

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

WallFollow/Find Home Spikes (red) vs. Openfield/Explore Spikes (blue)

1 2 3 4 5 6 7 8 9
0

500

1000

1500
Serotonin (Red) vs. Dopamine (Blue) Spikes

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

1 2 3 4 5 6 7 8 9
0

2

4

6
x 10

4

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

WallFollow/Find Home Spikes (red) vs. Openfield/Explore Spikes (blue)

62

Figure 4.66 Result of Bump input (dopamine) into the SNN network

The experiments of single robot were repeated replacing the simple neuron model with the SNN

model run on GPU instead of the on-board laptop. However, the laptop was used for acquisition

of sensor data along with transmission of data and commands between the robot base and the

remote computing node through wireless communication in ROS environment. Due to the

simulator not being based on neuromodulatory levels of 0 to 1 scale, the computation and the

basis of decision-making were shifted to the number of spikes in the network for each group.

4.5.1 Risk-Aversive Robot
Results are presented in Figure 4.67 through Figure 4.69 for a single robot in risk aversive mode.

In the case of a risk-aversive robot, one would expect a surplus of serotonin (Figure 4.68) as the

bump sensor was connected to the serotonin group in this situation. The most constant actions

were the ones of a serotonergic nature (Find Home) (Figure 4.69).

1 2 3 4 5 6 7 8 9
0

500

1000

1500
Serotonin (Red) vs. Dopamine (Blue) Spikes

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

1 2 3 4 5 6 7 8 9
0

2

4

6
x 10

4

N
um

be
r
of

 S
pi

ke
s

Time(seconds)

WallFollow/Find Home Spikes (red) vs. Openfield/Explore Spikes (blue)

63

Figure 4.67 Event inputs into the ROS-SNN simulation program (Risk Aversive)

Figure 4.68 Neuromodulator activity of the ROS-SNN simulation program (Risk Aversive)

64

Figure 4.69 State transitions of the ROS-SNN simulation program (Risk Aversive)

4.5.2 Risk-Taking Robot
Results are presented in Figure 4.70 through Figure 4.72 for a single robot in risk taking mode.

As can be seen in Figure 4.70, from around the mid-point of the 300 second run, a constant

event (home beam) occurred and that led to constant level of associated neuromodulated activity

(Figure 4.71). As seen in Figure 4.71, due to the low number of ACh/NE neurons the robot lost

the ability to ignore the recurrent event in the short time span unlike the one in the simple neural

network model. This demonstrated the downside of the SNN model without the proper tuning of

the model parameters. A more biologically realistic model would require tuning of parameters

for viable and stable results. This issue would be addressed in future scope of work.

65

Figure 4.70 Event inputs into the ROS-SNN simulation program (Risk Taking)

Figure 4.71 Neuromodulator activity of the ROS-SNN simulation program (Risk Taking)

66

Figure 4.72 State transitions of the ROS-SNN simulation program (Risk Taking)

4.5.3 Distracted Robot
Results are presented in Figure 4.73 through Figure 4.75 for a single robot in distracted mode. In

this case with the bump sensor connected to dopamine (DA) group of neurons, the activity level

of DA neurons was higher throughout the run period. The ACh/NE stayed at a mostly constant

level as expected in a distracted case (Figure 4.74).

Figure 4.73 Event inputs into the ROS-SNN simulation program (Distracted)

67

Figure 4.74 Neuromodulator activity of the ROS-SNN simulation program (Distracted)

Figure 4.75 State transitions of the ROS-SNN simulation program (Distracted)

68

4.6 Spiking Neuron Model (Two Robots)

Similar to the case with the simple neural network, two robots were placed in the same

environment and had the same group of tests as in Section 4.3. Only difference was that the

simple neural network model was replaced with GPU based SNN model.

4.6.1 Risk Aversive Robot with Risk Taking Robot

Results are presented in Figure 4.76 through Figure 4.78 for two robots with Robot A in risk

aversive mode and Robot B in risk taking mode. In this case the highest spiking neuromodulator

for Robot A (risk aversive) and Robot B (risk taking) was serotonin and dopamine (Figure 4.77),

respectively (as expected). The majority of state transitions (Figure 4.78) were based on

serotonin and dopamine spike levels of Robot A and Robot B, although some of the highest

spiking actions taken by Robot A tended to be dopamine based (due to the bump events

connection to the dopamine group). As Robot A detected Robot B the serotonin level of Robot

A increased and as Robot B detected Robot A the dopamine level of Robot B increased (Figure

4.76 and Figure 4.77).

Figure 4.76 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Taking)

69

Figure 4.77 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk
Aversive-Risk Taking)

Figure 4.78 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Taking)

70

4.6.2 Risk Aversive Robot with Risk Aversive Robot

Results are presented in Figure 4.79 through Figure 4.81 for both robots in risk aversive mode. In

this case the highest spiking neuromodulator (Figure 4.80) for both robots was serotonin (as

expected due to the bump events connection to the serotonin group in this setup). With both

robots in the risk aversive mode, there was little to no interaction between one another (as

evident from no object detection in Figure 4.79).

Figure 4.79 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Aversive)

71

Figure 4.80 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk
Aversive-Risk Aversive)

Figure 4.81 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Aversive)

72

4.6.3 Risk Aversive Robot with Risk Distracted Robot
Results are presented in Figure 4.82 through Figure 4.84 for two robots with Robot A in risk

aversive mode and Robot B in distracted mode. As seen in Figure 4.83, the most active

neuromodulator for Robot A (risk aversive) was serotonin and the most prominent action for

Robot A is serotonergic in nature (Find Home) (Figure 4.84). For Robot B and its degraded

suppression ability of ACh/NE neurons, the most active neuromodulator was dopamine (since

the distracted phase was still linked to dopamine through the bump feature) (Figure 4.83). The

most active neuron counts of Robot B in the distracted mode seemed to overlap, further

indicating its lack of focus.

Figure 4.82 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-
Distracted)

73

Figure 4.83 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk
Aversive-Distracted)

Figure 4.84 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Distracted)

74

4.6.4 Risk Taking Robot with Risk Taking Robot
Results are presented in Figure 4.85 through Figure 4.87 for both robots in risk taking mode. As

both robots were in risk-taking mode, the most active neuromodulator was dopamine (Figure

4.86). Even though the close proximity to the home base beam (Figure 4.85) constantly induced

serotonergic spikes in the network (due to Find Home being a serotonergic action) the highest

spiking actions of the robots were still dopaminergic in nature (Figure 4.87).

Figure 4.85 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk-Taking)

75

Figure 4.86 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk
Taking-Risk Taking)

Figure 4.87 State transitions of the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk Taking)

76

4.6.5 Risk Taking Robot with Distracted Robot
Results are presented in Figure 4.88 through Figure 4.90 for two robots with Robot A in risk

taking mode and Robot B in distracted mode. Being in an open area the risk taking robot (Robot

A) did not register an event until half-way in the run (Figure 4.88). Once it did it turned out to

be serotonergic in nature (Beam). But once the Bump event was active, the serotonin levels in

the network for Robot A dropped and the dopamine levels increased (Figure 4.89). As seen

before, even though there were serotonergic actions induced by the Beam event, the highest

spiking actions were those of dopaminergic actions. For the distracted robot, there was the

usually large number of dopaminergic spikes with a constant level of ACh/NE under it.

Figure 4.88 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk-Taking)

77

Figure 4.89 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk
Taking-Risk Taking)

Figure 4.90 State transitions of the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk Taking)

78

4.7 Spiking Neuron Model (Three Robots)

The use of the GPU accelerated model was then applied to the same three-robot scenarios

presented in Section 4.4. This continues the evolution of the previous simple neuron models.

4.7.1 Two Risk Aversive Robots with One Risk Taking Robot

Results are presented in Figure 4.91 through Figure 4.93 for three robots with two robots (Robot

A, Robot B) in risk aversive mode and the third (Robot C) in risk taking mode. The most active

neuromodulator in this run was serotonin for Robot A and Robot B as expected. What was not

expected was that the risk taking robot (Robot C) would have mostly serotonin spiking

throughout the period of run. This showed that while the spiking neuron model was based on a

more biologically realistic model the tuning of the Izhikevich model of Regular Spiking must be

done for proper functioning of SNN. This could also be shaped by the constant induction of the

beam event on Robot C in this particular run. While the ACh/NE neurons were used to

eventually suppress constant event inputs this did not change the fact that the home beam input

was serotonergic in nature.

Figure 4.91 Event inputs into the ROS-SNN simulation program (Three Robots, Two Risk
Aversive/One Risk Taking)

79

Figure 4.92 Neuromodulator activity of the ROS-SNN simulation program (Three Robots, Two
Risk Aversive/One Risk Taking)

Figure 4.93 State transitions of the ROS-SNN simulation program (Three Robots, Two Risk
Aversive/One Risk Taking)

80

4.7.2 Two Risk Taking Robots with One Risk Aversive Robot

Results are presented in Figure 4.94 through Figure 4.96 for three robots with two robots (Robot

A, Robot B) in risk taking mode and the third (Robot C) in risk aversive mode. In this case, the

number spikes in dopamine group reached the highest of any of the neuromodulator for Robot A

and robot B with a consistently high number of serotonin spikes for Robot C (Figure 4.95). With

Robot A having high number of Explore Objects and Open Field neuron spikes, the exploratory

nature of the robotic platform in dopaminergic actions was demonstrated. Robot B, the second

risk taking robot, showed its internal network battle between the Find Home spiking neuron

group induced by the home base and the Explore Object neuron group induced by its core

dopaminergic nature. With occasional spikes of Explore Object neural activity, the main action

of Robot C was to Find Home (Figure 4.96).

Figure 4.94 Event inputs into the ROS-SNN simulation program (Three Robots, Two Risk
Taking/One Risk Aversive)

81

Figure 4.95 Neuromodulator activity of the ROS-SNN simulation program (Three Robots, Two
Risk Taking/One Risk Aversive)

Figure 4.96 State transitions of the ROS-SNN simulation program (Three Robots, Two Risk
Taking/One Risk Aversive)

82

4.8 Spiking Neuron Model (Four Robots)

4.8.1 Two Risk Aversive Robots with Two Risk Taking Robots

Results are presented in Figure 4.97 through Figure 4.99 for four robots with two robots (Robot

A, Robot B) in risk aversive mode and the other two (Robot C and Robot D) in risk taking mode.

In this case the first two robots (A, B) had highest numbers of serotonergic spikes and the other

two robots (C, D) had highest numbers of dopaminergic (Figure 4.98). Robot C’s exploratory

nature can be seen as active in Figure 4.99. The high level of home beam input into the network

induced more serotonergic action spiking in the risk taking Robot D (Figure 4.99).

Figure 4.97 Event inputs into the ROS-SNN simulation program (Four Robots, Two Risk
Aversive/Two Risk Taking)

83

Figure 4.98 Neuromodulator activity of the ROS-SNN simulation program (Four Robots, Two
Risk Aversive/Two Risk Taking)

Figure 4.99 State transitions of the ROS-SNN simulation program (Four Robots, Two Risk
Aversive/Two Risk Taking)

4.8.2. Two Risk Taking Robots with One Risk Aversive Robot and One Distracted Robot

Results are presented in Figure 4.100 through Figure 4.102 for four robots with two robots

(Robot A, Robot B) in risk taking mode, one robot (Robot C) in risk aversive mode and the

84

fourth robot (Robot D) in distracted mode. As expected there were high levels of dopamine

spikes throughout the run with Robot A and Robot B being exploratory in nature (Figure 4.101).

For Robot C constant Find Home spiking activity was consistent with its risk aversive mode set

within the robotic neural network. The various shifting levels of neural activity for Robot D in

both neuromodulators and state neuron activity demonstrated its distracted mode.

Figure 4.100 Event inputs into the ROS-SNN simulation program (Four Robots, Two Risk
Taking/One Risk Aversive/One Distracted)

85

Figure 4.101 Neuromodulator activity of the ROS-SNN simulation program (Four Robots, Two
Risk Taking/One Risk Aversive/One Distracted)

Figure 4.102 State transitions of the ROS-SNN simulation program (Four Robots, Two Risk
Taking/One Risk Aversive/One Distracted)

86

4.9 Discussion of Results

As the experiments continued, comparisons between the various cases using the simple neuron

model and the spiking neuron model began to show interesting observations. For instance, even

though the SNN solution introduced cloud computing network platforms that were dependent on

traffic size of data and the size of the SNN models, the simulation of neuromodulated activity

was around the same speed as the on-board solutions. The truly demonstrated the computing

power of GPUs for the SNN models. The overall behavior patterns of the robots between the

simple neuron model and the SNN model were qualitatively similar. However, SNN based

model, due to its modeling details, had the capability of giving better insights into the behavioral

patterns of the robots. It should also be noted that the apparent contradiction of some behavioral

patterns of robots in SNN based model could be resolved with considerations on tuning the SNN

model parameters. The ROS-cloud computing based implementation of the models was very

effective and could be improved further.

87

CHAPTER 5 . CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary of the Present Work

In order to demonstrate the effectiveness of a spiking neural network’s ability to simulate a

vertebrate neuromodulation control system, robotic code was created starting with a simple

neural network. This simple neural network was a three layer network, consisting of the

following: an input layer to receive the effects of stimuli in the robot’s environment; a decision

making layer consisting of neurotransmitters- dopamine, serotonin, noradrenaline, and

acetylcholine; and an output layer representing the defined “states” the robot could go into.

Noradrenaline and acetylcholine could help filter out noise and increase focus on a novel event.

Dopamine acted as a reward motivator and increased the level of risk-taking by a vertebrate.

Serotonin decreased the level of risk-taking by a vertebrate.

Once this simple neuromodulation code was achieved, a robotic software platform was needed to

implement actual applications. This came in the form of the Robot Operating System (ROS)

platform (Nickels and Kerr 2012). The ROS platform is an open source software platform widely

used for its reusability and flexibility on multiple hardware platforms. Once the ROS platform

was established and the simple neural network was shown to be responsive on ROS, a publicly

available SNN simulator that could harness the abilities of GPU parallel processing was

integrated into the control scheme. Instead of simply facilitating connections and data, ROS

would be responsible for starting and stopping the simulation of thousands of neurons.

Each of the SNN’s neurons was based on the Izhikevich neuron model, a model known for being

biologically descriptive and relatively efficient to compute in large numbers. For the study, the

RS (regular spiking) variation of the Izhikevich neuron model was used. RS Izhikevich neurons

represent typical “default” neurons. The simple neural network was adapted to the SNN

simulation platform by turning each neuron in the previous experiment into groups of many

neurons. Using GPU equipped PCs as cloud servers for parallel processing, models of 2000+

neurons were implemented that lasted a second whenever the robot sent sensory inputs over the

ROS network.

88

The current study showed that spiking neural networks could be a plausible control system

implemented on a highly adaptable framework like ROS in cloud computing environment. Due

to the increased complexity in SNN model, it might be necessary to tune the model parameters

for wider applications. Compared to the simple neural network, the tradeoff between complexity,

details of the SNN model and speed of computation would need further consideration.

5.2 Scope of Future Work

While the ability of the Izhikevich neuron model was more biologically complex and realistic

there was a tradeoff for stability. When using neuron counts over 5,000 in the simulation, output

states and neuromodulator levels stopped correlating and the results became more random. In

order to harness the power of large networks, it would be necessary to tune the model

parameters, similar to the evolutionary algorithm based technique proposed recently (Carlson, et

al. 2014).

While the ROS framework used in this project was only used to support a maximum of four

robots, the architecture can scale to a larger number of robotic platforms as long as the

networking hardware can handle the data traffic. Expanding the number of robots used in this

type of project would produce novel results.

The ROS framework also supports the networking of heterogeneous robotic platforms. Using a

neural network on a “ground” robot like the Turtlebot simultaneously with an “air” robot like a

UAV would add another dimension to this work.

In the present work, the models were implemented in ROS-cloud computing environment

without any network optimization. The issues of latency, safety and security of the ROS- cloud

computing environment would have to be considered in future.

89

REFERENCES

Alexander, William H. , and Olaf Sporns. "Neuromodulation and plasticity in an autonomous
robot." Neural Networks, 2002: 761-774.

Carlson, Kristofor David, Jayram M Nageswaran, Nikil Dutt, and Jeffrey L Krichmar. "An
efficient automated parameter tuning framework for spiking neural networks." Frontiers
in Neuroscience 8, no. 10 (2014).

Cox, Brian R., and Jeffrey L. Krichmar. "Neuromodulation as a Robot Controller: A Brain
Inspired." IEEE Robotics & Automation Magazine, September 2009: 72-80.

Gerstner, Wulfram. "Spiking Neurons." In Pulsed Neural Networks, by Wolfgang Maass, &
Christopher Bishop, 3-54. The MIT Press, 1999.

Izhikevich, Eugene M. "Simple Model of Spiking Neurons." IEEE Transactions on Neural
Networks, November 2003: 1569-1572.

Kistler, Werner M., and Wulfram Gerstner. Spiking Neuron Models. Cambridge: Cambridge
University Press, 2002.

Krichmar, Jeffery L. "The Neuromodulatory System: A Framework for Survival and Adaptive
Behavior in a Challenging World." Adaptive Behavior 16, no. 6 (2008): 385-399.

Krichmar, Jeffrey L. "A neurorobotic platform to test the influence of neuromodulatory signaling
on anxious and curious behavior." Frontiers in Neurorobotics 7, no. 1 (2013).

Krichmar, Jeffrey L. "A biologically inspired action selection algorithm based on principles of
neuromodulation." Neural Networks (IJCNN), The 2012 International Joint Conference
on. 2012. 1 - 8.

McCulloch, Warren, and Walter Pitts . "A logical calculus of the ideas immanent in nervous
activity." Bulletin of Mathematical Biophysics, 1943: 115-133.

Nageswaran , Jayram Moorkanikara, Nikil Dutt, Jeffrey L Krichmar, Alex Nicolau, and Alex
Veidenbaum. "Efficient simulation of large-scale spiking neural networks using CUDA
graphics processors." Proceedings of the 2009 International Joint Conference on Neural
Networks. Atlanta: IEEE Press, 2009. 3201-3208.

Nickels, K., and J. Kerr. "Robot operating systems: Bridging the gap between human and robot."
2012 44th Southeastern Symposium on System Theory (SSST). Jacksonville: IEEE, 2012.
99 - 104.

90

Prince, Akimul. "Neuromodulation based control of an autonomous robot." Master's Thesis,
Georgia Southern University, 2013.

Prince, Akimul, and Biswanath Samanta. "Control of Autonomous Robots Using the Principles
of Neuromodulation." ASME 2013 Dynamic Systems and Control Conference. 2013. 8.

Ramòn y Cajal, Santiago. Histologie du système nerveux de l'homme & des vertébrés . Paris:
Maloine, 1909.

Richert, Micah, Jayram Moorkanikara Nageswaran, Nikil Dutt, and Jeffrey L. Krichmar. An
efficient simulation environment for modeling large-scale cortical processing. September
2011. http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2011.00019/full
(accessed August 2012).

ROS.org | Powering the world's robots. 2013. http://www.ros.org/.

Rosenblatt, Frank. "The perceptron: A probabilistic model for information storage and
organization in the brain." Psychological Review, 1958: 386-408.

Turner, Jonathan G. "Intelligent neural network control system design and FPGA based
implementation." Master's Thesis, Georgia Southern University, 2012.

TurtleBot. 2013. http://turtlebot.com/.

Vreeken, Jilles. "Spiking neural networks, an introduction." Technical Report UU-CS 2003-008
(Utrecht University: Information and Computing Sciences), 2003: 1-5.

91

APPENDICIES

Appendix A

SOFTWARE IMPLEMENTATION OF NEUROMODULATED NETWORK IN ROS-
COMPATIBLE C++

//Ros Header
#include "ros/ros.h"

//Msg headers
#include <std_msgs/String.h>
#include <std_msgs/Empty.h>

#include <tf/tf.h>

#include <geometry_msgs/Twist.h> //Movement Msgs

#include <nav_msgs/Odometry.h> //Odom Msgs

#include <sensor_msgs/Image.h> //Depth Image Msgs
#include <sensor_msgs/CameraInfo.h> //CameraInfo Msgs
#include <sensor_msgs/LaserScan.h> //LaserScan Msgs

#include <kobuki_msgs/DockInfraRed.h> //Kobuki IR Sensor Status Msgs
#include <kobuki_msgs/SensorState.h> //Kobuki interal Sensor Msgs
#include "complete_test/irobotdock.h"

#include <fstream>
#include <iterator>
#include <string>
#include <vector>

#include <sstream>
using namespace std;

// Global Variables

// -------------
// - control/flow variables
const double PI = 3.1415926; //PI constant for rotation
int enable_sub = 0; //rotation enable
int controlint = 0; //rotation control
float originyaw; //radian control
int stage = 0; //rotation stage control
float fromleft = 0; //needed in DestinRad Subfunction
float fromright = 0; //needed in DestinRad Subfunction

92

float camera; //global camera variable
int charger = 0; //charger status
int bumper = 0; //bumper status
std::vector<int>IR_Sensor (3,0); //IR Sensor vector
vector <double> locate(5,0); //Camera Vectors
int locate_enable = 0; //Vectoring Enable

int chc = 0; //neuron choice

// --------------
// - recording data
vector <vector <double> > loginx; //total data
vector<double> logvec(28,0); //individual run vectors

// ----------------
// - state neurons
int STATE_WALL_FOLLOW = 1;
int STATE_OPEN_FIELD = 2;
int STATE_EXPLORE_OBJECT = 3;
int STATE_FIND_HOME = 4;
int STATE_AT_HOME = 5;
int STATE_LEAVE_HOME = 6;

// ----------------
// - events
int e_ping_value = 1;
int e_battery = 2;
int e_bump = 3;
int e_beam = 4;
int e = 4;
//event = zeros (1,e);
std::vector<double>event (e,0);

// ----------------
// - parameters for return home
int FIND_HOME_TIMEOUT = 1;
int dock_time = 0;
int found_home = 0;

// ----------------
// - parameters for wall following
int WALL_LEFT = -1;
int WALL_RIGHT = 1;
int wall = 0;
int wallfollow_time = 0;

// ----------------
// - neurons
int N = 4;
//global n;

93

//n = zeros (1,N);
std::vector<double> n (N,0);

// ----------------
// - neuromodulators
int NM_DA = 1;
int NM_5HT = 2;
int NM = 2;
//global nm;
//nm = zeros (1,NM);
std::vector<double> nm (NM,0);

// ----------------
// - ACH/NE neuromodulation
//global achne;
//achne = zeros (1,e);
//%achne =ones(1,e);
std::vector<double> achne (e,0);

// ----------------
// - parameters for ping sensor event
//int comparing_distance = 20; //% 20 centimeter
float comparing_distance = 0.52;
//%comparing_max_distance = 70;

// ----------------
// - parameters for battery event
float battery;
float battery_level;
float battery_initial_level;
int battery_lock = 0;

// ----------------
// - parameters for bump event
float too_close = 0.72; //% meausred in m

// ----------------
// - parameters for beam event
int force_field = 242;
int buoy_and_force_field = 250;

// ----------------
// - set weights to their initial values
vector <vector <double> > w_n_n_exc;
vector <vector <double> > w_n_n_inh;
vector <vector <double> > w_nm_n;
vector <vector <double> > w_e_n;
vector <vector <double> > w_e_nm;
vector <double> w_e_achne;

ros::Publisher chatter_pub; //movement publisher
ros::Publisher chatter_pub2; //odom reset publisher

94

void roomba_net_init()
{
 // state neuron intrinsic connectivity
 for (int r = 1; r <= N; r++)
 {
 vector <double> row(N, 0.5);
 w_n_n_exc.push_back(row);
 }

 for (int r = 1; r <= N; r++)
 {
 vector <double> row(N, -1.0);
 w_n_n_inh.push_back(row);
 }

 for (int r = 1; r <N; r++)
 {
 ROS_INFO("Pass 3.1");
 w_n_n_exc[r-1][r-1] = 0.0;
 w_n_n_inh[r-1][r-1] = 0.0;
 ROS_INFO("Pass 3.2");
 }

 // neuromodulator to state neuron connectivity
 //w_nm_n = zeros(NM,N);
 for (int r = 1; r <= NM; r++)
 {
 vector <double> row(N, 0);
 w_nm_n.push_back(row);
 }
 w_nm_n[NM_5HT-1][STATE_FIND_HOME-1] = 5;//% 5*rand;5;
 w_nm_n[NM_5HT-1][STATE_WALL_FOLLOW-1] = 5 ;//%5*rand;%5;
 w_nm_n[NM_DA-1][STATE_EXPLORE_OBJECT-1] =5;//%5*rand;%5;
 w_nm_n[NM_DA-1][STATE_OPEN_FIELD-1] =5; //% 5*rand;%5;

 // event neuron to state neuron connectivity
 //w_e_n = ones(e,N);
 //% w_e_n(e_bump,STATE_FIND_HOME) = 0;
 //%w_e_n = rand(e,N);
 for (int r = 1; r <= e; r++)
 {
 vector <double> row(N, 1);
 w_e_n.push_back(row);
 }

 // event neuron to neuromodulator connectivity
 //w_e_nm = zeros(e,NM);
 for (int r = 1; r <= e; r++)
 {

95

 vector <double> row(NM, 0);
 w_e_nm.push_back(row);
 }
 w_e_nm[e_ping_value-1][NM_DA-1] =1; //% 0+(1-0).*rand;
 w_e_nm[e_battery-1][NM_5HT-1] =1; //%0+(1-0).*rand;%1;
 w_e_nm[e_beam-1][NM_5HT-1] =1; //%0+(1-0).*rand;% 1;
 //w_e_nm[e_bump-1][NM_5HT-1] = 1; //%0+(1-0).*rand; %1; %
risk averse behavior

 w_e_nm[e_bump-1][NM_DA-1] = 1; //0+(1-0).*rand; % risk taking
behavior

 //event neuron to neuromodulator connectivity
 //w_e_achne = ones(1,e); //% 0+(1-0).*rand(1,e);
 for (int r = 1; r <= e; r++)
 {
 w_e_achne.push_back(1);
 }

}

double activity(double I, double g)
{
/*% activity - sigmoid activation function
%
% Description
% Sigmoid activation function for rate neuron
%
% Inputs
% I - synaptic input
% g - gain or slope of sigmoid curve
%
% Outputs
% s - activity of neuron between 0 and 1
*/
 double sigmoid;
 sigmoid = 1 / (1 + exp(-g*I));
 return sigmoid;
}

double stp(double xin, double p, double tau, double maxi, bool spk)
{
/*% stp - Short-Term Plasticity
%
% Description
% Simple version of short-term plasticity rule
%
% Inputs
% xin - current weight value

96

% p - amount to increase or decrease weight if there is a spike
% tau - recovery time constant.
% max - maximum weight value
% spk - 1 if spike occurred.
%
% Outputs
% x - new weight value
%
*/
double x;

 if (spk == true)
 x = p*xin;
 else
 x = xin + (1-xin)/tau;

 x = min(maxi,x);
 return x;
}

double rand_num()
{
 int v1 = (rand() % 10001);
 double number = (rand() % 10001) / 10000.0;
 return number;
}

double sum_vector(vector <double> vector)
{
 double sum;
 for(int i = 0; i < vector.size();i++)
 {
 sum = sum + vector[i];
 }
 return sum;
}

double min_vector(vector <double> vector)
{
 double min_value;
 min_value = vector[0];

 for (int i = 0;i < (vector.size()-1);i++)
 {
 if (min_value > vector[i+1]){
 min_value = vector[i+1];
 }

 }

97

 return min_value;
}

void max_vector_element(vector <double> vector, double& c, double& I)
{
 c = vector[0]; //in case if all elements equal
 I = 0;
 for (int i = 0;i < (vector.size()-1);i++)
 {
 if (c < vector[i+1]){
 c = vector[i+1];
 I = i+1;}
 }
}

double DestinRad(double ori, double dest) //computes destination
radian
{
 double destra;
 if ((ori - dest) < -PI) //readjust distance from lower limit
 {
 destra = (ori - dest) + (2*PI);
 fromright = 1; //apply 2pi correction to right direction
below limit
 fromleft = 0;
 }
 else if ((ori - dest) > PI) //readjust distance from upper limit
 {
 destra = (ori - dest) - (2*PI);
 fromright = 0;
 fromleft = 1; //apply 2pi correction to left direction
above limit

 }
 else //within limit
 {
 destra = (ori - dest);
 fromright = 0;
 fromleft = 0;
 }
 return destra;
}

void reveal_vector(vector <double> vector)
{
 ROS_INFO("--DIRECTION VECTOR--");
 ROS_INFO("--DIRECTION VECTOR SIZE-- [%lu]", vector.size());
 for(int i = 0; i < vector.size();i++)
 {
 ROS_INFO("Element [%i]: [%f]", i, vector[i]);
 }
}

98

void roomba_net_cycle(std::vector<double> event, int& choice,
std::vector<double>& achne_out, std::vector<double>& n_out,
std::vector<double>& nm_out)
{
 double ACTION_SELECTION_THRESHOLD = 0.67;

 //parameters for state neuron activation function
 double N_ACT_GAIN = 2;
 double N_ACT_PERSIST = 0.25;
 double N_ACT_BASECURRENT = -1.0;
 std::vector<double> nprev = n;

 //parameters for neuromodulatory neuron activation function and
synaptic
 //plasticity
 //global NM;
 //global nm;
 std::vector<double> nmprev = nm;
 double NM_ACT_GAIN =2; //%2+(5-2)*rand; %2; % gain for sigmoid
function
 double NM_ACT_BASECURRENT = -1.0;
 double NM_ACT_PERSIST = 0.25; //% persistence of synaptic
current
 double NM_STP_GAIN = 1.1; //% facillitating synapse
 double NM_STP_DECAY = 50; //% recovery time constant
 double NM_STP_MAX = 2; //% weight value ceiling

 //% parameters for ACh/NE neuron activation function and synaptic
plasticity
 //global achne;
 std::vector<double> achneprev = achne;
 double ACHNE_ACT_GAIN = 5; //%2+(5-2)*rand ; gain for sigmoid
function
 double ACHNE_ACT_BASECURRENT = -0.5;
 double ACHNE_ACT_PERSIST = 0.25; //% persistence of synaptic
current
 double ACHNE_STP_GAIN = 0.1; //% depressing synapse
 double ACHNE_STP_DECAY = 50; //% recovery time constant
 double ACHNE_STP_MAX = 1; //% weight value ceiling

 //calculate cholinergic/noradrenergic neural activity
 for (int i = 1; i <= e; i++)
 {
 //achne(i) = activity (ACHNE_ACT_BASECURRENT + ACHNE_ACT_PERSIST
* achneprev(i) + event(i)*w_e_achne(i), ACHNE_ACT_GAIN);
 achne[i-1] = activity(ACHNE_ACT_BASECURRENT +
ACHNE_ACT_PERSIST*achneprev[i-1] + event[i-1]*w_e_achne[i-1],
ACHNE_ACT_GAIN);
 ROS_INFO("achne[i-1] %f, achneprev[i-1] %f,",achne[i-
1],achneprev[i-1]);

99

 ROS_INFO("event[i-1] %f",event[i-1]);
 }

 /*
 //%achne = ones(1,4); % FOR DISTRACTED BEHAVIOR
 for (int i = 1; i <= e; i++) //FOR DISTRACTED BEHAVIOR
 {
 achne[i-1] = 1;
 }
 */

 // calculate neuromodulatory activity
 for (int i = 1; i <= NM; i++)
 {
 //I = NM_ACT_BASECURRENT + NM_ACT_PERSIST * nmprev(i);
 double I = NM_ACT_BASECURRENT + NM_ACT_PERSIST * nmprev[i-1];

 for (int j = 1; j <=e; j++)
 {
 //I = I + event(j)*w_e_nm(j,i);
 I = I + event[j-1]*w_e_nm[j-1][i-1];
 }

 //nm(i) = activity (I, NM_ACT_GAIN);
 nm[i-1] = activity (I, NM_ACT_GAIN);
 }

 // calculate state neural activity
 for (int i = 1; i <= N; i++)
 {
 //I = N_ACT_BASECURRENT+0.5*rand+N_ACT_PERSIST * nprev(i);
 double I = N_ACT_BASECURRENT+0.5*rand_num()+N_ACT_PERSIST *
nprev[i-1];

 //intrinsic synaptic input
 for (int j = 1; j <= N; j++)
 {
 //I = I + nprev(j) * w_n_n_exc(j,i) + (sum(nm)) *
nprev(j) * w_n_n_inh(j,i);
 I = I + nprev[j-1] * w_n_n_exc[j-1][i-1] +
(sum_vector(nm)) * nprev[j-1] * w_n_n_inh[j-1][i-1];
 }

 //event synaptic input
 for (int j = 1; j <= e; j++)
 {
 for (int k = 1; k <= NM; k++)
 {
 //I = I + nm(k) * w_nm_n(k,i) * achne(j)*
event(j) * w_e_n(j,i);

100

 I = I + nm[k-1] * w_nm_n[k-1][i-1] * achne[j-1]*
event[j-1] * w_e_n[j-1][i-1];
 }
 }

 //n(i) = activity (I, N_ACT_GAIN);
 n[i-1] = activity (I, N_ACT_GAIN);
 ROS_INFO("n[i-1]: %f",n[i-1]);
 }

 //update plastic weights with short-term plasticity rule. a spike
occurs
 //when an event occurs.
 for (int i = 1; i <= e; i++)
 {
 //w_e_achne(i) = stp (w_e_achne(i), ACHNE_STP_GAIN,
ACHNE_STP_DECAY, ACHNE_STP_MAX, event(i) > 0.5);
 w_e_achne[i-1] = stp (w_e_achne[i-1], ACHNE_STP_GAIN,
ACHNE_STP_DECAY, ACHNE_STP_MAX, event[i-1] > 0.5);
 }

 for (int i = 1; i <= e; i++)
 {
 for (int j = 1; j <= NM; j++)
 {
 //if w_e_nm (i,j) > 0
 // w_e_nm (i,j) = stp (w_e_nm (i,j), NM_STP_GAIN,
NM_STP_DECAY, NM_STP_MAX, event(i) > 0.5);
 //end

 if ((w_e_nm[i-1][j-1]) > 0)
 w_e_nm[i-1][j-1] = stp (w_e_nm[i-1][j-1], NM_STP_GAIN,
NM_STP_DECAY, NM_STP_MAX, event[i-1] > 0.5);
 }
 }

 //find most active state neuron. perform action selection if
activity is
 //above threshold
 //[y,i] = max(n)
 double y;
 double i_active;
 max_vector_element(n,y,i_active);
 if (y > ACTION_SELECTION_THRESHOLD){
 choice = i_active;}
 else
 {choice = -1;} //if no neuron active, no selection made
(selection depends on chc >= 0)

 achne_out = achne;
 n_out = n;
 nm_out = nm;

101

}

void CoreInfo(const kobuki_msgs::SensorState::ConstPtr& msg2)
//void IRInfo(const complete_test::irobotdock::ConstPtr& msg)
{
 //ROS_INFO("Battery voltage: [%i]",msg2->battery);

 if (battery_lock == 0){
 battery_initial_level = msg2->battery;
 battery_lock++; //locks up initial value of battery voltage
 }
 else{
 battery_level = msg2->battery;
 }

 //ROS_INFO("Bumper Values: [%i]", msg2->bumper);
 bumper = msg2->bumper;
 //ROS_INFO("Charge Values: [%i]", msg2->charger);
 charger = msg2->charger;
 //ROS_INFO("Wheel Drops: [%i]", msg2->wheel_drop);

}

void IRInfo(const kobuki_msgs::DockInfraRed::ConstPtr& msg)
//void IRInfo(const complete_test::irobotdock::ConstPtr& msg)
{
 //ROS_INFO("Data 0: [%i]",msg->data[0]);
 //ROS_INFO("Data 1: [%i]",msg->data[1]);
 //ROS_INFO("Data 2: [%i]",msg->data[2]);

 IR_Sensor[0] = msg->data[0]; //data to be passed onto main
subfunction
 IR_Sensor[1] = msg->data[1];
 IR_Sensor[2] = msg->data[2];

}

void LsrInfo(const sensor_msgs::LaserScan::ConstPtr& msg)
{
 //int times_run;

 //ros::param::set("/camera/depthimage_to_laserscan_loader/range_m
ax", 10.0);
 //ROS_INFO("Begin loop - LaserScan Info");
 //ROS_INFO("Range Min: [%f]", msg->range_min);
 //ROS_INFO("Range Max: [%f]", msg->range_max);
 //ROS_INFO("Size of Ranges: [%lu]",msg->ranges.size());
 float minVal = (msg->range_max); //to begin loop

102

 float finalVal = 0;
 for (int i = 0;i<(msg->ranges.size()); i++){
 if ((msg->range_min) <= (msg->ranges[i]) && (msg-
>ranges[i]) <= (msg->range_max)){ //if in range, valid dist.
 if ((msg->ranges[i]) < minVal){
 //if lower than prev. min.
dist.
 minVal = (msg->ranges[i]);
 finalVal = minVal;
 }
 }
 }

 ROS_INFO("Min. Dist: [%f]", finalVal);
 camera = finalVal;
 /*if (locate_enable > 0)
 {
 ROS_INFO("--DIRECTION RECORDED!!!!!!--");
 ROS_INFO("Location Enable: [%i]", locate_enable);
 locate[2] = finalVal;
 //ros::Duration(2).sleep();
 }
 */

 switch(locate_enable){
 case 1:
 locate[0] = finalVal;
 //ROS_INFO("LOC 1: [%f]", finalVal);
 break;
 case 2:
 locate[1] = finalVal;
 //ROS_INFO("LOC 2: [%f]", finalVal);
 break;
 case 3:
 locate[2] = finalVal;
 //ROS_INFO("LOC 3: [%f]", finalVal);
 break;
 case 4:
 locate[3] = finalVal;
 //ROS_INFO("LOC 4: [%f]", finalVal);
 break;
 case 5:
 locate[4] = finalVal;
 //ROS_INFO("LOC 5: [%f]", finalVal);
 break;
 }

103

 //ROS_INFO("BEFORE FUNCTION");
 //ROS_INFO("DIRECTION #: [%i]", dir_vector);
 //SetFront(dir_vector, finalVal);
 //ROS_INFO("AFTER FUNCTION");
 //dir_vector++;
 //ROS_INFO("DIRECTION #: [%i]", dir_vector);
 //WallFollow(finalVal);
 /*
 SetFront(finalVal);
 SetRightFront(finalVal);
 SetRight(finalVal);
 SetLeft(finalVal);
 SetLeftFront(finalVal);
 */
 //ROS_INFO("End loop - LaserScan Info");
}

void OdomInfo2(const nav_msgs::Odometry::ConstPtr& msg)
{

 if (locate_enable == 0){ //resets odometry

 std_msgs::Empty resetodom;

 double secs = ros::Time::now().toSec();
 while ((ros::Time::now().toSec() - secs) <= 1.5){
 chatter_pub2.publish(resetodom);
 }
 }

 if (enable_sub == 1){ //to use vectorized distances
 //ROS_INFO("ODOM ACTIVATED!");
 double yaw;

 yaw = tf::getYaw(msg->pose.pose.orientation);
 //ROS_INFO("Yaw Angle: [%f]", yaw);

 geometry_msgs::Twist vel;
 float deg90 = (PI/2);
 float deg45 = (PI/4);
 float deg180 = (PI);
 float destrad;

 if (controlint == 0)
 {
 originyaw = yaw;
 ROS_INFO("Origin locked in: [%f]", originyaw);

104

 controlint++;
 }

 switch (stage){
 case 0: //turn right -45 degrees
 {
 locate_enable = 1;
 ROS_INFO("--Case 0---");
 destrad = DestinRad(originyaw, deg45);
 if ((tf::getYaw(msg->pose.pose.orientation) + (fromright*2*PI)) >
destrad){

 //ROS_INFO("--START Case 0--");
 //ROS_INFO("Current Yaw: [%f]", (tf::getYaw(msg-
>pose.pose.orientation) + (fromright*2*PI)));
 //ROS_INFO("Destrad: [%f]", destrad);
 //ROS_INFO("Stage: [%i]", stage);
 vel.linear.x = 0.0;
 vel.angular.z = -1.0;
 ROS_INFO("Origin locked in: [%f]", originyaw);
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation));
 }
 else{
 ROS_INFO("--DONE Case 0--");
 vel.linear.x = 0.0;
 vel.angular.z = 0.0;
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation));
 //ROS_INFO("90 degrees done");
 stage++;
 controlint= 0;
 //ros::Duration(3).sleep();
 }
 chatter_pub.publish(vel);
 //ROS_INFO("Stage: [%i]", stage);
 ROS_INFO("--PUBLISHING--");

 }
 break;
 case 1: //turn right 45 degrees
 {
 locate_enable = 2;
 ROS_INFO("--Case 1---");
 //ROS_INFO("Stage: [%i]", stage);
 destrad = DestinRad(originyaw, deg45);
 if ((tf::getYaw(msg->pose.pose.orientation) + (fromright*2*PI)) >
destrad)
 {
 vel.linear.x = 0.0;

105

 vel.angular.z = -1.0;
 ROS_INFO("Origin locked in: [%f]", originyaw);
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation));
 }
 else
 {
 //locate_enable = 2;
 vel.linear.x = 0.0;
 vel.angular.z = 0.0;
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation));
 //ROS_INFO("90 degrees done");
 stage++;
 controlint = 0;
 //ros::Duration(3).sleep();
 }
 chatter_pub.publish(vel);
 //ROS_INFO("--PUBLISHING--");
 }
 break;
 case 2: //turn left 180 degrees
 {
 locate_enable = 3;
 ROS_INFO("--Case 2---");
 destrad = DestinRad(originyaw, deg180);
 if ((tf::getYaw(msg->pose.pose.orientation) - (fromleft*2*PI)) <=
destrad)
 {
 vel.linear.x = 0.0;
 vel.angular.z = 1.0;
 ROS_INFO("Origin locked in: [%f]", originyaw);
 ROS_INFO("Yaw Angle Target (+180 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (+180 degrees):
[%f]",tf::getYaw(msg->pose.pose.orientation));
 }
 else
 {
 //locate_enable = 3;
 vel.linear.x = 0.0;
 vel.angular.z = 0.0;
 ROS_INFO("Yaw Angle Target (+180 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (+180 degrees):
[%f]",tf::getYaw(msg->pose.pose.orientation));
 //ROS_INFO("90 degrees done");
 stage++;
 controlint = 0;
 //ros::Duration(3).sleep();
 }
 chatter_pub.publish(vel);

106

 //ROS_INFO("--PUBLISHING--");
 }
 break;
 case 3: //turn right 45 degrees
 {
 locate_enable = 4;
 ROS_INFO("--Case 3---");
 destrad = DestinRad(originyaw, deg45);
 if ((tf::getYaw(msg->pose.pose.orientation) + (fromright*2*PI)) >
destrad)
 {
 vel.linear.x = 0.0;
 vel.angular.z = -1.0;
 ROS_INFO("Origin locked in: [%f]", originyaw);
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation));
 }
 else
 {
 //locate_enable = 4;
 vel.linear.x = 0.0;
 vel.angular.z = 0.0;
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation));
 //ROS_INFO("90 degrees done");
 stage++;
 controlint= 0;
 //ros::Duration(3).sleep();
 }
 chatter_pub.publish(vel);
 //ROS_INFO("--PUBLISHING--");
 }
 break;
 case 4: //turn right 45 degrees
 {
 locate_enable = 5;
 ROS_INFO("--Case 4---");
 destrad = DestinRad(originyaw, deg45);
 if ((tf::getYaw(msg->pose.pose.orientation) + (fromright*2*PI)) >
destrad)
 {
 vel.linear.x = 0.0;
 vel.angular.z = -1.0;
 ROS_INFO("Origin locked in: [%f]", originyaw);
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation));
 }
 else
 {

107

 //locate_enable = 5;
 vel.linear.x = 0.0;
 vel.angular.z = 0.0;
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad);
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation));
 //ROS_INFO("90 degrees done");
 stage++;
 controlint= 0;
 //ros::Duration(3).sleep();
 }
 chatter_pub.publish(vel);
 //ROS_INFO("--PUBLISHING--");
 }
 break;
 case 5: //origin point
 {ROS_INFO("---DONE!----");

 //reveal_vector(locate);
 //ros::Duration(3).sleep();
 stage = 0;
 controlint = 0;
 enable_sub = 0; //turn off vectorized distances
 locate_enable = 0;
 }
 break;
 default:
 {
 ROS_INFO("--DEFAULT--");
 controlint = 0;
 stage = 0;
 }
 break;
 }

 }

 else{
 ROS_INFO("Turning subfunction not activated");
 }

}

void getinfo(double duration)
{ ROS_INFO("Inside GetInfo Loop!");
 double secs =ros::Time::now().toSec();
 ROS_INFO("Get Info Loop SECS! [%f]", secs);
 while ((ros::Time::now().toSec() - secs) <= duration)
 {

108

 ROS_INFO("Inside GetInfo While Loop!");
 //ROS_INFO("Sleeping");
 //ros::spinOnce();
 //ros::spin();

 //ros::AsyncSpinner spinner(4); // Use 4 threads
 //spinner.start();

 ROS_INFO("End of GetInfo While Loop!");
 }
 ROS_INFO("Done with GetInfo Loop!");

 //ros::AsyncSpinner spinner(4); // Use 4 threads
 //spinner.start();

}

void WallFollow(float bump, float distVal)
{

ROS_INFO("--WALL FOLLOW--");
ROS_INFO("Bump [%f]", bump);
ROS_INFO("DistVal [%f]", distVal);

geometry_msgs::Twist vel;
//int wall;
//float WALL_CLOSE = 1.5;
//float WALL_FAR = WALL_CLOSE + 2;
float WALL_CLOSE = 0.53;
//float WALL_FAR = WALL_CLOSE + 0.2;
float WALL_FAR = 0.77;
int condition;
//vel.angular.z = 0.0;
//vel.linear.x = 0.0;
float duration;

ROS_INFO("Wall Follow");
 if (bump == 1)
 {
 vel.linear.x = 0.0;
 vel.angular.z = -0.8;
 ROS_INFO("Bump - Wall Follow");
 condition = 1;
 duration = 1.5;
 }
 else if (distVal > WALL_FAR)
 {
 vel.linear.x = 0.3;
 vel.angular.z = 0.4*(-wall);
 ROS_INFO("distVal > WALL_FAR");

109

 condition = 2;
 duration = 1.0;
 }
 else if (distVal < WALL_CLOSE)
 {
 vel.linear.x = 0.3;
 vel.angular.z = 0.4*wall;
 ROS_INFO("distVal < WALL_CLOSE");
 condition = 3;
 duration = 1.0;
 }
 else
 {
 vel.linear.x = 0.3;
 vel.angular.z = 0.0;
 ROS_INFO("Straight Ahead");
 condition = 4;
 duration = 1.0;
 }

 double secs =ros::Time::now().toSec();
 while ((ros::Time::now().toSec() - secs) <= duration){
 chatter_pub.publish(vel);
 ROS_INFO("--Wall Follow Stats [%f], [%f]---", bump, distVal);
 ROS_INFO("--Wall Follow Parameters - Condition: [%i], Wall: [%i],
Left: [%f], Right: [%f]", condition, wall, locate[2], locate[1]);
 }
 //return;
}

void OpenField(float bump, float left, float front, float right){

ROS_INFO("--OPEN FIELD--");
ROS_INFO("--Left: [%f], Front: [%f], Right: [%f]--", left, front,
right);

float MAXSPEED = 0.40;
float MINSPEED = 0.10;
float MAXDIST = 300;
float TURN = 0.25;
geometry_msgs::Twist vel;
//int bump = 0;
float duration;

//find the most open area. speed is proportional to the amount of open
space
//go straight
if (front > left && front > right){
 if (front > MAXDIST){
 front = MAXDIST;}

 if (bump == 1){

110

 //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN);
 vel.linear.x = 0.0;
 vel.angular.z = -0.8;
 duration = 1.5;
 ROS_INFO("---OPEN FIELD - Go Straight - Bump---");
}
 else{
 //SetFwdVelAngVelCreate(serport,
max(MINSPEED,(front/MAXDIST)^2*MAXSPEED), 0.0);
 vel.linear.x = 0.3;
 vel.angular.z = 0.0;
 duration = 1.0;
 ROS_INFO("---OPEN FIELD - Go Straight - NO Bump---");
}
}

//go left
else if (left > right){
 if (left > MAXDIST){
 left = MAXDIST;}

 if (bump == 1){
 //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN);
 vel.linear.x = 0.0;
 vel.angular.z = -0.8;
 duration = 1.5;
 ROS_INFO("---OPEN FIELD - Go Left - Bump---");
}
 else{
 //SetFwdVelAngVelCreate(serport,
max(MINSPEED,(left/MAXDIST)^2*MAXSPEED), TURN);
 vel.linear.x = 0.3;
 vel.angular.z = 0.4;
 duration = 1.0;
 ROS_INFO("---OPEN FIELD - Go Left - NO Bump---");
}
}

else{ //go to the right
 if (right > MAXDIST){
 right = MAXDIST;}
 if (bump == 1){
 //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN);
 vel.linear.x = 0.0;
 vel.angular.z = -0.8;
 duration = 1.5;
 ROS_INFO("---OPEN FIELD - Go Right - Bump---");
}
 else{
 //SetFwdVelAngVelCreate(serport,
max(MINSPEED,(right/MAXDIST)^2*MAXSPEED), -1*TURN);
 vel.linear.x = 0.3;

111

 vel.angular.z = -0.4;
 duration = 1.0;
 ROS_INFO("---OPEN FIELD - Go Right - NO Bump---");
}
}

 double secs =ros::Time::now().toSec();
 while ((ros::Time::now().toSec() - secs) <= duration){
 chatter_pub.publish(vel);}
}

void ExploreObject(float bump, float left, float front, float right){

ROS_INFO("--EXPLORE OBJECT--");
ROS_INFO("--Left: [%f], Front: [%f], Right: [%f]--", left, front,
right);

float MAXSPEED = 0.25;
float MINSPEED = 0.10;
float MAXDIST = 300;
float TURN = 0.5;
//int bump = 0;
geometry_msgs::Twist vel;

float duration;

//speed is proportional to the amount of change
if (front > left && front > right){ //% go straight
 if (front > MAXDIST){
 front = MAXDIST;}

 if (bump == 1){
 //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN);
 vel.linear.x = 0.0;
 vel.angular.z = -0.8;
 duration = 1.5;
 ROS_INFO("---EXPLORE OBJ - Go Straight - Bump---");
}
 else{
 //SetFwdVelAngVelCreate(serport,
max(MINSPEED,(front/MAXDIST)^2*MAXSPEED), 0.0);
 vel.linear.x = 0.3;
 vel.angular.z = 0.0;
 duration = 1.0;
 ROS_INFO("---EXPLORE OBJ - Go Straight - NO Bump---");
}
}

else if (left > right){ //% go to the left
 if (left > MAXDIST){
 left = MAXDIST;}

112

 if (bump == 1){
 //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN);
 vel.linear.x = 0.0;
 vel.angular.z = -0.8;
 duration = 1.5;
 ROS_INFO("---EXPLORE OBJ - Go Left - Bump---");
}
 else{
 //SetFwdVelAngVelCreate(serport,
max(MINSPEED,(left/MAXDIST)^2*MAXSPEED), TURN);
 vel.linear.x = 0.3;
 vel.angular.z = 0.4;
 duration = 1.0;
 ROS_INFO("---EXPLORE OBJ - Go Left - NO Bump---");
}
}

else{ //% go to the right
 if (right > MAXDIST){
 right = MAXDIST;}

 if (bump == 1){
 //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN);
 vel.linear.x = 0.0;
 vel.angular.z = -0.8;
 duration = 1.5;
 ROS_INFO("---EXPLORE OBJ - Go Right - Bump---");
}
 else{
 //SetFwdVelAngVelCreate(serport,
max(MINSPEED,(right/MAXDIST)^2*MAXSPEED), -1*TURN);
 vel.linear.x = 0.3;
 vel.angular.z = -0.4;
 duration = 1.0;
 ROS_INFO("---EXPLORE OBJ - Go Right - NO Bump---");
}
}
 double secs =ros::Time::now().toSec();
 while ((ros::Time::now().toSec() - secs) <= duration){
 chatter_pub.publish(vel);}
}

void FindHome(){
ROS_INFO("--FIND HOME--");
//system("roslaunch kobuki_auto_docking activate.launch --screen");
}

void AtHome(){
ROS_INFO("--AT HOME--");
}

113

void LeaveHome(){
ROS_INFO("--LEAVE HOME--");
geometry_msgs::Twist vel;

 double secs =ros::Time::now().toSec();
 while ((ros::Time::now().toSec() - secs) <= 1.0){
 vel.linear.x = -0.3;
 vel.angular.z = 0.0;
 chatter_pub.publish(vel);
 }

 double secs2 =ros::Time::now().toSec();
 while ((ros::Time::now().toSec() - secs2) <= 1.0){
 vel.linear.x = 0.0;
 vel.angular.z = 0.3;
 chatter_pub.publish(vel);
 }
}

void main_neuromodulated_program_direct_sensor()
{
 //initialize neural network
 roomba_net_init();

 ros::AsyncSpinner spinner(4); // Use 4 threads
 spinner.start();

 ROS_INFO("Initialization Done!");
 double tic = ros::Time::now().toSec(); //start timer
 ROS_INFO("Tic Saved!");
 //ros::Duration(5).sleep();

 double behave_state_time = (ros::Time::now().toSec()) - tic;
 int behave_state = STATE_WALL_FOLLOW;
 int new_behave_state = behave_state;
 ROS_INFO("Behave State Time Saved!");
 //getinfo(2.5); //% initial battery level
 //ROS_INFO("GetInfo Activated!");
 double current_time = (ros::Time::now().toSec()) - tic;
 //loginx = 0;
 //running the network for approximately five minutes or whatever
minutes...
 ROS_INFO("Current Time Logged!: [%f]", current_time);
 //ros::Duration(5).sleep();

114

 while (current_time < 300){

 current_time = (ros::Time::now().toSec()) - tic;
 ROS_INFO("Inner Loop - Current Time Logged!: [%f]",
current_time);
 //ros::Duration(5).sleep();

 //vectorize_sensor_reading -- done in Odom2 subroutine
 //vectorize_sensor_reading = [front right left right_close_front
left_close_front]

 enable_sub = 1; //activate sensor vectoring

 while(enable_sub == 1){ //stays in loop until vectoring is done
 ROS_INFO("Sensor Vectoring in Progress - Main Subroutine
Paused");
 }

 ROS_INFO("Sensor Vectoring Finished");

 ROS_INFO("WHILE LOOP DONE!!!!");
 //spinner.stop();
 //ros::Duration(15).sleep();

 //get bump sensor information -- done in CoreInfo subroutine
 //spinner.start();
 //get dock beam status - get information from IR and
Core(charging) subroutine
 int beam; //true if home base detected

 if ((IR_Sensor[0] > 0) || (IR_Sensor[1] > 0) || (IR_Sensor[2] >
0)){
 beam = 1;
 }
 else{
 beam = 0;
 }

 int homed; //homed if charging or close to the docking station

 if ((beam == 1) || (charger > 0)){
 homed = 1;
 }
 else{
 homed = 0;
 }

 battery = battery_level/battery_initial_level;

115

 //% get events (binary 1 == event occurred)
 //event(e_battery) = rand < (1-battery); % event more likely as
battery level drops

 if (rand_num() < (1 - battery)){
 event[e_battery-1] = 1;
 }
 else{
 event[e_battery-1] = 0;
 }

 //event(e_beam) = beam ~=0;

 if (beam != 0){
 event[e_beam-1] = 1;
 }
 else{
 event[e_beam-1] = 0;
 }

 //event(e_bump) = BumpLeft || BumpRight || BumpFront ||
min(vectorize_sensor_reading) < too_close; % for 5 sensors

 if ((bumper > 0) || (min_vector(locate) < too_close)){
 event[e_bump-1] = 1;
 }
 else{
 event[e_bump-1] = 0;
 }

 if (min_vector(locate) < comparing_distance){
 event[e_ping_value-1] = 1;
 }
 else{
 event[e_ping_value-1] = 0;
 }
 //% for 5 sensors comparing_max_distance = 70

 //publish events here

 //special processing for returning home
 if (behave_state == STATE_FIND_HOME){

 //if near docking station transition to at home sub-state
 if (homed == 1){
 new_behave_state = STATE_AT_HOME;}
 //if timed out searching for docking station, abort search if
no
 //beam detected. if beam is detected continue searching

116

 else if ((current_time-behave_state_time) >
FIND_HOME_TIMEOUT){
 if (beam == 0)
 new_behave_state = STATE_LEAVE_HOME;
 else
 behave_state_time = (ros::Time::now().toSec()) - tic;
//there was a beam, try a little longer
 }
 }

 else if (behave_state == STATE_AT_HOME){
 new_behave_state = STATE_LEAVE_HOME;}
 else if (behave_state == STATE_LEAVE_HOME){
 new_behave_state = STATE_WALL_FOLLOW;}

 //action selection based on neural network activity. chc is non-
zero
 //if action is selected by the network
 else{ ROS_INFO("ROOMBA NET CYCLE ACTIVATED!");
 roomba_net_cycle(event, chc, achne, n, nm);
 if (chc >= 0){
 new_behave_state = (chc+1);}
 }

 /*
 spinner.stop();
 ROS_INFO("--State Neurons: n[0]: [%f]", n[0]);
 ROS_INFO("--State Neurons: n[1]: [%f]", n[1]);
 ROS_INFO("--State Neurons: n[2]: [%f]", n[2]);
 ROS_INFO("--State Neurons: n[3]: [%f]", n[3]);
 ROS_INFO("--Choice chc [%i]", chc);
 ROS_INFO("--New Behave State [%i]", new_behave_state);
 ros::Duration(15).sleep();

 spinner.start();
 */

 //transitioned to a new state, print state information
 if (behave_state != new_behave_state){
 behave_state_time = (ros::Time::now().toSec()) - tic;

 switch(new_behave_state){
 case 1: //case STATE_WALL_FOLLOW
 //if
min(vectorize_sensor_reading(3),vectorize_sensor_reading(5))<=50 %
while using 5 sensors
 // left left_close_front
 if (min(locate[2], locate[3]) <= 0.77){ //wall value
 wall = WALL_LEFT;}
 else{
 wall = WALL_RIGHT;}

117

 ROS_INFO("State: WallFollow");
 ROS_INFO("--WALL--", wall);
 break;

 case 2: //case STATE_OPEN_FIELD
 ROS_INFO("State: OpenField");
 break;

 case 3: //case STATE_EXPLORE_OBJECT
 ROS_INFO("State: ExploreObject");
 break;

 case 4: //case STATE_FIND_HOME
 ROS_INFO("State: FindHome");
 break;

 case 5: //case STATE_AT_HOME
 ROS_INFO("State: AtHome");
 //dock_time = toc;
 dock_time = (ros::Time::now().toSec()) - tic;
 break;

 case 6: //case STATE_LEAVE_HOME
 ROS_INFO("State: LeaveHome");
 break;
 }

 behave_state = new_behave_state;
 }

 //handle states
 switch(behave_state){
 case 1: //case STATE_WALL_FOLLOW

 if (wall == 0){ //if wall hasn't been defined by previous
functions
 if (locate[2] < locate[1]){
 wall = WALL_LEFT;
 }
 else if (locate[1] < locate[2]){
 wall = WALL_RIGHT;
 }
 }

 //use the smallest ping sensor's value to the appropriate
wall for following
 if (wall == WALL_LEFT){
 //WallFollow (serRoombaport, event(e_bump), left);
 WallFollow (event[e_bump-1], locate[2]);}
 else{
 //WallFollow(serRoombaport, event(e_bump), right);

118

 WallFollow(event[e_bump-1], locate[1]);}

 break;

 case 2: //case STATE_OPEN_FIELD
 //OpenField (serRoombaport, event(e_bump), left, front,
right);
 OpenField(event[e_bump-1], locate[2], locate[4],
locate[1]);
 break;

 case 3: //case STATE_EXPLORE_OBJECT
 //ExploreObject (serRoombaport, event(e_bump), left, front,
right);
 ExploreObject(event[e_bump-1], locate[2], locate[4],
locate[1]);
 break;

 case 4: //case STATE_FIND_HOME
 //FindHome (serRoombaport);
 FindHome();
 break;

 case 5: //case STATE_AT_HOME
 //AtHome (serRoombaport);
 AtHome();
 break;

 case 6: //case STATE_LEAVE_HOME
 //LeaveHome (serRoombaport);
 LeaveHome();
 break;
 }

 //log state, event, and neural network information for post-
processing
 //loginx = loginx + 1;
 //log(loginx, 1) = current_time;
 logvec[0] = current_time;
 //log(loginx, 2) = behave_state;
 logvec[1] = behave_state;
 //log(loginx, 3:3+e-1) = event;
 logvec[2] = event[0];
 logvec[3] = event[1];
 logvec[4] = event[2];
 logvec[5] = event[3];
 //log(loginx, 3+e:3+e+N+NM+e-1) = [n nm achne];
 logvec[6] = n[0];
 logvec[7] = n[1];
 logvec[8] = n[2];
 logvec[9] = n[3];

119

 logvec[10] = nm[0];
 logvec[11] = nm[1];
 logvec[12] = achne[0];
 logvec[13] = achne[1];
 logvec[14] = achne[2];
 logvec[15] = achne[3];
 //log(loginx,17:20)= w_e_achne; % These weights are getting
updated
 logvec[16] = w_e_achne[0];
 logvec[17] = w_e_achne[1];
 logvec[18] = w_e_achne[2];
 logvec[19] = w_e_achne[3];
 //log(loginx,21:22) = w_e_nm(1,1:2); % These weights are getting
updated
 logvec[20] = w_e_nm[0][0];
 logvec[21] = w_e_nm[0][1];
 //log(loginx,23:24) = w_e_nm(2,1:2);% These weights are getting
updated
 logvec[22] = w_e_nm[1][0];
 logvec[23] = w_e_nm[1][1];
 //log(loginx,25:26) = w_e_nm(3,1:2);% These weights are getting
updated
 logvec[24] = w_e_nm[2][0];
 logvec[25] = w_e_nm[2][1];
 //log(loginx,27:28) = w_e_nm(4,1:2);% These weights are getting
updated
 logvec[26] = w_e_nm[3][0];
 logvec[27] = w_e_nm[3][1];

 loginx.push_back(logvec);
 //spinner.start();
 } //end of timing while loop

 spinner.stop();
 //writing of data to xls
 ofstream f("./src/complete_test/src/results.xls");
 //f << m << " " << n << "n";

 //Data Headers
 f<<"current_time";
 f<<" ";
 f<<"behave_state";
 f<<" ";
 f<<"event[0]-ping";
 f<<" ";
 f<<"event[1]-battery";
 f<<" ";
 f<<"event[2]-bump";
 f<<" ";
 f<<"event[3]-beam";
 f<<" ";
 f<<"n[0]-Wall_Follow";

120

 f<<" ";
 f<<"n[1]-Open_Field";
 f<<" ";
 f<<"n[2]-Explore_Object";
 f<<" ";
 f<<"n[3]-Find_Home";
 f<<" ";
 f<<"nm[0]-DA";
 f<<" ";
 f<<"nm[1]-5HT";
 f<<" ";
 f<<"achne[0]-ping";
 f<<" ";
 f<<"achne[1]-battery";
 f<<" ";
 f<<"achne[2]-bump";
 f<<" ";
 f<<"achne[3]-beam";
 f<<" ";
 f<<"w_e_achne[0]-ping_ach";
 f<<" ";
 f<<"w_e_achne[1]-bat_ach";
 f<<" ";
 f<<"w_e_achne[2]-bmp_ach";
 f<<" ";
 f<<"w_e_achne[3]-bea_ach";
 f<<" ";
 f<<"w_e_nm[0][0]-ping_DA";
 f<<" ";
 f<<"w_e_nm[0][1]-ping_5HT";
 f<<" ";
 f<<"w_e_nm[1][0]-bat_DA";
 f<<" ";
 f<<"w_e_nm[1][1]-bat_5HT";
 f<<" ";
 f<<"w_e_nm[2][0]-bmp_DA";
 f<<" ";
 f<<"w_e_nm[2][1]-bmp_5HT";
 f<<" ";
 f<<"w_e_nm[3][0]-bea_DA";
 f<<" ";
 f<<"w_e_nm[3][1]-bea_5HT";
 f<<"\n";

 //writes data
 for (int i = 0; i < loginx.size(); i++)
 {
 for (int j = 0; j < loginx[i].size(); j++)
 {
 f << loginx[i][j];
 f << " ";

121

 }
 f << "\n";
 }

}

int main(int argc, char **argv)
{

 // %Tag(INIT)%
 ros::init(argc, argv, "nuero");
 // %EndTag(INIT)%

 // %Tag(NODEHANDLE)%
 ros::NodeHandle node_handle;
 // %EndTag(NODEHANDLE)%

 //initialize neural network
 //roomba_net_init();

 ros::Duration(15).sleep();

 ros::Subscriber sub1 = node_handle.subscribe("/odom", 0,
OdomInfo2); //Internal Odometry sensors
 ros::Subscriber sub2 = node_handle.subscribe("/scan", 0,
LsrInfo); //Kinnect Camera
 ros::Subscriber sub3 =
node_handle.subscribe("/mobile_base/sensors/dock_ir", 0, IRInfo);
//kobuki IR sensors
 ros::Subscriber sub4 =
node_handle.subscribe("/mobile_base/sensors/core", 0, CoreInfo);
//kobuki core sensors
 chatter_pub =
node_handle.advertise<geometry_msgs::Twist>("/mobile_base/commands/vel
ocity", 1);
 chatter_pub2 =
node_handle.advertise<std_msgs::Empty>("/mobile_base/commands/reset_od
ometry", 1);
 main_neuromodulated_program_direct_sensor();
 //ros::spin();

 /*
 int chc;
 for (int i = 1;i <=10;i++)
 {

122

 ROS_INFO("---- LOOP NUMBER %i ----",i);
 roomba_net_cycle(event, chc, achne, n, nm);
 ROS_INFO("It worked.");
 ROS_INFO("Chc: %i",chc);
 }

 event[0] = 1;
 for (int j = 11;j <=20;j++)
 {
 ROS_INFO("---- LOOP NUMBER %i ----",j);
 roomba_net_cycle(event, chc, achne, n, nm);
 ROS_INFO("It worked.");
 ROS_INFO("Chc: %i",chc);
 }
 */
}

EXAMPLE OF SPIKING NEURAL NETWORK SIMULATION CODE IN C++

/*
 * Copyright (c) 2013 Regents of the University of California. All
rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above
copyright
 * notice, this list of conditions and the following disclaimer in
the
 * documentation and/or other materials provided with the
distribution.
 *
 * 3. The names of its contributors may not be used to endorse or
promote
 * products derived from this software without specific prior
written
 * permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR

123

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *
**
************************* *
 * CARLsim
 * created by: (MDR) Micah Richert, (JN) Jayram M. Nageswaran
 * maintained by: (MA) Mike Avery <averym@uci.edu>, (MB) Michael
Beyeler <mbeyeler@uci.edu>,
 * (KDC) Kristofor Carlson <kdcarlso@uci.edu>
 *
 * CARLsim available from
http://socsci.uci.edu/~jkrichma/CARL/CARLsim/
 * Ver 10/09/2013
 */

#include <snn.h>
#include <ROSevent.h>

//#include "../../../testbed/src/complete_test/src/vector_maker.cpp"

#define N 1000

#define action 70
#define actionin 1000

#define actionN N*0.1
#define eventN N*0.1

int main()
{
 // create a network
 CpuSNN s("global");

 int event_value = 2; // 0; // 0; // 0; // 0; // 6; // 6; // 6;
// 4; // 0; // 6; // 12; // 4; // 0;
 cout << "The value is: " << event_value;
 //std::cin.ignore().get();

 //ACh/NE group
 int ach=s.createGroup("ach", 4, EXCITATORY_NEURON);

124

 s.setNeuronParameters(ach, 0.02f, 0.2f, -65.0f, 8.0f);

 //dopamine group
 int dopa=s.createGroup("dopa", N, EXCITATORY_NEURON);
 s.setNeuronParameters(dopa, 0.02f, 0.2f, -65.0f, 8.0f);

 //serotonin group
 int sero=s.createGroup("sero", N, EXCITATORY_NEURON);
 s.setNeuronParameters(sero, 0.02f, 0.2f, -65.0f, 8.0f);

 //action neuron groups
 int openfield=s.createGroup("open_field",actionN,
EXCITATORY_NEURON);
 s.setNeuronParameters(openfield, 0.02f, 0.2f, -65.0f, 8.0f);

 int explore=s.createGroup("explore",actionN, EXCITATORY_NEURON);
 s.setNeuronParameters(explore, 0.02f, 0.2f, -65.0f, 8.0f);

 int wallfollow=s.createGroup("wall_follow",actionN,
EXCITATORY_NEURON);
 s.setNeuronParameters(wallfollow, 0.02f, 0.2f, -65.0f, 8.0f);

 int findhome=s.createGroup("find_home",actionN,
EXCITATORY_NEURON);
 s.setNeuronParameters(findhome, 0.02f, 0.2f, -65.0f, 8.0f);

 //event neuron input groups (battery, bump, home, object)
 int
ginbat=s.createSpikeGeneratorGroup("input_battery",eventN,EXCITATORY_N
EURON);
 int
ginbmp=s.createSpikeGeneratorGroup("input_bump",eventN,EXCITATORY_NEUR
ON);
 int
ginhome=s.createSpikeGeneratorGroup("input_home",eventN,EXCITATORY_NEU
RON);
 int
ginobj=s.createSpikeGeneratorGroup("input_object",eventN,EXCITATORY_NE
URON);

 //***CONNECTIONS***

 //serotonin --> dopamine, full connection
 s.connect(sero,dopa,"full", -1.0f, -1.0f, 1.0f, 1, 1, SYN_FIXED);

 //ACh/NE --> serotonin
 s.connect(ach,sero,"full", +1.0f, +1.0f, 1.0f, 1, 20,
SYN_PLASTIC);//non-distracted

 //ACh/NE --> dopamine

125

 s.connect(ach,dopa,"full", +1.0f, +1.0f, 1.0f, 1, 20,
SYN_PLASTIC);//non-distracted

 //openfield/explore -->dopamine
 s.connect(openfield,dopa,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(explore,dopa,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);

 //wallfollow/findhome --> serotonin
 s.connect(wallfollow,sero,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(findhome,sero,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);

 //dopamine --> openfield/explore
 s.connect(dopa,openfield,"full", +5.0f, +5.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(dopa,explore,"full", +5.0f, +5.0f, 1.0f, 1, 1,
SYN_FIXED);

 //serotonin --> wallfollow/findhome
 s.connect(sero,wallfollow,"full", +5.0f, +5.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(sero,findhome,"full", +5.0f, +5.0f, 1.0f, 1, 1,
SYN_FIXED);

 //OFC-PFC all-to-all
 //openfield everything
 s.connect(openfield,explore,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(openfield,wallfollow,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(openfield,findhome,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);

 s.connect(openfield,explore,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(openfield,wallfollow,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(openfield,findhome,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);

 //explore everything
 s.connect(explore,openfield,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(explore,wallfollow,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(explore,findhome,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);

126

 s.connect(explore,openfield,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(explore,wallfollow,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(explore,findhome,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);

 //wallfollow everything
 s.connect(wallfollow,openfield,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(wallfollow,explore,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(wallfollow,findhome,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);

 s.connect(wallfollow,openfield,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(wallfollow,explore,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(wallfollow,findhome,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);

 //findhome everything
 s.connect(findhome,openfield,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(findhome,explore,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(findhome,wallfollow,"full", -1.0f, -1.0f, 1.0f, 1, 1,
SYN_FIXED);

 s.connect(findhome,openfield,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(findhome,explore,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);
 s.connect(findhome,wallfollow,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);

 //bump
 //s.connect(ginbmp,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_PLASTIC); //non-distracted
 s.connect(ginbmp,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED); //distracted
 s.connect(ginbmp,dopa,"full", +0.5f, +0.5f, 1.0f, 1, 1,
SYN_FIXED); //risk taking
 //s.connect(ginbmp,sero,"full", +0.5f, +0.5f, 1.0f, 1, 1,
SYN_FIXED); //risk aversive
 //s.setSpikeRate(ginbmp,&in);

 //home
 //s.connect(ginhome,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_PLASTIC);//non-distracted

127

 s.connect(ginhome,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED); //distracted
 s.connect(ginhome,sero,"full", +0.5f, +0.5f, 1.0f, 1, 1,
SYN_FIXED);
 //s.setSpikeRate(ginlas,&in);

 //battery
 //s.connect(ginbat,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_PLASTIC);//non-distracted
 s.connect(ginbat,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);//distracted
 s.connect(ginbat,sero,"full", +0.5f, +0.5f, 1.0f, 1, 1,
SYN_FIXED);
 //s.setSpikeRate(ginbat,&in);

 //object
 //s.connect(ginobj,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_PLASTIC);//non-distracted
 s.connect(ginobj,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1,
SYN_FIXED);//distracted
 s.connect(ginobj,dopa,"full", +0.5f, +0.5f, 1.0f, 1, 1,
SYN_FIXED);
 //s.setSpikeRate(ginex,&in);

// // make random connections with 10% probability
// s.connect(g2,g1,"random", -1.0f/100, -1.0f/100, 0.1f, 1, 1,
SYN_FIXED);
// // make random connections with 10% probability, and random
delays between 1 and 20
// s.connect(g1,g2,"random", +0.25f/100, 0.5f/100, 0.1f, 1, 20,
SYN_PLASTIC);
// s.connect(g1,g1,"random", +6.0f/100, 10.0f/100, 0.1f, 1, 20,
SYN_PLASTIC);

// // 5% probability of connection
// s.connect(gin,g1,"random", +100.0f/100, 100.0f/100, 0.05f, 1,
20, SYN_FIXED);

// float COND_tAMPA=5.0, COND_tNMDA=150.0, COND_tGABAa=6.0,
COND_tGABAb=150.0;
//
 s.setConductances(ALL,true,COND_tAMPA,COND_tNMDA,COND_tGABAa,COND
_tGABAb);

// // here we define and set the properties of the STDP.
// float ALPHA_LTP = 0.10f/100, TAU_LTP = 20.0f, ALPHA_LTD =
0.12f/100, TAU_LTD = 20.0f;
// s.setSTDP(g1, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD);

// // show logout every 10 secs, enabled with level 1 and output to
stdout.
// s.setLogCycle(10, 1, stdout);

128

// // put spike times into spikes.dat
// s.setSpikeMonitor(g1,"results/ROSSNN/spikes.dat");

// // Show basic statistics about g2
// s.setSpikeMonitor(g2);

// s.setSpikeMonitor(gin);

 float COND_tAMPA=5.0, COND_tNMDA=150.0, COND_tGABAa=6.0,
COND_tGABAb=150.0;
 s.setConductances(ALL,true,COND_tAMPA,COND_tNMDA,COND_tGABAa,COND
_tGABAb);

 // here we define and set the properties of the STDP.
 float ALPHA_LTP = 0.10f/100, TAU_LTP = 20.0f, ALPHA_LTD =
0.12f/100, TAU_LTD = 20.0f;
 s.setSTDP(dopa, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD);
 s.setSTDP(sero, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD);
 s.setSTDP(ach, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD);

 // put spike times into spikes.dat
 s.setSpikeMonitor(ach,"results/ROSSNN/ach_spikes.dat");
 s.setSpikeMonitor(sero,"results/ROSSNN/sero_spikes.dat");
 s.setSpikeMonitor(dopa,"results/ROSSNN/dopa_spikes.dat");

 s.setSpikeMonitor(openfield,"results/ROSSNN/openfield_spikes.dat"
);
 s.setSpikeMonitor(explore,"results/ROSSNN/explore_spikes.dat");
 s.setSpikeMonitor(wallfollow,"results/ROSSNN/wallfollow_spikes.da
t");
 s.setSpikeMonitor(findhome,"results/ROSSNN/findhome_spikes.dat");

 //setup some baseline input
 PoissonRate in(eventN);
 for (int i=0;i<eventN;i++) in.rates[i] = 1;

 PoissonRate nin(eventN);
 for (int i=0;i<(eventN);i++) in.rates[i] = 5;

 switch(event_value){

 case 0: //no inputs
 s.setSpikeRate(ginbat,&nin); //battery - 0
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&nin); //bump - 0
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;

 case 1: //battery

129

 s.setSpikeRate(ginbat,&in); //battery - 1
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&nin); //bump - 0
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;

 case 2: //beam
 s.setSpikeRate(ginbat,&nin); //battery - 0
 s.setSpikeRate(ginhome,&in); //home - 1
 s.setSpikeRate(ginbmp,&nin); //bump - 0
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;

 case 3: //beam+battery
 s.setSpikeRate(ginbat,&in); //battery - 1
 s.setSpikeRate(ginhome,&in); //home - 1
 s.setSpikeRate(ginbmp,&nin); //bump - 0
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;

 case 4: //bump
 s.setSpikeRate(ginbat,&nin); //battery - 0
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&in); //bump - 1
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;

 case 5: //bump+ battery
 s.setSpikeRate(ginbat,&in); //battery - 1
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&in); //bump - 1
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;

 case 6: //bump+beam
 s.setSpikeRate(ginbat,&nin); //battery - 0
 s.setSpikeRate(ginhome,&in); //home - 1
 s.setSpikeRate(ginbmp,&in); //bump - 1
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;

 case 7: //bump+beam+battery
 s.setSpikeRate(ginbat,&in); //battery -1
 s.setSpikeRate(ginhome,&in); //home - 1
 s.setSpikeRate(ginbmp,&in); //bump - 1
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;

 case 8: //object
 s.setSpikeRate(ginbat,&nin); //battery - 0
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&nin); //bump - 0

130

 s.setSpikeRate(ginobj,&in); //object - 1
 break;

 case 9: //object+battery
 s.setSpikeRate(ginbat,&in); //battery - 1
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&nin); //bump - 0
 s.setSpikeRate(ginobj,&in); //object - 1
 break;

 case 10: //object + beam
 s.setSpikeRate(ginbat,&nin); //battery - 0
 s.setSpikeRate(ginhome,&in);//home - 1
 s.setSpikeRate(ginbmp,&nin); //bump - 0
 s.setSpikeRate(ginobj,&in); //object - 1
 break;

 case 11: //object+beam+battery
 s.setSpikeRate(ginbat,&in); //battery -1
 s.setSpikeRate(ginhome,&in); //home - 1
 s.setSpikeRate(ginbmp,&nin); //bump - 0
 s.setSpikeRate(ginobj,&in); //object - 1
 break;

 case 12: //object+bump
 s.setSpikeRate(ginbat,&nin); //battery - 0
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&in); //bump - 1
 s.setSpikeRate(ginobj,&in); //object - 1
 break;

 case 13: //object+bump+battery
 s.setSpikeRate(ginbat,&in); //battery -1
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&in); //bump - 1
 s.setSpikeRate(ginobj,&in); //object - 1
 break;

 case 14: //object+bump+beam
 s.setSpikeRate(ginbat,&nin); //battery -0
 s.setSpikeRate(ginhome,&in); //home - 1
 s.setSpikeRate(ginbmp,&in); //bump - 1
 s.setSpikeRate(ginobj,&in); //object - 1
 break;

 case 15: //all inputs
 s.setSpikeRate(ginbat,&in); //battery -1
 s.setSpikeRate(ginhome,&in); //home - 1
 s.setSpikeRate(ginbmp,&in); //bump - 1
 s.setSpikeRate(ginobj,&in); //object - 1
 break;

131

 default:
 s.setSpikeRate(ginbat,&nin); //battery - 0
 s.setSpikeRate(ginhome,&nin); //home - 0
 s.setSpikeRate(ginbmp,&nin); //bump - 0
 s.setSpikeRate(ginobj,&nin); //object - 0
 break;
 }

// s.setSpikeRate(ginbat,&nin); //battery
// s.setSpikeRate(ginhome,&nin); //home
// s.setSpikeRate(ginbmp,&nin); //bump
// s.setSpikeRate(ginobj,&nin); //object

 //run for 10 seconds
 for(int i=0; i < 1; i++) {
 // run the established network for a duration of 1 (sec)
and 0 (millisecond), in CPU_MODE
 s.runNetwork(1, 0, GPU_MODE);
 }

 FILE* nid = fopen("results/ROSSNN/network.dat","wb");
 s.writeNetwork(nid);
 fclose(nid);

 return 0;
}

//FreeSpace

132

MATLAB CODE TO RUN AN IZHIKEVICH PULSE TRAIN

n = 1000;

t = 1:1:n;

v = ones(1,n);
u = ones(1,n);
I = [zeros(1,100),10*ones(1,900)];

a = 0.02*ones(1,n);
b = 0.2*ones(1,n);
c = -65*ones(1,n);
d = 8*ones(1,n);
%dv = [];
%du = [];
vma = [];
uma = [];

for e = 1:n

 if v(e) >= 30
 v(e) = 30;
 v(e+1) = c(e);
 u(e+1) = u(e) + d(e);
 vma = [vma v(e)];
 uma = [uma u(e)];
 else
 vma = [vma v(e)];
 uma = [uma u(e)];
 dv = (0.04*v(e)^2) + (5*v(e)) + 140 - u(e) + I(e);
 du = a(e)*(b(e)*v(e) - u(e));
 v(e+1) = v(e) + dv;
 u(e+1) = u(e) + du;
 end

end

subplot(2,1,1)
plot(t,vma)

subplot(2,1,2)
plot(t,uma)

133

Figure A1. Top graph - action potentials, Bottom graph – recovery variable

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50

0 100 200 300 400 500 600 700 800 900 1000
-15

-10

-5

0

5

10

134

Appendix B

PICTURES OF ROBOT MOTION
B.1: Sequence of robot motion in risk aversive mode:

B.2: Sequence of robot motion in risk taking mode:

B.3: Sequence of robot motion in distracted mode:

135

Appendix C

LIST OF PUBLICATIONS

Muhammad, Cameron and Biswanath Samanta. “Neuromodulation Based Control of an
Autonomous Robot in a Safe Cloud Environment” AUVSI (Association for Unmanned
Vehicle Systems International) Unmanned Systems 2014.

Muhammad, Cameron and Biswanath Samanta. “Control of Autonomous Robots using
principles of Neuromodulation in ROS Environment” ASME 2014 International
Mechanical Engineering Congress & Exposition. 2014.

Muhammad, Cameron and Biswanath Samanta. “Neuromodulation Based Control of
Autonomous Robots in ROS Environment” IEEE Symposium Series on Computational
Intelligence (IEEE SSCI)-Cognitive Algorithms, Mind, and Brain (CCMB) 2014.

	Neuromodulation Based Control of Autonomous Robots on a Cloud Computing Platform
	Recommended Citation

	Microsoft Word - Cameron -Thesis-Final-07-24

