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NEUROMODULATION BASED CONTROL OF AUTONOMOUS ROBOTS ON A CLOUD 
COMPUTING PLATFORM 

By  

CAMERON MUHAMMAD 

 (Under the Direction of Biswanath Samanta) 

ABSTRACT 

In recent years, the advancement of neurobiologically plausible models and computer 

networking has resulted in new ways of implementing control systems on robotic platforms.  The 

work presents a control approach based on vertebrate neuromodulation and its implementation 

on autonomous robots in the open-source, open-access environment of robot operating system 

(ROS). A spiking neural network (SNN) is used to model the neuromodulatory function for 

generating context based behavioral responses of the robots to sensory input signals. The neural 

network incorporates three types of neurons- cholinergic and noradrenergic (ACh/NE) neurons 

for attention focusing and action selection, dopaminergic (DA) neurons for rewards- and 

curiosity-seeking, and serotonergic (5-HT) neurons for risk aversion behaviors. This model 

depicts neuron activity that is biologically realistic but computationally efficient to allow for 

large-scale simulation of thousands of neurons. The model is implemented using graphics 

processing units (GPUs) for parallel computing in real-time using the ROS environment. The 

model is implemented to study the risk-taking, risk-aversive, and distracted behaviors of the 

neuromodulated robots in single- and multi-robot configurations. The entire process is 

implemented in a cloud computing environment using ROS where the robots communicate 

wirelessly with the computing nodes through the on-board laptops.  However, unlike the 

traditional neural networks, the neuromodulatory models do not need any pre-training. Instead, 

the robots learn from the sensory inputs and follow the behavioral facets of living organisms. 

The details of algorithm development, the experimental setup and implementation results under 

different conditions, in both single- and multi-robot configurations, are presented along with a 

discussion on the scope of further work.  

INDEX WORDS: Artificial neural networks, Cloud computing, Cloud Robotics, CUDA, GPU, 
Izhikevich Spiking Neuron, Neuromodulation, Neurorobotics, Parallel computing, Robot 
Operating System, ROS,  Parallel processing, Spiking neural networks.   
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CHAPTER 1 . INTRODUCTION 
 

1.1 Effects of Neuromodulation 

 

As any type of organism moves through its surrounding environment, it is constantly taking in 

and evaluating external stimuli. Based on the present condition of the organism, its knowledge of 

the environment, and the type of stimuli encountered, an actual physical action may need to take 

place. A key part of this reaction is the transmission of electrical signals and chemicals across 

various neuronal systems. The existence of neurotransmitters allows for the focusing, filtering, 

and assessment of an organism’s current situation and decision-making for action selection.  

Within the cerebral cortex, acetylcholine (ACh) is used to increase focus and responsiveness to 

certain stimuli, almost like a form of tunnel vision. Without this neurotransmitter, the organism 

loses the ability to parse through and prioritize multiple incoming stimuli. When multiple 

iterations of the same stimuli occur over a short period of time, the neurotransmitter 

norepinephrine (NE) can suppress the effect of the stimuli in order to prioritize new and novel 

events happening within the organism’s environment (J. L. Krichmar 2008). Serotonin (5-HT) 

based systems modulate how much risk-aversive actions are taken by the organism (Cox and 

Krichmar 2009). Dopamine (DA) based systems are the opposite and tend toward reward-

seeking actions which lead to risk-taking behavior by the organism (J. L. Krichmar 2012). 

 

1.2  Scope of Present Work 

 

While previous work has mainly focused simulating the effects of vertebrate neuromodulation on 

robotic platforms using simple artificial neurons (Prince 2013; Prince and Samanta 2013; J. L. 

Krichmar 2012) there has not been any in-depth research on the effects of using modern 

biologically realistic neural networks based on spiking neural network (SNN) for autonomous 

control of multiple robots in a cloud computing environment. Actual vertebrate brains consist of 

millions of neurons working in tandem (Kistler and Gerstner 2002) to create a responsive 
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network. The main hypothesis of this research is whether a modern spiking neural network-cloud 

computing model is an effective control system based on vertebrate neuromodulation compared 

to a simple artificial neural network for an autonomous robot. The implementation of the SNN 

model can be facilitated with the current trend of parallel computing algorithms based on 

graphics processing units (GPU). In both cases, the networks in question would show action 

selection mechanisms for the robots in association with the activity levels of the 

neuromodulatory systems that would be influenced by the sensory inputs from the environment. 

To test the hypothesis, the overall goal of this work was to model a behavioral control system 

based on the principles of vertebrate neuromodulation using SNN and implement it on 

autonomous mobile robotic platforms in a cloud computing environment making use of open-

source, open-access software platform of robot operating system (ROS).  The distinct objectives 

of this work were:  

 To develop SNN model suitable for  GPU based implementation, 

 To implement the SNN model in a ROS-cloud computing environment on 

autonomous robotic platforms,  

 To study the behaviors of the neuromodulated robots in single- and multi-robot 

configurations under different modes, 

 To compare the results of neuromodulation models based on the simple neuron model 

and the  SNN. 

In this study, the performance of a simple untrained neural network model implemented on a 

robotic platform was compared to the performance of a spiking neural network (SNN) model 

implemented on the same robotic platform. First the simple neuron model was created using 

Robot Operating System (ROS)-compatible C++ code. The simple neuron model consisted of an 

input layer of “event” neurons, a second  layer of neurotransmitters, and an output layer of 

“states”.   Next the code was run on a Turtlebot robotic base. Turtlebot is an open-source robotic 

platform consisting of an iClebo Kobuki base, a Microsoft Kinect sensor, mounting plates, and 

an on-board laptop running the Ubuntu distribution of Linux with the ROS platform already 

installed. In  ROS environment, it was possible to reuse multiple open-source libraries of codes 

developed for general purpose robotics on the Turtlebot platform. 
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After running several simulations with the simple neural network in multi-robot environments, 

the spiking neural network (SNN) model implemented on a GPU became the focal point of the 

study. The open-access SNN simulator developed for off-the-shelf hardware was applied to two 

PCs using NVIDIA GPUs for the parallel processing of computational neuron models. The SNN 

simulator used neuron models based off the Izhikevich neurons, it was meant to be biologically 

realistic (four different parameters were used to define the spiking patterns of the neuron) yet 

relatively easy to compute for large number of neurons (Izikevich 2003).  

Using this SNN simulator integrated with the ROS structure used before, the behavior of the 

robotic bases used in this study were evaluated in single-robot and multi-robot environments. 

From there, the amount of spiking in each group of neurons (ranging anywhere from 100 to 

1,000 neurons in one group) was recorded and used for autonomous action selection as the robots 

moved around the environment. 

 

1.3 Organization of Thesis 
 

The rest of the thesis is organized in the following order: 

Chapter 2 is the literature review covering three different areas. First the background of many 

different artificial neural network types is explained to track the progression of ANNs from their 

beginnings to the current neuron models. Then the individual components of the spiking neural 

network simulation are explained from biologically realistic nature of the neuron models to their  

implementation on parallel computing platforms. Finally the systems that handle the integration 

of the neural network models onto a cloud computing platform are analyzed and explained in full 

detail. 

Chapter 3 covers the research methodologies used in this study. The discussion of research 

methodology was divided into several sections. The first section deals with the functional 

description of the robotic platform used to implement the neural control schemes of this study.  

The second section lays out the actual code configuration of the ROS networking platform. The 

third section presents the simple neural network model of the neuromodulation based control 



4 

 

algorithm used in this study. The fourth section presents the evolution of the neural network 

model into something more biologically realistic leading to the SNN based model. The final 

section gives the technical details of the cloud computing configuration used in this study.  

Chapter 4 presents the details of the implementation results along with discussions of results. For 

the first set of results the simple neural network was implemented to obtain experimental results 

that demonstrated the neuronal responses and the behavioral states of the robot for three modes, 

namely, (i) risk aversive, (ii) risk taking, and (iii) distracted modes. Results were recorded for 

both single- and multi-robot configurations. For the next set of results, the same steps as the first 

were applied again but with a spiking neural network (SNN) model.  Results detailing the action 

selection and decision making of the single- and multi-robot configurations, under different 

modes are presented. Results of comparisons between the simple neuron model and the SNN 

model are discussed as well. 

The final chapter provides a summary of the present work and the scope of future work. Each of 

the objectives of the work is addressed. The results are summarized to show that each of the 

objectives was met. Finally, ideas for possible future work are discussed. 

Appendices A through C provide additional information related to the work. Appendix A 

presents the software implementation of the neuromodulation based neural network. Appendix B 

shows the snapshots of robot motion in three different modes. Publications resulting from the 

present work are listed in Appendix C. 
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CHAPTER 2 . LITERATURE REVIEW 
 

2.1. Artificial Neural Networks 
 

Before one delves into the field of spiking neural networks, there needs to be an introduction to 

artificial neural networks (ANN) in general. The field of artificial neural network is one that 

consists of vast and numerous types and applications that can be confusing to a newcomer from a 

primarily engineering background. Using a biological model based on the layout of actual 

neurons, it is possible to create entire networks that allow control over a certain function or 

object, adapting to a specific situation.  

The typical basic neuron is made up of three key components: the soma, axon, and dendrites. 

The input of the neuron begins with the dendrites receiving electronic pulses from the outputs of 

different neurons. These pulses are sent from the dendrites to the soma, which collects all of 

these pulses. Once the total number sum of all the inputs sent to the soma reach above a certain 

threshold, the neuron sends a pulse through its output, called the axon. A typical neuron has one 

axon but multiple dendrites. These pulses (usually of about 100 mV and 1-2 milliseconds in 

duration) are usually called spikes. There is no physical connection between the dendrites and 

the axons of different neurons. Instead there is a small gap called the synaptic cleft where 

chemical reactions activated by the axons allow ions from the surrounding fluid to pass through 

to the dendrites. These chemicals are called neurotransmitters. On the axonal side of the synapse 

(pre-synaptic connection), the neurotransmitter molecules go across the cleft to fit into receptors 

on the dendrites (post-synaptic connection). This acts as a system to permit the ion flow to 

happen. Post-synaptic signals can be positive or negative in value. They are commonly referred 

to an excitatory post-synaptic potentials (EPSP) or inhibitory post-synaptic potentials (IPSP).   

Figure 2.1 on the next page shows a typical neuron. Figure 2.2 on the next page shows the 

location of a synapse (the synapse is the name of the actual location of the axon/dendrite 

chemical connection; the cleft is the actual gap). Figure 2.3 shows a typical form of an EPSP and 

IPSP. 
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Figure 2.1. A typical neuron. Sources: (Ramòn y Cajal 1909) and (Kistler and Gerstner 2002, 3) 

 

 

Figure 2.2. A typical synaptic connection. Sources: (Ramòn y Cajal 1909) and (Kistler and 

Gerstner 2002, 3) 
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Figure 2.3. A typical form of an EPSP and IPSP. Sources: (Gerstner 1999) 

 

2.2 The First Artificial Neural Network 
 

ANNs are based upon this layout which was first popularized by Walter Pitts and Warren 

McCulloch in 1943. Called the Threshold Logic Unit (TLU) (McCulloch and Pitts 1943), 

weighed inputs are connected to a soma-like summation function. The output of the summation 

function is then sent to a threshold function. When the value sent to the threshold is above a 

certain pre-set value, the threshold function outputs a logical 1 or true signal. When the value is 

below the pre-set threshold the value sent by the threshold function is a logical 0 or false signal. 

Figure 2.4 on the next page shows a block diagram representation of the TLU.  
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Figure 2.4. A block diagram representation of the TLU. Source: (Turner 2012, 10) 

 

In Figure 2.4, the x are the inputs, and the variables w and b are the weights and biases applied to 

the inputs. There is no theoretical limit to the amount of inputs a single TLU can have. The 

values sent to the summation function are weighed and have applied biases to replicate how 

certain values are more meaningful than others in different applications.  

For example, a neuron can be set up to replicate the thought processes of a child wanting to play 

with a small red toy.  The inputs to a TLU are logical values (true or false) describing certain 

objects such as roundness, the color red, and lightness in weight. The weights and biases are set 

higher on input values signifying roundness and the color red. A heavy black book would have 

no chance of inducing a true value for the artificial neuron. A heavy purple rubber square toy 

would have a better chance than the book but the neuron still would not have a true output in this 

case. A lightweight, rubber square toy with a red color would have a higher chance than the 

heavier purple toy due to having the desired input color but would still be filtered out by the 

neuron due to the emphasis also placed on desired output roundness. A small red ball would 

reach all three requirements of the child’s desires and would result in the neuron outputting a true 

value. 
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2.3 Second Generation Artificial Neural Networks 
 

This landmark research by McCulloch and Pitts is credited for beginning the entire field of 

artificial neural networks. As the ANN field grew, there was concern that the McCulloch/Pitts 

model was too simple a model to follow. Thus began the second generation of neural network 

innovation, with changes made to the activation functions of neural networks. With traditional 

threshold functions, it was impossible to use them with analog signals. However, with 

continuous threshold functions this was an option. Following the trend of complexity replacing 

simplicity, this new generation of neural networks was able to perform digital computations with 

a smaller amount of neurons than the first generation along with their analog signal handling 

capabilities (Vreeken 2003). 

2.3.1 The Perceptron 
Further revisions were made to the TLU design by Frank Rosenblatt at the Cornell Aeronautical 

Laboratory in 1957. In his published research Rosenblatt presented the perceptron (Rosenblatt 

1958), a TLU with a learning algorithm. According to the perceptron learning algorithm, the 

basic artificial neuron would be fed “training” data with the desired outputs for that data. 

Through multiple iterations of calculations, the weights for each input were adjusted until they 

converged on one set of weights to give the desired output for each input. The perceptron 

“learned” how to adapt to the given data and came up with a relationship that would always lead 

to the desired output.  

To go back to the previous example with the child and the toys, a perceptron would constantly be 

fed the inputs and desired outputs of the different objects (small red ball – true, heavy black 

book, purple ball, red square – false). The learning algorithm would constantly increase or 

decrease the weight put on each input until the weights could no longer change. The state 

reached here would be the final value for a specific given “learning rate”. Not only could the 

perceptron self-learn but also the speed at which it did could be adjustable. Also, similar to TLU, 

the number of possible inputs to the perceptron was theoretically infinite. 

With this innovation, it was thought possible to invent self-taught logical gates but it was quickly 

discovered that there were patterns that the perceptron could not be trained to recognize. In 

particular, it was found impossible to create the equivalent of an XOR logical gate using a 
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perceptron. This revelation led to a massive amount of disinterest in ANN research that lasted 

until the 1980s. 

2.3.2 The Multilayer Perceptron 
In the 1980s, interest rose in the field again after it was discovered that grouping interconnected 

networks of perceptrons could overcome the logical limitations of only one perceptron. This 

configuration was also a closer representation of how the actual biological neuron was used in 

the brain. By adding layers of neurons (groups of neurons that are all interconnected with one 

another) to the input and the introduction of a new weight changing method called 

backpropagation (using differential equations to find the change in weights instead of the simple 

adding and subtracting seen in the single perceptron model) it was possible to create networks 

that could be trained to find relationships for more sophisticated applications. These are 

commonly called multilayer perceptron (MLP) artificial neural networks. Figure 2.5 below 

shows a simplified model of an MLP ANN. 

 

Figure 2.5. A model of an MLP ANN.  Source: (Turner 2012, 13) 

 

With new sparked interest in the ANN field, new artificial neuron models appeared to take 

advantage of not only the new methods but the increasingly available processing and computing 

power found in new technology that was growing more powerful and complex as the years went 

on.  
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2.4 Realism and the Newest Generation of ANN 
 

The third generation of ANNs seeks to replicate the biological functions of neurons even further 

by analyzing the timing of the signals sent out by the artificial neurons. In previous generations 

of ANNs, it was discovered that a higher input in a network resulted in a faster frequency of 

pulses sent out. The average frequency of these pulses could be calculated and associated with a 

specific input value. This method of encoding value is called rate coding. In spiking neural 

networking (SNN) the focus is spent on when these pulses are sent instead of how many. This is 

called spike coding. The unique nature of the spiking neural network means that multiple forms 

of information can be sent in one pulse train. For instance, a sequence of pulses could contain 

information describing a signal such as amplitude and frequency. Having multiple data streams 

in one message mirrors how the brain works in real-life. When looking around in the world 

multiple signals such as light, color, and sound come to all of us at the same time. We are able to 

process these mixed signals naturally without being confused about which signal our brain is 

sending us. 

When a neuron fires an output, a negative potential follows the quick positive rise that has 

previously been discussed. It is from this negative after-pulse that the neuron begins to slowly 

return to normal. The duration of this negative after-pulse is called the refractory period. During 

this time, the neuron cannot fire another output spike. This is seen below in Figure 2.6. 
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Figure 2.6. Spike after-potential. Source: (Turner 2012, 13) 

 

The time taken in this refractory period can be modeled mathematically in order to create an 

equation to model the current state of a neuron. This can be seen in equation 2.1 below. 

∑
∈

 (2.1) 

 

In this equation ui(t) is the current membrane potential of a neuron i, h(t) is whatever external 

influence that may affect the membrane (number of ion channels activated by neurotransmitters 

for example), ni is the scaling factor of the membrane potential and t(f) represents all of times that 

neuron i fired. The unique nature of the spiking neural network requires that values fed into one 

must be in the form of spikes or an external influence must be placed upon the membrane 

potential. Equation 2.1 shows the latter. 
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2.5 The Izhikevich Model 

 

Two spiking neural network models commonly used are the integrate-and-fire model and the 

Hodgkin-Huxley model. In the integrate-and-fire model, the neuron is the equivalent to a 

capacitor in parallel with a resistor. An impulse is sent through a low pass filter and the output is 

compared to a threshold. If the output value is at or above the threshold the circuit outputs a 

pulse. This is seen in Figure 2.7. 

 

Figure 2.7. Integrate-and-fire model. Source: (Kistler and Gerstner 2002, 94) 

 

In the Hodgkin-Huxley model, which was first studied on the vastly larger neurons of squids, the 

cell membrane is seen as a capacitor and the sodium and potassium ion channels present in the 

surrounding liquid are seen as resistors. When a current is injected into the cell membrane 

current could either charge the capacitor or go through the different ion channels. This can be 

seen in Figure 2.8 below. From this model, mathematical models are created with several 

parameters that can accurately describe the nature of a spiking neuron.  However, solving for all 

these parameters can be mathematically intensive.  
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Figure 2.8. Hodgkin-Huxley model. Source: (Kistler and Gerstner 2002, 34) 

 

For the purposes of this study, the model used for simulating a large number of spiking neural 

networks (SNN) is the Izhikevich model (Izhikevich 2003). This model is seen as a compromise 

between the computational simplicity of the integrate-and-fire neurons and the biological 

accuracy of the Hodgkin-Huxley neuron. In the Izhikevich model, the neuron is represented by 

the following equations. 

0.04 5 140  (2.2) 

   (2.3) 

	 	 30	 , 		
	 ←

	 ←  

In these equations, v is the memory potential of the neuron and u is the membrane recovery 

variable. The parameter a is the time scale of the recovery variable. The parameter b is the 

sensitivity of the recovery variable to the fluctuations of the membrane potential. The parameter 

c is the after-spike reset value of the membrane potential. The parameter d is the after-spike reset 

value of the recovery variable and I is the thalamic current input. Changing the values of I, a, b, 

c, and d changes the dynamics of the spiking neuron being simulated.  

 

 

 



15 

 

2.6 Parallel Programming and GPU based Computing 

 

To simulate SNN models, a new method of mass computation and simulation was developed on 

a previously unused hardware. In the PC gaming industry, expensive graphics cards have been 

used to give gamers virtual worlds with life-like graphics and effects for years. These powerful 

number-crunching processors have to constantly calculate and update graphics, lighting, 

modeling, and player input data for the latest games. In recent years, movements to harness the 

computing power of graphics cards to power neural network simulations (Nageswaran , Dutt, et 

al., Efficient simulation of large-scale spiking neural networks using CUDA graphics processors 

2009) have caught steam. This technique also matches how the thought processes in the brain 

work since both graphics cards and the brain process in parallel. In the brain, this allows animals 

to process more than one sense at a time and to multitask between actions. In computers, this 

allows the graphics cards to off-load math-intensive processes from the CPU and run multiple 

iterations of a single simulation at once. For instance, in a simulation that tracks the number of 

spikes in a SNN simulation, the CPU most go through multiple iterations one-by-one while 

storing and writing the processes that happen. In a properly setup GPU (graphics processing unit) 

simulation, a single “thread” could handle one iteration of the program, while another thread 

would compute the next iteration at the same time, while the next thread would handle the next 

computation, etc. This leads to a highly efficient way of simulating a large number of spiking 

neurons. 

2.7 Robot Operating System (ROS) 

 

The Robot Operating System (ROS) is an open-source software framework designed for the 

development of customized robotic applications (ROS.org | Powering the world's robots 2013). 

Aimed at both robotic hobbyists and researchers, many codes for hardware platforms are 

managed in “packages” which are uploaded online for anyone to use on ROS-compatible 

systems.  This also allows the constant reuse of flexible codes. ROS uses data communication in 

the form of “topics” and “messages” among program nodes. Messages have a simple data 

structure, comprising typed fields and supporting standard primitive types (integer, floating 

point, Boolean, etc.). Topics are named buses over which nodes exchange messages. Hardware 
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adapted to an ROS system can tap several data streams (topics) at one time. By subscribing to the 

ROS nodes that are publishing the necessary data (messages), the robot sensor data can be used 

as necessary. For instance, a topic named “color” could carry a hexadecimal message describing 

a certain shade of blue between a camera and a laptop node. All node connections are peer-to-

peer connections governed by one central node (the “roscore”) that makes sure data handshakes 

and data types throughout the network are all valid. Figure 2.9 and figure 2.10 show the layouts 

of ROS nodes and master nodes.  

 

Figure 2.9 ROS node layout 

 

Figure 2.10 ROS master node layout 

 

2.8 Cloud Computing 

 

Cloud computing is simply the method of running an application or some other program on a 

server instead of a local machine. The spiking neural networks (SNN) involved in this study 

require large volumes of computation due to (1) a more biologically realistic neural model of the 

Izhikevich neuron and (2) the large number of neurons involved in the simulation. Therefore the 

laptops involved in the on-board processing of the robots only transmit sensory data to a cloud 

computing solution where the neuromodulatory code and GPU parallel processors are located. 
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To facilitate this, the on-board laptops and cloud servers are connected by Wi-Fi using a 

commercial off-the-shelf Linksys E2500 router. Figure 2.11 shows a schematic of a cloud 

computing network with robots, the configuration is, in general, termed cloud robotics. 

 

 

Figure 2.11 The layout of a Cloud Computing network involving robots 
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CHAPTER 3 . RESEARCH METHODOLOGY 

3.1 Robotic Platform 

 

Turtlebots (TurtleBot 2013) were used as the mobile robotic platforms in the present study (Fig. 

1). Each Turtlebot  (Figure 3.1) comes with the following components to create an integrated 

package for robot development: (i) an iClebo Kobuki robotic base containing infrared sensors, an 

internal gyroscope, and other actuators for moving the Turtlebot through its environment; (ii) a 

Microsoft Kinect for motion sensing and object recognition to parse visual inputs for the neural 

network, and (iii) an Asus X201E laptop with an Intel Celeron 847 CPU running the 64-bit 

Ubuntu distribution of the Linux operating system. All of these components are connected to one 

another through USB. ROS uses the concepts of “nodes” and “topics” to allow for the selection 

of data streams (such as depth image data, positional point-clouds, movement speed, etc.) to be 

read and have commands written to over a Wi-Fi network.  While the Turtlebot moved around its 

environment, several onboard sensors were used as inputs to on-board ROS-compatible C++ 

code that was stored on the Asus laptop. The purpose of the laptop and code was to pass on these 

sensory data to the cloud network through the ROS framework and to receive neural information 

from the cloud network. A front “bump” sensor recorded whether or not the front of the robot hit 

an object. The internal battery was constantly monitored for voltage levels and if dropped to a 

critical level activated a simulated red flag within the network. The Microsoft Kinect was used as 

a rangefinder through the use of depth images sent to the laptop at a rate of 30Hz that were used 

to generate a 2-D laser scan of the environment in front of it. This allowed the Kinect to have an 

effective range of 10 meters to 0.45 meters in front of the camera. There is a docking station used 

for not only charging the robotic base but also influencing the robot to “go home” and search for 

the base, by interacting with three IR sensors on the Turtlebot’s base. 
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Figure 3.1 The Turtlebot with Kinect and Laptop 

 

3.2 ROS Code Platform 

 

The Robot Operating System (ROS) code structure in this study was done in C++ and made the 

Turtlebot’s on-board laptop, Microsoft Kinect sensor, and Kobuki base as the key nodes within 

the different network configurations (with the on-board simple neural network or the off-board 

GPU based SNN). The main program flow in ROS (Figure 3.2) followed that the Microsoft 

Kinect node sent sensory data and the Kobuki node sent important diagnostic data to the on-

board laptop to be used as inputs for the neural network. If the neural network used was within 

the on-board laptop, the on-board calculations were made and movement data containing the 

appropriate action was sent to the Kobuki base. If the neural network used was on the cloud 

server, the sensory data received from the Kinect was sent to the cloud network through the 

laptop and the robot waited for a response back from the cloud node. Once the cloud node 

returned with the correct response, this was sent to the Kobuki base through the on-board laptop 

which sent the appropriate action commands to the mobile robotic base. 
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Figure 3.2 ROS code structure layout 

 

3.3 Simple Neuromodulation Model and States 

 

The 3-layer neural network structure of Figure 3.3 was used to study how efficiently it would 

perform to control an autonomous robot’s behavior, similar to (Prince and Samanta 2013). 

Previous work with this model has been reported by (J. L. Krichmar 2012) in the field of 

autonomous robotics. The model consisted of three groups of neurons - event neurons from 

sensory signals, neuromodulatory neurons and behavior state neurons. The first layer of neurons 

indicated the incidents happening in the real world environment for the robot. The entire 

experiment was run to test how the robot would respond if any of events on the first layer took 

place. This network structure was designed in such a way that it would be capable of 

accommodating several events taking place simultaneously in the real world environment. 

Microsoft 
Kinnect 
Node 

Laptop 
Node 

Kobuki 
Base 
Node 

Object 

Cloud 
Node 

Wireless
Router 

  

Turblebot 

Base 

Diagnostic



21 

 

For this work, four events neurons were used. These event neurons wee simple activated 

meaning if there was an event, it would be set as 1, and reset to 0 otherwise.  These four events 

were – OBJECT, BATTERY, BUMP, and BEAM. The robot swept in a 180 degree arc to read 

the distances of objects in its environment. Event Object occurred if any of the distance 

parameters were less than 0.52 m. Event Battery got triggered when the battery level of the robot 

dropped below certain percentage (while running the experiment) since its last charge. Event 

Bump neuron was initiated and triggered by the built-in bump sensor of the Kobuki Turtlebot 

base when it physically bumped against any object. The Bump event was also activated if 

distance measured by any of the parameters was less than 0.72 m. Event Beam was triggered 

when one or more of the infrared emitters of the robot’s docking “home” base were detected. 

 

Figure 3.3 The structure of the simple neural simulation model (J. L. Krichmar 2012). 
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The neuromodulatory layer consisted of four ACh/NE neurons, one for each event, one 

dopaminergic neuron (DA), and one serotonergic neuron (5-HT). The last layer of four neurons 

indicated the four different behavioral outputs as states. The four behavior states were: 1) Wall-

Following, 2) Open-field, 3) Explore Object, and 4) Find Home. There were also two sub-states 

of Find Home called At Home and Leave Home when the actual docking station was found. The 

simulation cycle time was about 14 s which accounted for the time to read sensor data, update 

neural simulation, and send a command to the robot motors.   The robot would stay on one of the 

states at the end of each simulation cycle but kept switching in between those states based on 

neuromodulatory response during the entire run period.  

 The connection weights between event neurons and the state neurons were 1 and these weights 

did not get updated. The connection weights between the event neurons to the ACh/NE neurons 

were initialized at 1. The connections between event neurons and ACh/NE neurons were kept 

depressive and both DA and 5-HT neurons were kept facilitative. The connection weights 

between event neurons and neuromodulatory neurons go updated after the end of the every 

simulation cycle especially when the robot was running in both risk-taking and risk-aversive 

modes. In distracted behavior mode, the connection weights between the event neurons and the 

neuromodulatory neurons were kept at 1 throughout the run period. The state neurons were 

connected internally all-to-all.  The connections indicated the intrinsic inhibitory weight 

connections with value of -1 and intrinsic excitatory connections with a value of 0.5.   

The relationships for neuronal activity, neuronal inputs and weight updating are presented briefly 

here for completeness. The activation function for all neuromodulatory and state neurons was 

governed by sigmoid function: 

                                   (3.1) 

where I was the input to the neuron, g was the gain of the function, and k denoted the simulation 

cycle index. Since the activation function for all neurons were governed by the sigmoid function, 

the activity values of these neurons remained within 0 to 1.   

The input to the neurons for all the neuromodulatory neurons and the state neurons was given as: 
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∑ 1      (3.2) 

 where b was the baseline input set to -1.0 for DA and 5-HT neurons, -0.5 for ACh/NE neurons, 

and -1.0+rand (0.0,0.5) for state neurons, c(k) was set to the sum of DA and 5-HT neuronal 

activity for inhibitory connections, otherwise c(k) was set to 1.0 [3]. p was the persistence set to 

0.25 for all neurons and nm(k) is the neuromodulatory input into last layer of state neurons: 

	∑ ∑           (3.3) 

where nmi(k) was the neuromodulatory input into state neuron i, nl(k), was the activity of either 

the DA or 5-HT neuron, wli(k) was the weight from neuromodulatory neuron l to state neuron i, 

AChNEj(k) and ej(k) were the activities of ACh/NE and event neurons corresponding to event j, 

and wji(k) was the weight from event neuron j to state neuron i. 

The updating of the connection weights was based on both the occurred events and the synaptic 

plasticity which was given by the following equation:  

1 				 					 1																				

1 					
																																																																										

      (3.4) 

where i was the index of the event neuron, j was the index of the 5-HT, DA, or ACh/NE neuron, 

p was the amount of change in response to an event, and τ, which was set to 50, was a time 

constant that governed the rate at which weights returned to their original value. 

3.4 Spiking Neuromodulation Model and States 

 

To integrate the biologically realistic Izhikevich artificial neuron model in the control system two 

computers using NVIDIA graphics processing units (GPUs) with CUDA architecture are used for 

parallel computing. Each computer used the same copy of a SNN simulator platform that was 

optimized to take advantage of the parallel processing capability of the GPUs. The SNN 

simulator used in this paper is a publicly available self-contained resource used in previous work 

(Richert, et al. 2011). The simulator also uses a code interface based on neural group 

construction. For every type of input into the neural network there would be a group of neurons 

defined as “spike generators” to inject a start to the network. These generators would replicate 
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the stimuli a vertebrate’s brain would encounter when using “spike coding” (Verken 2003) as a 

way of processing information. Then each of the neuromodulators used in the neural network 

would be defined as individual groups of neurons in the spiking neuromodulation simulator with 

the four Izhikevich parameters defining the spiking behavior of each group. . For this simulation, 

all groups used the Regular Spiking Izhikevich model (Izhikevich 2003, 2) with parameters of a 

= 0.02, b =0.2, c = -65.0, and d = 8.0. 

The actual synaptic connections between each neurons group were defined as either inhibitory or 

excitatory in nature. That is, whether or not an incoming spike from a pre-synaptic neuron would 

increase or decrease the ability of the post-synaptic neuron to activate. The data flow for the 

simulation was as follows: once the robot received its network inputs during its quarter-sweep, 

the data would be transferred to a cloud computing platform waiting on said inputs. The 

simulation created a “spike generator” group for each of the present stimuli. The simulated 

spikes from the sensory inputs is sent to through the various pre-defined synaptic connections.  

After the simulation was done for its one second run, the time and number of each event, 

neuromodulator, and state neuron spike was recorded in a data file located on the cloud PC. A 

MATLAB script was then run in the background to calculate the number of spikes of each type. 

ROS, which handled the automation of the simulation process also handled transmitting the 

number of resulting spikes back to the robot. Reading the number of spikes and taking in 

consideration its surroundings, the robot took the appropriate (most active) action. 

The synaptic connections between all groups of neurons were set as excitatory except for the 

connection between the dopamine and serotonin groups. This synaptic connection was set to be 

inhibitory, mirroring the opposing effect that each neuromodulator had on each other (J. L. 

Krichmar 2013). Every excitatory connection had a weight of +1.0 and every inhibitory 

connection had a weight of -1.0. Synaptic plasticity (Alexander and Sporns 2002) was included 

to duplicate the phenomenon of a synaptic connection becoming stronger as it received constant 

spikes between two neurons. The dopamine and serotonin groups totaled 1,000 neurons each. 

The state neuron groups totaled 100 neurons each. The spike generating event inputs also totaled 

100 neurons each. The ACh/NE group totaled 4 neurons (to facilitate as many spikes as possible 

to induce the “tunnel vision” effect). Altogether there were up to 2,804 neurons simulated at any 

time during the runs. The number of neurons used to represent each group came from the 
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increasing tradeoff between neuron complexities for stability. With neuron counts over 5,000 in 

the simulation, output states and neuromodulator levels stopped correlating and the results 

became more random.   Simulation time of the network could be defined down to the millisecond 

but for this study they were set to one second. The structure of the SNN model is shown in 

Figure 3.4. 

 

Figure 3.4 The structure of the spiking neural simulation model 
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3.5 Cloud Computing Configuration 

 

To facilitate the necessary amount of computing power for the Spiking Neural Network cases, 

two different PCs were used as cloud servers for the study. One server used an NVIDIA Tesla 

K20c GPU as the parallel processing unit along with 32 GB of RAM and a six-core Intel E2620 

CPU running a 64-bit partition of Ubuntu Linux. In the other server were two NVIDIA Tesla 

C2075 GPUs within a PC using 16 GB of RAM and a quad-core Intel E5620 CPU also running 

the 64-bit edition of Ubuntu Linux. Used to facilitate the data traffic between Turtlebot and 

server was a Linksys E2500 router. Each server ran the Groovy Galapagos (sixth edition) 

distribution of ROS.  
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CHAPTER 4  . EXPERIMENTAL RESULTS AND DISCUSSIONS 
 

4.1 Simple Neuron Model (Single Robot) 
 

A series of experiments were run in a lab studio environment where many tables, chairs and 

other solid objects were kept. Initially, 5 minutes of experiments were carried out to see the 

robot’s behavioral performance under three different running conditions. 1) Risk aversive 

behavior: Bumps were treated as potentially harmful by connecting bump event neurons to the 5-

HT neuron. 2) Risk taking behavior: Bumps were treated as novel and interesting by connecting 

bump event neurons to the DA neuron. 3) Distracted behavior: The second condition was 

repeated with the ACh/NE neurons kept always active (activity value =1). 

4.1.1 Risk-Aversive Robot 

During this mode of operation, in the neural network, the bump event neuron was connected to 

the 5-HT neuron. Results of robot run in this mode are shown in Figure 4.1 through Figure 4.5. 

As can be seen in Figure 4.1, the robot started off near an object and roamed until it was close to 

a wall, resulting in two bump events. In Figure 4.2, the robot was near a wall and the home base 

resulting in an increase of ACh/NE neural activity to focus on those events. And while both the 

bump and beam events occurred again near the end of the run, the ACh/NE neural activity was 

not as high since these events were not as novel as before. In Figure 4.3, while there were spikes 

of dopamine throughout the run, there was a consistent value of serotonin through the middle of 

the run. The neural activity as depicted in Figure 4.4, gives insight on how the states in Figure 

4.5 were selected. The Wall Follow state is the default state and it was not until an object came 

into view that another state was selected. A larger value of neural activity by the Explore Object 

neuron over the Open-Field neuron resulted in the first state switch into briefly the Explore 

Object state followed by detecting the home base. After constantly detecting the home base by 

being in its field but not being able to find the charging portion of the base, an internal timer 

ended the Find Home state as the robot left the search for home and continued to follow walls as 

a way of avoiding danger. The neural activity in this run successfully mimicked a small animal 
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staying out of danger to find home, only breaking a pattern for a short while to explore a new 

object for a very brief amount of time. 

 

Figure 4.1 Events during the robot motion (Single Robot, Risk Aversive) 

 

 

Figure 4.2 Activity of ACh/NE during the robot motion (Single Robot, Risk Aversive) 
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Figure 4.3 The activity of DA and 5-HT neurons during the robot motion (Single Robot, Risk 

Aversive) 

 

 

 

Figure 4.4 Activity of State Neurons greater than threshold (0.67) (Single Robot, Risk Aversive) 
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Figure 4.5 State transition during the robot motion (Single Robot, Risk Aversive) 

 

4.1.2 Risk-Taking Robot 

During this behavior mode of the robot, in the neural network the bump event neuron was 

connected to the DA neuron making the event interesting and worth exploring. The results for 

this mode are presented in Figure 4.6 through Figure 4.10.  

As seen in Figure 4.6, in the risk-taking mode the robot had enough room to move around while 

not running into many objects or walls, partly due to the fact that being in a more adventurous 

mode kept it away from walls. There were two bump events halfway through the run and 

meeting with an object near the home base towards the end of the run. In Figure 4.7, the ACh/NE 

neural activity was focused first on the wall bump, then the home beam and then finally the 

object near the home beam. In risk-taking mode, the bump event was linked to dopamine, 

resulting in the spikes in dopamine activity. In Figure 4.8, when the home base was detected this 

caused a spike in serotonin activity, but then this was drowned out by a larger spike in dopamine 

activity when an object was detected near the end of the run. In Figure 4.9, the Open Field and 

Explore Object neurons were most active in the beginning of the run with a spike in neural 

activity of the Find Home neuron (explained the by the robot’s proximity to the base) and Wall 

Follow neuron with a final spike of the Explore Object neuron to end the simulation. As seen in 

Figure 4.10, once the transition from the default state of Wall Following was made most of the 

time was spent exploring objects in the robot’s field of vision or roaming in the Open Field state. 

Throughout the run there was not a single transition to any of the “home” states due to being 
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linked to serotonin based actions. The difference between the risk-adverse and risk-taking modes 

can be illustrated by the two behavior switching figures (Figure 4.5 and Figure 4.10) 

  

 

Figure 4.6 Events during the robot motion (Single Robot, Risk Taking) 

 

 

Figure 4.7 Activity of Ach/NE during the robot motion (Single Robot, Risk Taking) 
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Figure 4.8 The activity of 5-HT and DA neurons during the robot motion (Single Robot, Risk 

Taking) 

 

 

 

Figure 4.9 Activity of state neurons greater than threshold (0.67) (Single Robot, Risk Taking) 
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Figure 4.10 State transition during the robot motion (Single Robot, Risk Taking) 

 

4.1.3 Distracted Robot 

The third condition was experimented to see how the robot behaved as its attention system was 

marred. The third mode was a risk-taking subset to see how the robot behaved as its attention 

system was always active. This had the effect of not allowing the robot to focus on a single 

event. In Figure 4.11, the robot began the run around the home base and then had repeated events 

around walls and objects. In Figure 4.12, the neural activity of the ACh/NE neurons was at their 

maximum. As the distracted mode was a subset of the risk-taking mode, bumps were linked to 

dopamine resulting in the large amount of dopamine-related neuromodulator activity in Figure 

4.13.  Due to the maximally active ACh/NE, the robot tried to respond to every frequent event 

and was unable to ignore any unimportant events. This was why the robot was more prone to 

switching between the states quicker than the risk-taking and risk-averse modes. Figure 4.11 

through Figure 4.15 show the importance of the ACh/NE neurons in focusing attention for the 

robot to respond to novel events as interesting and ignore the recurrent ones as uninteresting.  
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Figure 4.11 Events during the robot motion (Single Robot, Distracted) 

 

 

Figure 4.12 Activity of Ach/NE during the robot motion (Single Robot, Distracted) 
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Figure 4.13 The activity of 5-HT and DA neurons during the robot motion (Single Robot, 

Distracted) 

 

Figure 4.14 Activity of state neurons greater than threshold (0.67) (Single Robot, Distracted) 

 

 

Figure 4.15 State transition during the robot motion (Single Robot, Distracted) 
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4.2 Simple Neuron Model (Two Robots) 

 

The procedure of the single-robot experiments was repeated but with a second Turtlebot added in 

the room near the first one. Each Turtlebot used the same neuromodulation code but in 

combination of various modes. Each combination of modes is listed below. Under each heading 

Robot A was run in the first mode listed, while Robot B was run in the second mode. So for 

instance, for Risk Aversive/Distracted, Robot A was in Risk Aversive mode and Robot B was in 

Distracted mode. 

4.2.1 Risk Aversive Robot with Risk Taking Robot 

The results of this run demonstrated the predatory actions of Robot B (risk-taking) towards 

Robot A (risk-aversive). Both robots experienced the same type of events. Figure 4.16 and 4.17 

show the robots were near both the home base and multiple objects in their way but the actions 

they took  were very different. In Figure 4.20, Robot B saw Robot A and began to follow it in its 

Explore Object state. On the other hand, Robot A only wanted to follow the wall to look for its 

way back to the home base. Figure 4.18 and Figure 4.19 show the representative neural activity 

leading to these actions. As Robot B was in a risk-taking mode, there was more dopamine-

related neural activity than serotonin-related neural activity during its run. The opposite was true 

for the risk-aversive Robot A. 

 

Figure 4.16 Events during the robot motion (Two Robots, Risk-Aversive, Risk-Taking) 
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Figure 4.17 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-
Taking) 

 

 

Figure 4.18 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-
Aversive, Risk-Taking) 

 

 

Figure 4.19 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive, 
Risk-Taking) 
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Figure 4.20 State transition during the robot motion (Two Robots, Risk-Aversive, Risk-Taking) 

 

4.2.2 Risk Aversive Robot with Risk Aversive Robot 

With both Turtlebots in risk-aversive mode, they were placed close to one another near the 

beginning of the run. During the run both robots avoided the other and instead followed walls in 

order to avoid interaction with other objects. As seen in Figure 4.25, both robots briefly 

transitioned to exploratory states (Open Field for Robot B and Explore Object for Robot A) but 

most of the time was spent wall following with the occasional run to the home base. Both robots 

constantly ran close to objects (Figure 4.21) but the ACh/NE neuron focus only lasted for a quick 

spike (Figure 4.22) demonstrating its ability to filter out non-novel event inputs into the network. 

As both were in risk-aversive mode, both robots had a high amount of serotonin levels 

throughout this run (Figure 4.23). 

 

Figure 4.21 Events during the robot motion (Two Robots, Risk-Aversive, Risk-Aversive) 
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Figure 4.22 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-
Aversive) 

 

 

Figure 4.23 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive, Risk-
Aversive) 

 

 

Figure 4.24 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive, 
Risk-Aversive) 
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Figure 4.25 State transition during the robot motion (Two Robots, Risk-Aversive, Risk-
Aversive) 

 

4.2.3 Risk Aversive Robot with Distracted Robot 

With one Turtlebot in risk-averse mode (Robot A) and one robot in distracted mode (Robot B), 

one can see the lack of focus of the ACh/NE neurons for Robot B in Figure 4.27. Once again 

while both robots detected the nearly the same events (Figure 4.26) the actions taken were 

different (Figure 4.30). The risk-aversive robot stayeds in the Wall Follow mode for the entire 

run. The distracted robot started in the default Wall Follow mode before spotting the risk-

aversive robot (the first Wall Follow to Explore Object state transition for Robot B in Figure 

4.30) and following it for a few seconds before switching to Open Field and then spotting 

another object in the distance. In Figure 4.28, the serotonin-related neural activity in Robot A 

and the dopamine-related neural activity in Robot B were most active during the run as expected. 

In Figure 4.29, the lack of focus for Robot B was demonstrated, explaining the quick transition 

of states by Robot B from following Robot A to switching to Open Field to following another 

object in the distance.  

 

Figure 4.26 Events during the robot motion (Two Robots, Risk-Aversive and Distracted) 
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Figure 4.27 Activity of ACh/NE during the robot motion (Two Robots, Risk-Aversive and 
Distracted) 

 

 

 

Figure 4.28 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-
Aversive and Distracted) 
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Figure 4.29 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Aversive 
and Distracted) 

 

Figure 4.30 State transition during the robot motion (Two Robots, Risk-Aversive and Distracted) 

 

4.2.4 Risk Taking Robot with Risk Taking Robot 

Results for two robots, both  in risk-taking mode, are presented in Figure 4.31 through Figure 

4.35. With both Turtlebots in the risk-taking mode there were moments when one Turtlebot 

would notice the other and followed it for a short amount of time. In Figure 4.35, where the 

object Robot A wanted to explore was actually the Robot B. During this run Robot A saw a 

human being during its course and went towards it. The human then walked away leaving Robot 

A to its own devices. The infrared home base was also nearby during this run. Since both were in 

a risk-taking operation, there was an abundance of dopamine activity on both robots. 
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Figure 4.31 Events during the robot motion (Two Robots, Risk-Taking and Risk-Taking) 

 

Figure 4.32 Activity of ACh/NE during the robot motion (Two Robots, Risk-Taking and Risk-
Taking) 

 

 

Figure 4.33 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-
Taking and Risk-Taking) 
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Figure 4.34 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Taking 
and Risk-Taking) 

 

Figure 4.35 State transition during the robot motion (Two Robots, Risk-Taking and Risk-Taking) 

 

4.2.5 Risk Taking Robot with Distracted Robot 

Results of one robot in risk-taking mode and the other in distracted mode are presented in Figure 

4.36 through Figure 4.40. With one Turtlebot in risk-taking mode (Robot A) and one robot in 

distracted mode (Robot B), the neural simulation played out with Robot A occasionally 

following Robot B. As seen in Figure 4.40, both robots went into Explore Object with Robot B 

switching quicker. The focusing on objects with higher activity levels for  the ACh/NE neurons 

of Robot A was evident as demonstrated in Figure 4.37. 
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Figure 4.36 Events during the robot motion (Two Robots, Risk-Taking and Distracted) 

 

 

Figure 4.37 Activity of ACh/NE during the robot motion (Two Robots, Risk-Taking and 
Distracted) 

 

 

Figure 4.38 The activity of DA and 5-HT neurons during the robot motion (Two Robots, Risk-
Taking and Distracted) 
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Figure 4.39 Activity of state neurons greater than threshold (0.67) (Two Robots, Risk-Taking 
and Distracted) 

 

 

Figure 4.40 State transition during the robot motion (Two Robots, Risk-Taking and Distracted) 

 

4.3 Simple Neuron Model (Three Robots) 
 

The procedure  of the two-robot experiments were repeated but with one additional Turtlebot 

added in the room near the first two when the runs started. Each Turtlebot used the same 

neuromodulation code but in combination of various modes. Due to the large number of possible 

combinations only a few are included as representative cases. Under each heading Robot A and 

Robot B were run in the first mode listed, while Robot C was run in the second mode. So for 
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instance, for two Risk Aversive Robots/One Risk Taking, Robot A and Robot B were in Risk 

Aversive mode and Robot C was in Risk Taking Mode. 

4.3.1 Two Risk Aversive Robots with One Risk Taking Robot 

Results are presented in Figure 4.41 through Figure 4.45. As expected from Risk Aversive robots 

(Robot A and Robot B) there was an abundance of serotonin compared to the amount of 

dopamine (Figure 4.43) and vice versa for the Risk Taking robot (Robot C). The constant contact 

with the home base beam (Figure 4.41) led Robot B towards the Find Home state transitions 

(Figure 4.45). Robot A occasionally broke away from its serotonergic based Wall Following 

actions to follow Robot B home for a few seconds. Robot C constantly followed either Robot A 

or Robot B across the room. 

 

Figure 4.41 Events during the robot motion (Three Robots, Two Risk Aversive/One Risk 
Taking) 
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Figure 4.42 Activity of ACh/NE during the robot motion (Three Robots, Two Risk Aversive/One 
Risk Taking) 

 

 

Figure 4.43 The activity of DA and 5-HT neurons during the robot motion (Three Robots, Two 
Risk Aversive/One Risk Taking)  
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 Figure 4.44 Activity of state neurons greater than threshold (0.67) (Three Robots, Two Risk 
Aversive/One Risk Taking) 

 

 

Figure 4.45 State transition during the robot motion (Three Robots, Two Risk Aversive/One Risk 
Taking) 
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4.3.2 Two Risk Taking Robots with One Risk Aversive Robot 

Results are presented in Figure 4.46 through Figure 4.50. The neural activity for this case was 

shown to be the exact opposite of the case before. The reactions and actions of Robot C were 

mostly serotonergic in nature and the reactions/actions of Robot A were mostly dopaminergic in 

nature. This can be seen in Figure 4.50 with Robot A going into exploratory modes for the entire 

run (reacting to dopaminergic bumps and spotting objects as seen in Figure 4.46) with Robot C 

looking for home in between stints of Wall Following. Robot B, the second risk taking robot in 

the run, wandered off into an open area, therefore never receiving the necessary stimuli to break 

out the default Wall Follow state. 

 

Figure 4.46 Events during the robot motion (Three Robots, Two Risk Taking/One Risk 
Aversive) 
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Figure 4.47 Activity of ACh/NE during the robot motion (Three Robots, Two Risk Taking/One 
Risk Aversive) 

 

 

Figure 4.48 The activity of DA and 5-HT neurons during the robot motion (Three Robots, Two 
Risk Taking/One Risk Aversive) 
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Figure 4.49 Activity of state neurons greater than threshold (0.67) (Three Robots, Two Risk 
Taking/One Risk Aversive) 

 

 

Figure 4.50 State transition during the robot motion (Three Robots, Two Risk Taking/One Risk 
Aversive) 
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4.4 Simple Neuron Model (Four Robots) 
 

The format of the single-robot experiments were repeated but with four Turtlebots in the room 

for each run. Each Turtlebot used the same neuromodulation code but in combination of various 

modes. As with the three-robot case, due to the large amount of possible combinations only a 

few are included in this report. Under each heading Robot A, B, C, D were run in the various 

modes as listed respectively. For instance, for Two Risk Taking Robots/One Risk Aversive 

Robot/One Distracted Robot, Robots A and B were in Risk Taking mode, Robot C was in Risk 

Aversive mode, and Robot D was in Distracted mode. 

4.4.1 Two Risk Aversive Robots with Two Risk Taking Robots 

Results are presented in Figure 4.51 through 4.55. This case is similar to the Risk Aversive/Risk 

Taking case done with two robots. As the Risk Aversive robots (Robots A and B) searched for 

the home base (as seen in the events in Figure 4.51), the Risk Taking robots (Robots C and D) 

occasionally took notice and followed (Figure 4.55). As expected, Robots A and B had mostly 

serotonergic reactions and Robots C and D had mostly dopaminergic reactions (Figure 4.53).  

 

Figure 4.51 Events during the robot motion (Four Robots, Two Risk Aversive/Two Risk Taking) 
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Figure 4.52 Activity of ACh/NE during the robot motion (Four Robots, Two Risk Aversive/Two 
Risk Taking) 

 

Figure 4.53 The activity of DA and 5-HT neurons during the robot motion (Four Robots, Two 
Risk Aversive/Two Risk Taking) 



55 

 

 

Figure 4.54 Activity of state neurons greater than threshold (0.67) (Four Robots, Two Risk 
Aversive/Two Risk Taking) 

 

 

Figure 4.55 State transition during the robot motion (Four Robots, Two Risk Aversive/Two Risk 
Taking) 

4.4.2. Two Risk Taking Robots with One Risk Aversive Robot and One Distracted Robot 

Results are presented in Figure 4.56 through 4.60. As in all Distracted cases with the simple 

neuron model, the ACh/Ne neurons were always active (Figure 4.57) and therefore the 
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corresponding robot’s (Robot D) ability to focus on a single input was impaired. This can be 

seen in Figure 4.59 with the rapid spiking of neurons in Robot D’s network. Robots A and B (the 

risk taking platforms) followed the usual Risk Taking exploratory behaviors while Robot C 

mostly followed the wall (as expected from a risk aversive robot). Robot D mostly followed the 

other robots (whichever one passed through its field of vision) around the room during its 

distracted phase. 

 

Figure 4.56 Events during the robot motion (Four Robots, Two Risk Taking/One Risk 
Aversive/One Distracted) 
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Figure 4.57 Activity of ACh/NE during the robot motion (Four Robots, Two Risk Taking/One 
Risk Aversive/One Distracted) 

 

 

Figure 4.58 The activity of DA and 5-HT neurons during the robot motion ) (Four Robots, Two 
Risk Taking/One Risk Aversive/One Distracted) 
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Figure 4.59 Activity of state neurons greater than threshold (0.67) (Four Robots, Two Risk 
Taking/One Risk Aversive/One Distracted) 

 

 

Figure 4.60 State transition during the robot motion (Four Robots, Two Risk Taking/One Risk 
Aversive/One Distracted) 
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4.3 Spiking Neuron Model (Single Robot) 

 

The spiking neuron (SNN) model was tested to see the effects of different event inputs on the 

neural activity in terms of number of spikes generated. Results are presented in Figure 4.61 

through Figure 4.66.  As can be seen in these figures, the neural activity spiked as soon as the 

simulator was activated and then died off as the event input no longer was novel. This was due to 

the effects of ACh/NE neurons on the neural network. As spiking became less active the number 

of neurons considered to be “winning” actions was very low. As a result, the simulation in this 

study was limited to one second. 

 

 

Figure 4.61 Result of Object Detected input into the SNN network 
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Figure 4.62 Result of Dock Beam input into the SNN network 

 

 

Figure 4.63 Result of Low Battery input into the SNN network 
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Figure 4.64 Result of Bump input (serotonin and dopamine) into the SNN network 

 

Figure 4.65 Result of Bump input (serotonin) into the SNN network 
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Figure 4.66 Result of Bump input (dopamine) into the SNN network 

The experiments of single robot were repeated replacing the simple neuron model with the SNN 

model run on GPU instead of the on-board laptop. However, the laptop was used for acquisition 

of sensor data along with transmission of data and commands between the robot base and the 

remote computing node through wireless communication in ROS environment.  Due to the 

simulator not being based on neuromodulatory levels of 0 to 1 scale, the computation and the 

basis of decision-making were shifted to the number of spikes in the network for each group. 

4.5.1 Risk-Aversive Robot 
Results are presented in Figure 4.67 through Figure 4.69 for a single robot in risk aversive mode. 

In the case of a risk-aversive robot, one would expect a surplus of serotonin (Figure 4.68) as the 

bump sensor was connected to the serotonin group in this situation. The most constant actions 

were the ones of a serotonergic nature (Find Home) (Figure 4.69). 
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Figure 4.67 Event inputs into the ROS-SNN simulation program (Risk Aversive) 

 

Figure 4.68 Neuromodulator activity of the ROS-SNN simulation program (Risk Aversive) 
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Figure 4.69 State transitions of the ROS-SNN simulation program (Risk Aversive) 

4.5.2 Risk-Taking Robot 
Results are presented in Figure 4.70 through Figure 4.72 for a single robot in risk taking mode. 

As can be seen in Figure 4.70,  from around the mid-point of  the 300 second run, a constant 

event (home beam)  occurred and that led to constant level of associated neuromodulated activity 

(Figure 4.71). As seen in Figure 4.71, due to the low number of ACh/NE neurons the robot lost 

the ability to ignore the recurrent event  in the short time span unlike the one in the simple neural 

network model. This demonstrated the downside of the SNN model without the proper tuning of 

the model parameters. A more biologically realistic model would require tuning of parameters 

for viable and stable results. This issue would be addressed in future scope of work. 
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Figure 4.70 Event inputs into the ROS-SNN simulation program (Risk Taking) 

 

Figure 4.71 Neuromodulator activity of the ROS-SNN simulation program (Risk Taking) 



66 

 

 

Figure 4.72 State transitions of the ROS-SNN simulation program (Risk Taking) 

4.5.3 Distracted Robot 
Results are presented in Figure 4.73 through Figure 4.75 for a single robot in distracted mode. In 

this case with the bump sensor connected to dopamine (DA) group of neurons, the activity level 

of DA neurons was higher throughout the run period. The ACh/NE stayed at a mostly constant 

level as expected in a distracted case (Figure 4.74).  

 

Figure 4.73 Event inputs into the ROS-SNN simulation program (Distracted) 
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Figure 4.74 Neuromodulator activity of the ROS-SNN simulation program (Distracted) 

 

Figure 4.75 State transitions of the ROS-SNN simulation program (Distracted) 
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4.6 Spiking Neuron Model (Two Robots) 

 

Similar to the case with the simple neural network, two robots were placed in the same 

environment and had the same group of tests as in Section 4.3. Only difference was that the 

simple neural network model was replaced with GPU based SNN model.  

4.6.1 Risk Aversive Robot with Risk Taking Robot 

Results are presented in Figure 4.76 through Figure 4.78 for two robots with Robot A  in risk 

aversive mode and Robot B in risk taking mode.  In this case the highest spiking neuromodulator 

for Robot A (risk aversive) and Robot B (risk taking) was serotonin and dopamine (Figure 4.77), 

respectively (as expected).  The majority of state transitions (Figure 4.78) were based on 

serotonin and dopamine spike levels of Robot A and Robot B, although some of the highest 

spiking actions taken by Robot A tended to be dopamine based (due to the bump events 

connection to the dopamine group).  As Robot A detected Robot B the serotonin level of Robot 

A increased and  as Robot B detected Robot A the dopamine level of Robot B increased (Figure 

4.76 and Figure 4.77). 

 

Figure 4.76 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Taking) 
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Figure 4.77 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk 
Aversive-Risk Taking) 

 

Figure 4.78 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Taking) 
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4.6.2 Risk Aversive Robot with Risk Aversive Robot 

Results are presented in Figure 4.79 through Figure 4.81 for both robots in risk aversive mode. In 

this case the highest spiking neuromodulator (Figure 4.80) for both robots was serotonin (as 

expected due to the bump events connection to the serotonin group in this setup). With both 

robots in the risk aversive mode, there was little to no interaction between one another (as 

evident from no object detection in Figure 4.79). 

 

Figure 4.79 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Aversive) 
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Figure 4.80 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk 
Aversive-Risk Aversive) 

 

Figure 4.81 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Risk Aversive) 
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4.6.3 Risk Aversive Robot with Risk Distracted Robot 
Results are presented in Figure 4.82 through Figure 4.84 for two robots with Robot A  in risk 

aversive mode and Robot B in distracted mode.  As seen in Figure 4.83, the most active 

neuromodulator for Robot A (risk aversive) was serotonin and the most prominent action for 

Robot A  is serotonergic in nature (Find Home) (Figure 4.84). For Robot B and its degraded 

suppression ability of ACh/NE neurons, the most active neuromodulator  was dopamine (since 

the distracted phase was still linked to dopamine through the bump feature) (Figure 4.83). The 

most active neuron counts of Robot B in the distracted mode seemed to overlap, further 

indicating its lack of focus. 

 

Figure 4.82 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Aversive-
Distracted) 
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Figure 4.83 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk 
Aversive-Distracted) 

 

Figure 4.84 State transitions of the ROS-SNN simulation program (Two Robots, Risk Aversive-
Distracted) 
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4.6.4 Risk Taking Robot with Risk Taking Robot 
Results are presented in Figure 4.85 through Figure 4.87 for both robots in risk taking mode. As 

both robots were in risk-taking mode, the most active neuromodulator was dopamine (Figure 

4.86). Even though the close proximity to the home base beam (Figure 4.85) constantly induced 

serotonergic spikes in the network (due to Find Home being a serotonergic action) the highest 

spiking actions of the robots were still dopaminergic in nature (Figure 4.87). 

 

Figure 4.85 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk-Taking) 
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Figure 4.86 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk 
Taking-Risk Taking) 

 

Figure 4.87 State transitions of the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk Taking) 
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4.6.5 Risk Taking Robot with Distracted Robot 
Results are presented in Figure 4.88 through Figure 4.90 for two robots with Robot A  in risk 

taking mode and Robot B in distracted mode. Being in an open area the risk taking robot (Robot 

A) did not register an event until half-way in the run (Figure 4.88). Once it did  it turned out to 

be serotonergic in nature (Beam). But once the Bump event was active, the serotonin levels in 

the network for Robot A dropped and the dopamine levels increased (Figure 4.89). As seen 

before, even though there were serotonergic actions induced by the Beam event, the highest 

spiking actions were those of dopaminergic actions. For the distracted robot, there was the 

usually large number of dopaminergic spikes with a constant level of ACh/NE under it. 

 

Figure 4.88 Event inputs into the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk-Taking) 
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Figure 4.89 Neuromodulator activity of the ROS-SNN simulation program (Two Robots, Risk 
Taking-Risk Taking) 

 

Figure 4.90 State transitions of the ROS-SNN simulation program (Two Robots, Risk Taking-
Risk Taking) 
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4.7 Spiking Neuron Model (Three Robots) 
 

The use of the GPU accelerated model was then applied to the same three-robot scenarios 

presented in Section 4.4. This continues the evolution of the previous simple neuron models.  

4.7.1 Two Risk Aversive Robots with One Risk Taking Robot 

Results are presented in Figure 4.91 through Figure 4.93 for three robots with two robots (Robot 

A, Robot B) in risk aversive mode and the third (Robot C) in risk taking mode. The most active 

neuromodulator in this run was serotonin for Robot A and Robot B as expected. What was not 

expected was that the risk taking robot (Robot C) would have mostly serotonin spiking 

throughout the period of run. This showed that while the spiking neuron model was based on a 

more biologically realistic model the tuning of the Izhikevich model of Regular Spiking must be 

done for proper functioning of SNN. This could also be shaped by the constant induction of the 

beam event on Robot C in this particular run. While the ACh/NE neurons were used to 

eventually suppress constant event inputs this did not change the fact that the home beam input 

was serotonergic in nature. 

 

Figure 4.91 Event inputs into the ROS-SNN simulation program (Three Robots, Two Risk 
Aversive/One Risk Taking) 
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Figure 4.92 Neuromodulator activity of the ROS-SNN simulation program (Three Robots, Two 
Risk Aversive/One Risk Taking) 

 

Figure 4.93 State transitions of the ROS-SNN simulation program (Three Robots, Two Risk 
Aversive/One Risk Taking) 



80 

 

4.7.2 Two Risk Taking Robots with One Risk Aversive Robot 

Results are presented in Figure 4.94 through Figure 4.96 for three robots with two robots (Robot 

A, Robot B) in risk taking mode and the third (Robot C) in risk aversive mode. In this case, the 

number spikes in dopamine group reached the highest of any of the neuromodulator for Robot A 

and robot B with a consistently high number of serotonin spikes for Robot C (Figure 4.95). With 

Robot A having high number of Explore Objects and Open Field neuron spikes, the exploratory 

nature of the robotic platform in dopaminergic actions was demonstrated. Robot B, the second 

risk taking robot, showed its internal network battle between the Find Home spiking neuron 

group induced by the home base and the Explore Object neuron group induced by its core 

dopaminergic nature. With occasional spikes of Explore Object neural activity, the main action 

of Robot C was to Find Home (Figure 4.96). 

 

Figure 4.94 Event inputs into the ROS-SNN simulation program (Three Robots, Two Risk 
Taking/One Risk Aversive) 
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Figure 4.95 Neuromodulator activity of the ROS-SNN simulation program (Three Robots, Two 
Risk Taking/One Risk Aversive) 

 

Figure 4.96 State transitions of the ROS-SNN simulation program (Three Robots, Two Risk 
Taking/One Risk Aversive) 
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4.8 Spiking Neuron Model (Four Robots) 

4.8.1 Two Risk Aversive Robots with Two Risk Taking Robots 

Results are presented in Figure 4.97 through Figure 4.99 for four robots with two robots (Robot 

A, Robot B) in risk aversive mode and the other two (Robot C and Robot D) in risk taking mode. 

In this case the first two robots (A, B) had highest numbers of serotonergic spikes and the other 

two robots ( C, D) had  highest numbers of  dopaminergic (Figure 4.98). Robot C’s exploratory 

nature can be seen as active in Figure 4.99. The high level of home beam input into the network 

induced more serotonergic action spiking in the risk taking Robot D (Figure 4.99). 

 

Figure 4.97 Event inputs into the ROS-SNN simulation program (Four Robots, Two Risk 
Aversive/Two Risk Taking) 
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Figure 4.98 Neuromodulator activity of the ROS-SNN simulation program (Four Robots, Two 
Risk Aversive/Two Risk Taking) 

 

Figure 4.99 State transitions of the ROS-SNN simulation program (Four Robots, Two Risk 
Aversive/Two Risk Taking) 

4.8.2. Two Risk Taking Robots with One Risk Aversive Robot and One Distracted Robot 

Results are presented in Figure 4.100 through Figure 4.102 for four robots with two robots 

(Robot A, Robot B) in risk taking mode, one robot (Robot C) in risk aversive mode and the 
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fourth  robot (Robot D) in distracted mode. As expected there were high levels of dopamine 

spikes throughout the run with Robot A and Robot B being exploratory in nature (Figure 4.101). 

For Robot C constant Find Home spiking activity was consistent with its risk aversive mode set 

within the robotic neural network. The various shifting levels of neural activity for Robot D in 

both neuromodulators and state neuron activity demonstrated its distracted mode. 

 

 

Figure 4.100 Event inputs into the ROS-SNN simulation program (Four Robots, Two Risk 
Taking/One Risk Aversive/One Distracted) 
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Figure 4.101 Neuromodulator activity of the ROS-SNN simulation program (Four Robots, Two 
Risk Taking/One Risk Aversive/One Distracted) 

 

Figure 4.102 State transitions of the ROS-SNN simulation program (Four Robots, Two Risk 
Taking/One Risk Aversive/One Distracted) 
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4.9 Discussion of Results 
 

As the experiments continued, comparisons between the various cases using the simple neuron 

model and the spiking neuron model began to show interesting observations. For instance, even 

though the SNN solution introduced cloud computing network platforms that were dependent on 

traffic size of data and the size of the SNN models, the simulation of neuromodulated activity 

was around the same speed as the on-board solutions. The truly demonstrated the computing 

power of GPUs for the SNN models. The overall behavior patterns of the robots between the 

simple neuron model and the SNN model were qualitatively similar. However, SNN based 

model, due to its modeling details, had the capability of giving better insights into the behavioral 

patterns of the robots. It should also be noted that the apparent contradiction of some behavioral 

patterns of robots in SNN based model could be resolved with considerations on tuning the SNN 

model parameters.  The ROS-cloud computing based implementation of the models was very 

effective and could be improved further.   
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CHAPTER 5 . CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary of the Present Work 

 

In order to demonstrate the effectiveness of a spiking neural network’s ability to simulate a 

vertebrate neuromodulation control system, robotic code was created starting with a simple 

neural network. This simple neural network was a three layer network, consisting of the 

following: an input layer to receive the effects of stimuli in the robot’s environment; a decision 

making layer consisting of neurotransmitters- dopamine, serotonin, noradrenaline, and 

acetylcholine; and an output layer representing the defined “states” the robot could go into. 

Noradrenaline and acetylcholine could help filter out noise and increase focus on a novel event. 

Dopamine acted as a reward motivator and increased the level of risk-taking by a vertebrate. 

Serotonin decreased the level of risk-taking by a vertebrate. 

Once this simple neuromodulation code was achieved, a robotic software platform was needed to 

implement actual applications. This came in the form of the Robot Operating System (ROS) 

platform (Nickels and Kerr 2012). The ROS platform is an open source software platform widely 

used for its reusability and flexibility on multiple hardware platforms. Once the ROS platform 

was established and the simple neural network was shown to be responsive on ROS, a publicly 

available SNN simulator that could harness the abilities of GPU parallel processing was 

integrated into the control scheme. Instead of simply facilitating connections and data, ROS 

would be responsible for starting and stopping the simulation of thousands of neurons.  

Each of the SNN’s neurons was based on the Izhikevich neuron model, a model known for being 

biologically descriptive and relatively efficient to compute in large numbers. For the study, the 

RS (regular spiking) variation of the Izhikevich neuron model was used. RS Izhikevich neurons 

represent typical “default” neurons. The simple neural network was adapted to the SNN 

simulation platform by turning each neuron in the previous experiment into groups of many 

neurons. Using GPU equipped PCs as cloud servers for  parallel processing, models of 2000+ 

neurons were implemented  that lasted a second whenever the robot sent sensory inputs over the 

ROS network. 
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The current study showed that spiking neural networks could be a plausible control system 

implemented on a highly adaptable framework like ROS in cloud computing environment.  Due 

to the increased complexity in SNN model, it might be necessary to tune the model parameters 

for wider applications. Compared to the simple neural network, the tradeoff between complexity, 

details of the SNN model and speed of computation would need further consideration. 

 

5.2 Scope of Future Work 

 

While the ability of the Izhikevich neuron model was more biologically complex and realistic 

there was a tradeoff for stability. When using neuron counts over 5,000 in the simulation, output 

states and neuromodulator levels stopped correlating and the results became more random. In 

order to harness the power of large networks, it would be necessary to tune the model 

parameters, similar to the evolutionary algorithm based technique proposed recently (Carlson, et 

al. 2014).  

While the ROS framework used in this project was only used to support a maximum of four 

robots, the architecture can scale to a larger number of robotic platforms as long as the 

networking hardware can handle the data traffic. Expanding the number of robots used in this 

type of project would produce novel results. 

The ROS framework also supports the networking of heterogeneous robotic platforms. Using a 

neural network on a “ground” robot like the Turtlebot simultaneously with an “air” robot like a 

UAV would add another dimension to this work. 

In the present work, the models were implemented in ROS-cloud computing environment  

without any network optimization. The issues of  latency, safety and security of the ROS- cloud 

computing environment would have to be considered in future. 
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APPENDICIES 
 

Appendix A 

SOFTWARE IMPLEMENTATION OF NEUROMODULATED NETWORK IN ROS-
COMPATIBLE C++ 
 

//Ros Header 
#include "ros/ros.h" 
 
//Msg headers 
#include <std_msgs/String.h> 
#include <std_msgs/Empty.h> 
 
#include <tf/tf.h> 
 
#include <geometry_msgs/Twist.h> //Movement Msgs 
 
#include <nav_msgs/Odometry.h> //Odom Msgs 
 
 
#include <sensor_msgs/Image.h> //Depth Image Msgs 
#include <sensor_msgs/CameraInfo.h> //CameraInfo Msgs 
#include <sensor_msgs/LaserScan.h> //LaserScan Msgs 
 
#include <kobuki_msgs/DockInfraRed.h> //Kobuki IR Sensor Status Msgs 
#include <kobuki_msgs/SensorState.h> //Kobuki interal Sensor Msgs 
#include "complete_test/irobotdock.h" 
 
 
#include <fstream> 
#include <iterator> 
#include <string> 
#include <vector> 
 
#include <sstream> 
using namespace std; 
 
// Global Variables 
 
// ------------- 
// - control/flow variables 
const double PI = 3.1415926; //PI constant for rotation 
int enable_sub = 0; //rotation enable 
int controlint = 0; //rotation control 
float originyaw; //radian control 
int stage = 0; //rotation stage control 
float fromleft = 0; //needed in DestinRad Subfunction 
float fromright = 0; //needed in DestinRad Subfunction 
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float camera; //global camera variable 
int charger = 0; //charger status 
int bumper = 0; //bumper status 
std::vector<int>IR_Sensor (3,0); //IR Sensor vector 
vector <double> locate(5,0); //Camera Vectors 
int locate_enable = 0; //Vectoring Enable 
 
int chc = 0; //neuron choice 
 
 
// -------------- 
// - recording data 
vector <vector <double> > loginx; //total data 
vector<double> logvec(28,0); //individual run vectors 
 
// ---------------- 
// - state neurons 
int STATE_WALL_FOLLOW = 1; 
int STATE_OPEN_FIELD = 2; 
int STATE_EXPLORE_OBJECT = 3; 
int STATE_FIND_HOME = 4; 
int STATE_AT_HOME = 5; 
int STATE_LEAVE_HOME = 6; 
 
// ---------------- 
// - events 
int e_ping_value = 1; 
int e_battery = 2; 
int e_bump = 3; 
int e_beam = 4; 
int e = 4; 
//event = zeros (1,e); 
std::vector<double>event (e,0); 
 
// ---------------- 
// - parameters for return home 
int FIND_HOME_TIMEOUT = 1; 
int dock_time = 0; 
int found_home = 0; 
 
// ---------------- 
// - parameters for wall following 
int WALL_LEFT = -1; 
int WALL_RIGHT = 1; 
int wall = 0; 
int wallfollow_time = 0; 
 
// ---------------- 
// - neurons 
int N = 4; 
//global n; 
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//n = zeros (1,N); 
std::vector<double> n (N,0); 
 
// ---------------- 
// - neuromodulators 
int NM_DA =  1; 
int NM_5HT = 2; 
int NM = 2; 
//global nm; 
//nm = zeros (1,NM); 
std::vector<double> nm (NM,0); 
 
// ---------------- 
// - ACH/NE neuromodulation 
//global achne; 
//achne = zeros (1,e); 
//%achne =ones(1,e); 
std::vector<double> achne (e,0); 
 
// ---------------- 
// - parameters for ping sensor event 
//int comparing_distance = 20; //% 20 centimeter 
float comparing_distance = 0.52; 
//%comparing_max_distance = 70; 
 
// ---------------- 
// - parameters for battery event 
float battery; 
float battery_level; 
float battery_initial_level; 
int battery_lock = 0; 
 
// ---------------- 
// - parameters for bump event 
float too_close = 0.72; //% meausred in m 
 
// ---------------- 
// - parameters for beam event 
int force_field = 242; 
int buoy_and_force_field = 250; 
 
// ---------------- 
// - set weights to their initial values 
vector <vector <double> > w_n_n_exc; 
vector <vector <double> > w_n_n_inh; 
vector <vector <double> > w_nm_n; 
vector <vector <double> > w_e_n; 
vector <vector <double> > w_e_nm; 
vector <double> w_e_achne; 
 
ros::Publisher chatter_pub; //movement publisher 
ros::Publisher chatter_pub2; //odom reset publisher 
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void roomba_net_init()  
{ 
 // state neuron intrinsic connectivity 
 for (int r = 1; r <= N; r++) 
 { 
  vector <double> row(N, 0.5); 
  w_n_n_exc.push_back(row); 
 } 
  
 for (int r = 1; r <= N; r++) 
 { 
  vector <double> row(N, -1.0); 
  w_n_n_inh.push_back(row); 
 } 
   
 for (int r = 1; r <N; r++) 
 { 
  ROS_INFO("Pass 3.1"); 
  w_n_n_exc[r-1][r-1] = 0.0; 
     w_n_n_inh[r-1][r-1] = 0.0; 
     ROS_INFO("Pass 3.2"); 
    } 
    
     
 
 // neuromodulator to state neuron connectivity 
 //w_nm_n = zeros(NM,N); 
 for (int r = 1; r <= NM; r++) 
 { 
  vector <double> row(N, 0); 
  w_nm_n.push_back(row); 
 } 
 w_nm_n[NM_5HT-1][STATE_FIND_HOME-1] = 5;//% 5*rand;5; 
 w_nm_n[NM_5HT-1][STATE_WALL_FOLLOW-1] = 5 ;//%5*rand;%5; 
 w_nm_n[NM_DA-1][STATE_EXPLORE_OBJECT-1] =5;//%5*rand;%5; 
 w_nm_n[NM_DA-1][STATE_OPEN_FIELD-1] =5;   //% 5*rand;%5; 
 
 // event neuron to state neuron connectivity 
 //w_e_n = ones(e,N); 
 //% w_e_n(e_bump,STATE_FIND_HOME) = 0; 
 //%w_e_n = rand(e,N); 
 for (int r = 1; r <= e; r++) 
 { 
  vector <double> row(N, 1); 
  w_e_n.push_back(row); 
 } 
  
 // event neuron to neuromodulator  connectivity 
 //w_e_nm = zeros(e,NM); 
 for (int r = 1; r <= e; r++) 
 { 
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  vector <double> row(NM, 0); 
  w_e_nm.push_back(row); 
 } 
 w_e_nm[e_ping_value-1][NM_DA-1] =1; //% 0+(1-0).*rand; 
 w_e_nm[e_battery-1][NM_5HT-1] =1;  //%0+(1-0).*rand;%1; 
 w_e_nm[e_beam-1][NM_5HT-1] =1;  //%0+(1-0).*rand;% 1; 
 //w_e_nm[e_bump-1][NM_5HT-1] = 1;  //%0+(1-0).*rand; %1;    % 
risk averse behavior 
 
 w_e_nm[e_bump-1][NM_DA-1] = 1; //0+(1-0).*rand;   % risk taking 
behavior 
  
 //event neuron to neuromodulator  connectivity 
 //w_e_achne = ones(1,e); //% 0+(1-0).*rand(1,e); 
  for (int r = 1; r <= e; r++) 
 { 
  w_e_achne.push_back(1); 
 } 
 
} 
 
 
 
 
double activity(double I, double g) 
{ 
/*% activity - sigmoid activation function 
% 
% Description 
%   Sigmoid activation function for rate neuron 
% 
% Inputs 
%   I - synaptic input 
%   g - gain or slope of sigmoid curve 
% 
% Outputs 
%   s - activity of neuron between 0 and 1 
*/ 
 double sigmoid; 
 sigmoid = 1 / (1 + exp(-g*I)); 
 return sigmoid; 
} 
 
double stp(double xin, double p, double tau, double maxi, bool spk) 
{ 
/*% stp - Short-Term Plasticity 
% 
% Description 
%   Simple version of short-term plasticity rule 
% 
% Inputs 
%   xin - current weight value 
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%   p - amount to increase or decrease weight if there is a spike 
%   tau - recovery time constant. 
%   max - maximum weight value 
%   spk - 1 if spike occurred. 
% 
% Outputs 
%   x - new weight value 
% 
*/ 
double x; 
 
 if (spk == true) 
  x = p*xin; 
 else 
  x = xin + (1-xin)/tau; 
   
 x = min(maxi,x); 
 return x; 
} 
 
 
 
double rand_num() 
{ 
 int v1 = (rand() % 10001); 
    double number = (rand() % 10001) / 10000.0; 
 return number; 
} 
 
double sum_vector(vector <double> vector) 
{ 
 double sum; 
 for(int i = 0; i < vector.size();i++) 
 { 
   sum = sum + vector[i];  
 } 
 return sum; 
} 
 
double min_vector(vector <double> vector) 
{ 
 double min_value; 
 min_value = vector[0]; 
  
 for (int i = 0;i < (vector.size()-1);i++) 
 { 
  if (min_value > vector[i+1]){ 
   min_value = vector[i+1]; 
  }  
 
 } 
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 return min_value; 
} 
 
void max_vector_element(vector <double> vector, double& c, double& I) 
{ 
 c = vector[0]; //in case if all elements equal 
 I = 0;  
 for (int i = 0;i < (vector.size()-1);i++)  
 { 
  if (c < vector[i+1]){ 
   c = vector[i+1]; 
   I = i+1;} 
 } 
} 
 
double DestinRad(double ori, double dest) //computes destination 
radian 
{ 
 double destra; 
 if ((ori - dest) < -PI) //readjust distance from lower limit 
 {  
  destra = (ori - dest) + (2*PI); 
  fromright = 1; //apply 2pi correction to right direction 
below limit 
  fromleft = 0; 
 } 
 else if ((ori - dest) > PI) //readjust distance from upper limit 
 { 
  destra = (ori - dest) - (2*PI); 
  fromright = 0; 
  fromleft = 1; //apply 2pi correction to left direction 
above limit 
  
 } 
 else //within limit 
 { 
  destra = (ori - dest); 
  fromright = 0; 
  fromleft = 0; 
 } 
 return destra; 
} 
 
void reveal_vector(vector <double> vector) 
{ 
 ROS_INFO("--DIRECTION VECTOR--"); 
 ROS_INFO("--DIRECTION VECTOR SIZE-- [%lu]", vector.size()); 
 for(int i = 0; i < vector.size();i++) 
 { 
  ROS_INFO("Element [%i]: [%f]", i, vector[i]); 
 } 
} 
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void roomba_net_cycle(std::vector<double> event, int& choice, 
std::vector<double>& achne_out, std::vector<double>& n_out, 
std::vector<double>& nm_out) 
{ 
 double ACTION_SELECTION_THRESHOLD = 0.67; 
  
 //parameters for state neuron activation function 
 double N_ACT_GAIN = 2; 
 double N_ACT_PERSIST = 0.25; 
 double N_ACT_BASECURRENT = -1.0; 
 std::vector<double> nprev = n; 
  
 //parameters for neuromodulatory neuron activation function and 
synaptic 
 //plasticity 
 //global NM; 
 //global nm; 
 std::vector<double> nmprev = nm; 
 double NM_ACT_GAIN =2; //%2+(5-2)*rand; %2;    % gain for sigmoid 
function 
 double NM_ACT_BASECURRENT = -1.0; 
 double NM_ACT_PERSIST = 0.25;  //% persistence of synaptic 
current 
 double NM_STP_GAIN = 1.1;  //% facillitating synapse 
 double NM_STP_DECAY = 50;  //% recovery time constant 
 double NM_STP_MAX = 2;     //% weight value ceiling 
  
 //% parameters for ACh/NE neuron activation function and synaptic 
plasticity 
 //global achne; 
 std::vector<double> achneprev = achne; 
 double ACHNE_ACT_GAIN =  5; //%2+(5-2)*rand ; gain for sigmoid 
function 
 double ACHNE_ACT_BASECURRENT = -0.5; 
 double ACHNE_ACT_PERSIST = 0.25;   //% persistence of synaptic 
current 
 double ACHNE_STP_GAIN = 0.1;   //% depressing synapse 
 double ACHNE_STP_DECAY = 50;   //% recovery time constant 
 double ACHNE_STP_MAX = 1;      //% weight value ceiling 
 
 //calculate cholinergic/noradrenergic neural activity 
 for (int i = 1; i <= e; i++) 
 { 
 //achne(i) =  activity (ACHNE_ACT_BASECURRENT + ACHNE_ACT_PERSIST 
* achneprev(i) + event(i)*w_e_achne(i), ACHNE_ACT_GAIN); 
  achne[i-1] =  activity(ACHNE_ACT_BASECURRENT + 
ACHNE_ACT_PERSIST*achneprev[i-1] + event[i-1]*w_e_achne[i-1], 
ACHNE_ACT_GAIN); 
  ROS_INFO("achne[i-1] %f, achneprev[i-1] %f,",achne[i-
1],achneprev[i-1]); 
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  ROS_INFO("event[i-1] %f",event[i-1]); 
  } 
   
  /* 
  //%achne = ones(1,4); % FOR DISTRACTED BEHAVIOR 
 for (int i = 1; i <= e; i++) //FOR DISTRACTED BEHAVIOR 
 { 
 achne[i-1] = 1; 
 } 
 */ 
  
 // calculate neuromodulatory activity 
 for (int i = 1; i <= NM; i++) 
 { 
     //I = NM_ACT_BASECURRENT + NM_ACT_PERSIST * nmprev(i); 
     double I = NM_ACT_BASECURRENT + NM_ACT_PERSIST * nmprev[i-1]; 
      
     for (int j = 1; j <=e; j++) 
     { 
      //I = I + event(j)*w_e_nm(j,i); 
         I = I + event[j-1]*w_e_nm[j-1][i-1]; 
        } 
         
        //nm(i) =  activity (I, NM_ACT_GAIN); 
     nm[i-1] =  activity (I, NM_ACT_GAIN); 
    } 
     
     
    // calculate state neural activity 
 for (int i = 1; i <= N; i++) 
 { 
  //I = N_ACT_BASECURRENT+0.5*rand+N_ACT_PERSIST * nprev(i); 
  double I = N_ACT_BASECURRENT+0.5*rand_num()+N_ACT_PERSIST * 
nprev[i-1]; 
   
  //intrinsic synaptic input 
  for (int j = 1; j <= N; j++) 
  { 
   //I = I + nprev(j) * w_n_n_exc(j,i) + (sum(nm)) * 
nprev(j) * w_n_n_inh(j,i); 
   I = I + nprev[j-1] * w_n_n_exc[j-1][i-1] + 
(sum_vector(nm)) * nprev[j-1] * w_n_n_inh[j-1][i-1]; 
  } 
   
  //event synaptic input 
  for (int j = 1; j <= e; j++) 
  { 
   for (int k = 1; k <= NM; k++) 
   { 
    //I = I + nm(k) * w_nm_n(k,i) * achne(j)* 
event(j) * w_e_n(j,i); 
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    I = I + nm[k-1] * w_nm_n[k-1][i-1] * achne[j-1]* 
event[j-1] * w_e_n[j-1][i-1]; 
   } 
  } 
   
  //n(i) = activity (I, N_ACT_GAIN); 
  n[i-1] = activity (I, N_ACT_GAIN); 
  ROS_INFO("n[i-1]: %f",n[i-1]); 
 } 
  
 //update plastic weights with short-term plasticity rule. a spike 
occurs 
 //when an event occurs. 
 for (int i = 1; i <= e; i++) 
 { 
  //w_e_achne(i) = stp (w_e_achne(i), ACHNE_STP_GAIN, 
ACHNE_STP_DECAY, ACHNE_STP_MAX, event(i) > 0.5); 
  w_e_achne[i-1] = stp (w_e_achne[i-1], ACHNE_STP_GAIN, 
ACHNE_STP_DECAY, ACHNE_STP_MAX, event[i-1] > 0.5); 
 } 
  
 for (int i = 1; i <= e; i++) 
 { 
  for (int j = 1; j <= NM; j++) 
  { 
   //if w_e_nm (i,j) > 0 
            // w_e_nm (i,j) = stp (w_e_nm (i,j), NM_STP_GAIN, 
NM_STP_DECAY, NM_STP_MAX, event(i) > 0.5); 
         //end 
          
         if ((w_e_nm[i-1][j-1]) > 0) 
          w_e_nm[i-1][j-1] = stp (w_e_nm[i-1][j-1], NM_STP_GAIN, 
NM_STP_DECAY, NM_STP_MAX, event[i-1] > 0.5); 
  } 
 } 
  
 //find most active state neuron. perform action selection if 
activity is 
 //above threshold 
 //[y,i] = max(n) 
 double y; 
 double i_active; 
 max_vector_element(n,y,i_active); 
 if (y > ACTION_SELECTION_THRESHOLD){ 
  choice = i_active;} 
 else  
  {choice = -1;} //if no neuron active, no selection made 
(selection depends on chc >= 0) 
   
 achne_out = achne; 
 n_out = n; 
 nm_out = nm; 
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}  
 
void CoreInfo(const kobuki_msgs::SensorState::ConstPtr& msg2) 
//void IRInfo(const complete_test::irobotdock::ConstPtr& msg) 
{ 
 //ROS_INFO("Battery voltage: [%i]",msg2->battery); 
  
 if (battery_lock == 0){ 
 battery_initial_level = msg2->battery;  
 battery_lock++; //locks up initial value of battery voltage 
 } 
 else{ 
 battery_level = msg2->battery;  
 } 
  
  
  
 //ROS_INFO("Bumper Values: [%i]", msg2->bumper); 
 bumper = msg2->bumper; 
 //ROS_INFO("Charge Values: [%i]", msg2->charger); 
 charger = msg2->charger; 
 //ROS_INFO("Wheel Drops: [%i]", msg2->wheel_drop); 
  
  
} 
 
void IRInfo(const kobuki_msgs::DockInfraRed::ConstPtr& msg) 
//void IRInfo(const complete_test::irobotdock::ConstPtr& msg) 
{ 
 //ROS_INFO("Data 0: [%i]",msg->data[0]); 
 //ROS_INFO("Data 1: [%i]",msg->data[1]); 
 //ROS_INFO("Data 2: [%i]",msg->data[2]); 
  
 IR_Sensor[0] = msg->data[0]; //data to be passed onto main 
subfunction 
 IR_Sensor[1] = msg->data[1]; 
 IR_Sensor[2] = msg->data[2]; 
  
} 
 
void LsrInfo(const sensor_msgs::LaserScan::ConstPtr& msg) 
{ 
 //int times_run; 
  
 //ros::param::set("/camera/depthimage_to_laserscan_loader/range_m
ax", 10.0); 
 //ROS_INFO("Begin loop - LaserScan Info"); 
 //ROS_INFO("Range Min: [%f]", msg->range_min); 
   //ROS_INFO("Range Max: [%f]", msg->range_max); 
   //ROS_INFO("Size of Ranges: [%lu]",msg->ranges.size()); 
   float minVal = (msg->range_max); //to begin loop 
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   float finalVal = 0; 
   for (int i = 0;i<(msg->ranges.size()); i++){ 
    if ((msg->range_min) <= (msg->ranges[i]) && (msg-
>ranges[i]) <= (msg->range_max)){  //if in range, valid dist. 
     if ((msg->ranges[i]) < minVal){     
        //if lower than prev. min. 
dist. 
      minVal = (msg->ranges[i]); 
      finalVal = minVal; 
     } 
    } 
   } 
    
    
    
    
    
    
   ROS_INFO("Min. Dist: [%f]", finalVal); 
   camera = finalVal; 
   /*if (locate_enable > 0) 
   { 
     ROS_INFO("--DIRECTION RECORDED!!!!!!--"); 
     ROS_INFO("Location Enable: [%i]", locate_enable); 
     locate[2] = finalVal; 
     //ros::Duration(2).sleep(); 
   } 
   */ 
    
   switch(locate_enable){ 
   case 1: 
   locate[0] = finalVal; 
   //ROS_INFO("LOC 1: [%f]", finalVal); 
   break; 
   case 2: 
   locate[1] = finalVal; 
   //ROS_INFO("LOC 2: [%f]", finalVal); 
   break; 
   case 3: 
   locate[2] = finalVal; 
   //ROS_INFO("LOC 3: [%f]", finalVal); 
   break; 
   case 4: 
   locate[3] = finalVal; 
   //ROS_INFO("LOC 4: [%f]", finalVal); 
   break; 
   case 5: 
   locate[4] = finalVal; 
   //ROS_INFO("LOC 5: [%f]", finalVal); 
   break; 
   } 
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   //ROS_INFO("BEFORE FUNCTION"); 
   //ROS_INFO("DIRECTION #: [%i]", dir_vector); 
   //SetFront(dir_vector, finalVal); 
   //ROS_INFO("AFTER FUNCTION"); 
   //dir_vector++; 
   //ROS_INFO("DIRECTION #: [%i]", dir_vector); 
   //WallFollow(finalVal); 
  /*  
   SetFront(finalVal); 
   SetRightFront(finalVal); 
   SetRight(finalVal); 
   SetLeft(finalVal); 
   SetLeftFront(finalVal); 
  */  
 //ROS_INFO("End loop - LaserScan Info"); 
} 
 
void OdomInfo2(const nav_msgs::Odometry::ConstPtr& msg) 
{ 
 
 
 if (locate_enable == 0){ //resets odometry 
   
   std_msgs::Empty resetodom; 
    
  double secs = ros::Time::now().toSec(); 
 while ((ros::Time::now().toSec() - secs) <= 1.5){ 
  chatter_pub2.publish(resetodom); 
  } 
 } 
 
 
 
 if (enable_sub == 1){ //to use vectorized distances 
    //ROS_INFO("ODOM ACTIVATED!"); 
 double yaw; 
  
 yaw = tf::getYaw(msg->pose.pose.orientation); 
 //ROS_INFO("Yaw Angle: [%f]", yaw); 
  
 geometry_msgs::Twist vel; 
  float deg90 = (PI/2); 
  float deg45 = (PI/4); 
  float deg180 = (PI); 
  float destrad; 
   
   
  if (controlint == 0) 
  { 
   originyaw = yaw; 
   ROS_INFO("Origin locked in: [%f]", originyaw); 
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   controlint++; 
  }  
 
 switch (stage){ 
 case 0: //turn right -45 degrees 
 { 
 locate_enable = 1; 
 ROS_INFO("--Case 0---"); 
 destrad = DestinRad(originyaw, deg45); 
 if ((tf::getYaw(msg->pose.pose.orientation) + (fromright*2*PI)) > 
destrad){ 
  
 //ROS_INFO("--START Case 0--"); 
 //ROS_INFO("Current Yaw: [%f]", (tf::getYaw(msg-
>pose.pose.orientation) + (fromright*2*PI))); 
 //ROS_INFO("Destrad: [%f]", destrad); 
 //ROS_INFO("Stage: [%i]", stage); 
 vel.linear.x = 0.0; 
 vel.angular.z = -1.0; 
 ROS_INFO("Origin locked in: [%f]", originyaw); 
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation)); 
 } 
 else{ 
 ROS_INFO("--DONE Case 0--"); 
 vel.linear.x = 0.0; 
 vel.angular.z = 0.0; 
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation)); 
 //ROS_INFO("90 degrees done"); 
 stage++; 
 controlint= 0; 
 //ros::Duration(3).sleep(); 
 } 
 chatter_pub.publish(vel); 
 //ROS_INFO("Stage: [%i]", stage); 
 ROS_INFO("--PUBLISHING--"); 
  
 } 
 break; 
 case 1: //turn right 45 degrees 
 { 
 locate_enable = 2; 
 ROS_INFO("--Case 1---"); 
 //ROS_INFO("Stage: [%i]", stage); 
 destrad = DestinRad(originyaw, deg45); 
 if ((tf::getYaw(msg->pose.pose.orientation) + (fromright*2*PI)) > 
destrad) 
 { 
 vel.linear.x = 0.0; 
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 vel.angular.z = -1.0; 
 ROS_INFO("Origin locked in: [%f]", originyaw); 
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation)); 
 } 
 else 
 { 
 //locate_enable = 2; 
 vel.linear.x = 0.0; 
 vel.angular.z = 0.0; 
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation)); 
 //ROS_INFO("90 degrees done"); 
 stage++; 
 controlint = 0; 
 //ros::Duration(3).sleep(); 
 } 
 chatter_pub.publish(vel); 
 //ROS_INFO("--PUBLISHING--"); 
 } 
 break; 
 case 2: //turn left 180 degrees 
 { 
 locate_enable = 3; 
 ROS_INFO("--Case 2---"); 
 destrad = DestinRad(originyaw, deg180); 
 if ((tf::getYaw(msg->pose.pose.orientation) - (fromleft*2*PI)) <= 
destrad) 
 { 
 vel.linear.x = 0.0; 
 vel.angular.z = 1.0; 
 ROS_INFO("Origin locked in: [%f]", originyaw); 
 ROS_INFO("Yaw Angle Target (+180 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (+180 degrees): 
[%f]",tf::getYaw(msg->pose.pose.orientation)); 
 } 
 else 
 { 
 //locate_enable = 3; 
 vel.linear.x = 0.0; 
 vel.angular.z = 0.0; 
 ROS_INFO("Yaw Angle Target (+180 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (+180 degrees): 
[%f]",tf::getYaw(msg->pose.pose.orientation)); 
 //ROS_INFO("90 degrees done"); 
 stage++; 
 controlint = 0; 
 //ros::Duration(3).sleep(); 
 } 
 chatter_pub.publish(vel); 
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 //ROS_INFO("--PUBLISHING--"); 
 } 
 break; 
 case 3: //turn right 45 degrees 
 { 
 locate_enable = 4; 
 ROS_INFO("--Case 3---"); 
 destrad = DestinRad(originyaw, deg45); 
 if ((tf::getYaw(msg->pose.pose.orientation) + (fromright*2*PI)) > 
destrad) 
 { 
 vel.linear.x = 0.0; 
 vel.angular.z = -1.0; 
 ROS_INFO("Origin locked in: [%f]", originyaw); 
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation)); 
 } 
 else 
 { 
 //locate_enable = 4; 
 vel.linear.x = 0.0; 
 vel.angular.z = 0.0; 
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation)); 
 //ROS_INFO("90 degrees done"); 
 stage++; 
 controlint= 0; 
 //ros::Duration(3).sleep(); 
 } 
 chatter_pub.publish(vel); 
 //ROS_INFO("--PUBLISHING--"); 
 } 
 break; 
 case 4: //turn right 45 degrees 
 { 
 locate_enable = 5; 
 ROS_INFO("--Case 4---"); 
 destrad = DestinRad(originyaw, deg45); 
 if ((tf::getYaw(msg->pose.pose.orientation) + (fromright*2*PI)) > 
destrad) 
 { 
 vel.linear.x = 0.0; 
 vel.angular.z = -1.0; 
 ROS_INFO("Origin locked in: [%f]", originyaw); 
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation)); 
 } 
 else 
 { 
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 //locate_enable = 5; 
 vel.linear.x = 0.0; 
 vel.angular.z = 0.0; 
 ROS_INFO("Yaw Angle Target (-45 degrees): [%f]", destrad); 
 ROS_INFO("Yaw Angle Progress (-45 degrees): [%f]",tf::getYaw(msg-
>pose.pose.orientation)); 
 //ROS_INFO("90 degrees done"); 
 stage++; 
 controlint= 0; 
 //ros::Duration(3).sleep(); 
 } 
 chatter_pub.publish(vel); 
 //ROS_INFO("--PUBLISHING--"); 
 } 
 break; 
 case 5: //origin point 
 {ROS_INFO("---DONE!----"); 
  
 //reveal_vector(locate); 
 //ros::Duration(3).sleep(); 
 stage = 0; 
 controlint = 0; 
 enable_sub = 0; //turn off vectorized distances 
 locate_enable = 0; 
 } 
 break; 
 default: 
 { 
 ROS_INFO("--DEFAULT--"); 
 controlint = 0; 
 stage = 0; 
 } 
 break; 
 } 
  
 } 
  
 else{ 
  ROS_INFO("Turning subfunction not activated"); 
  } 
 
 
} 
 
 
 
void getinfo(double duration) 
{ ROS_INFO("Inside GetInfo Loop!"); 
 double secs =ros::Time::now().toSec(); 
 ROS_INFO("Get Info Loop SECS! [%f]", secs); 
 while ((ros::Time::now().toSec() - secs) <= duration) 
 { 
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 ROS_INFO("Inside GetInfo While Loop!"); 
 //ROS_INFO("Sleeping"); 
 //ros::spinOnce(); 
 //ros::spin(); 
  
 //ros::AsyncSpinner spinner(4); // Use 4 threads 
    //spinner.start(); 
     
     
 ROS_INFO("End of GetInfo While Loop!"); 
 } 
 ROS_INFO("Done with GetInfo Loop!"); 
  
 //ros::AsyncSpinner spinner(4); // Use 4 threads 
    //spinner.start(); 
  
} 
 
void WallFollow(float bump, float distVal) 
{ 
 
ROS_INFO("--WALL FOLLOW--"); 
ROS_INFO("Bump [%f]", bump); 
ROS_INFO("DistVal [%f]", distVal); 
 
geometry_msgs::Twist vel; 
//int wall; 
//float WALL_CLOSE = 1.5; 
//float WALL_FAR = WALL_CLOSE + 2; 
float WALL_CLOSE = 0.53; 
//float WALL_FAR = WALL_CLOSE + 0.2; 
float WALL_FAR = 0.77; 
int condition; 
//vel.angular.z = 0.0; 
//vel.linear.x = 0.0; 
float duration; 
 
 
ROS_INFO("Wall Follow"); 
 if (bump == 1)  
 { 
 vel.linear.x = 0.0; 
 vel.angular.z = -0.8; 
 ROS_INFO("Bump - Wall Follow"); 
 condition = 1; 
 duration = 1.5; 
 } 
 else if (distVal > WALL_FAR) 
 { 
 vel.linear.x = 0.3; 
 vel.angular.z = 0.4*(-wall); 
 ROS_INFO("distVal > WALL_FAR");  
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 condition = 2; 
 duration = 1.0; 
 } 
 else if (distVal < WALL_CLOSE) 
 { 
 vel.linear.x = 0.3; 
 vel.angular.z = 0.4*wall; 
 ROS_INFO("distVal < WALL_CLOSE"); 
 condition = 3; 
 duration = 1.0; 
 } 
 else  
 { 
 vel.linear.x = 0.3; 
 vel.angular.z = 0.0; 
 ROS_INFO("Straight Ahead"); 
 condition = 4; 
 duration = 1.0; 
 } 
 
 double secs =ros::Time::now().toSec(); 
 while ((ros::Time::now().toSec() - secs) <= duration){ 
 chatter_pub.publish(vel); 
 ROS_INFO("--Wall Follow Stats [%f], [%f]---", bump, distVal); 
 ROS_INFO("--Wall Follow Parameters - Condition: [%i], Wall: [%i], 
Left: [%f], Right: [%f]", condition, wall, locate[2], locate[1]);  
 } 
 //return; 
} 
 
void OpenField(float bump, float left, float front, float right){ 
 
ROS_INFO("--OPEN FIELD--"); 
ROS_INFO("--Left: [%f], Front: [%f], Right: [%f]--", left, front, 
right); 
 
float MAXSPEED = 0.40; 
float MINSPEED = 0.10; 
float MAXDIST = 300; 
float TURN = 0.25; 
geometry_msgs::Twist vel; 
//int bump = 0; 
float duration; 
 
//find the most open area. speed is proportional to the amount of open 
space 
//go straight 
if (front > left && front > right){  
    if (front > MAXDIST){ 
        front = MAXDIST;} 
     
    if (bump == 1){ 
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        //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN); 
    vel.linear.x = 0.0; 
 vel.angular.z = -0.8; 
 duration = 1.5; 
 ROS_INFO("---OPEN FIELD - Go Straight - Bump---"); 
} 
    else{ 
        //SetFwdVelAngVelCreate(serport, 
max(MINSPEED,(front/MAXDIST)^2*MAXSPEED), 0.0); 
    vel.linear.x = 0.3; 
 vel.angular.z = 0.0; 
 duration = 1.0; 
 ROS_INFO("---OPEN FIELD - Go Straight - NO Bump---"); 
} 
}     
 
//go left 
else if (left > right){  
    if (left > MAXDIST){ 
        left = MAXDIST;} 
     
    if (bump == 1){ 
        //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN); 
    vel.linear.x = 0.0; 
 vel.angular.z = -0.8; 
 duration = 1.5; 
 ROS_INFO("---OPEN FIELD - Go Left - Bump---"); 
} 
    else{ 
        //SetFwdVelAngVelCreate(serport, 
max(MINSPEED,(left/MAXDIST)^2*MAXSPEED), TURN); 
    vel.linear.x = 0.3; 
 vel.angular.z = 0.4; 
 duration = 1.0; 
 ROS_INFO("---OPEN FIELD - Go Left - NO Bump---"); 
} 
} 
 
else{ //go to the right 
    if (right > MAXDIST){ 
        right = MAXDIST;} 
    if (bump == 1){ 
        //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN); 
    vel.linear.x = 0.0; 
 vel.angular.z = -0.8; 
 duration = 1.5; 
 ROS_INFO("---OPEN FIELD - Go Right - Bump---"); 
} 
    else{ 
        //SetFwdVelAngVelCreate(serport, 
max(MINSPEED,(right/MAXDIST)^2*MAXSPEED), -1*TURN); 
    vel.linear.x = 0.3; 
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 vel.angular.z = -0.4; 
 duration = 1.0; 
 ROS_INFO("---OPEN FIELD - Go Right - NO Bump---"); 
} 
}   
 
 double secs =ros::Time::now().toSec(); 
 while ((ros::Time::now().toSec() - secs) <= duration){ 
  chatter_pub.publish(vel);} 
} 
 
void ExploreObject(float bump, float left, float front, float right){ 
 
ROS_INFO("--EXPLORE OBJECT--"); 
ROS_INFO("--Left: [%f], Front: [%f], Right: [%f]--", left, front, 
right); 
 
float MAXSPEED = 0.25; 
float MINSPEED = 0.10; 
float MAXDIST = 300; 
float TURN = 0.5; 
//int bump = 0; 
geometry_msgs::Twist vel; 
 
float duration; 
 
//speed is proportional to the amount of change 
if (front > left && front > right){ //% go straight 
    if (front > MAXDIST){ 
        front = MAXDIST;} 
     
    if (bump == 1){ 
        //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN); 
    vel.linear.x = 0.0; 
 vel.angular.z = -0.8; 
 duration = 1.5; 
 ROS_INFO("---EXPLORE OBJ - Go Straight - Bump---"); 
} 
    else{ 
        //SetFwdVelAngVelCreate(serport, 
max(MINSPEED,(front/MAXDIST)^2*MAXSPEED), 0.0); 
    vel.linear.x = 0.3; 
 vel.angular.z = 0.0; 
 duration = 1.0; 
 ROS_INFO("---EXPLORE OBJ - Go Straight - NO Bump---"); 
} 
} 
 
     
else if (left > right){     //% go to the left 
    if (left > MAXDIST){ 
        left = MAXDIST;} 
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    if (bump == 1){ 
        //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN); 
    vel.linear.x = 0.0; 
 vel.angular.z = -0.8; 
 duration = 1.5; 
 ROS_INFO("---EXPLORE OBJ - Go Left - Bump---"); 
} 
    else{ 
        //SetFwdVelAngVelCreate(serport, 
max(MINSPEED,(left/MAXDIST)^2*MAXSPEED), TURN); 
    vel.linear.x = 0.3; 
 vel.angular.z = 0.4; 
 duration = 1.0; 
 ROS_INFO("---EXPLORE OBJ - Go Left - NO Bump---"); 
} 
}         
     
else{ //% go to the right  
    if (right > MAXDIST){ 
        right = MAXDIST;} 
     
    if (bump == 1){ 
        //SetFwdVelAngVelCreate(serport, 0.0, 2*TURN); 
    vel.linear.x = 0.0; 
 vel.angular.z = -0.8; 
 duration = 1.5; 
 ROS_INFO("---EXPLORE OBJ - Go Right - Bump---"); 
} 
    else{ 
        //SetFwdVelAngVelCreate(serport, 
max(MINSPEED,(right/MAXDIST)^2*MAXSPEED), -1*TURN); 
 vel.linear.x = 0.3; 
 vel.angular.z = -0.4; 
 duration = 1.0; 
 ROS_INFO("---EXPLORE OBJ - Go Right - NO Bump---"); 
} 
}   
 double secs =ros::Time::now().toSec(); 
 while ((ros::Time::now().toSec() - secs) <= duration){ 
  chatter_pub.publish(vel);} 
} 
 
void FindHome(){ 
ROS_INFO("--FIND HOME--"); 
//system("roslaunch kobuki_auto_docking activate.launch --screen"); 
} 
 
void AtHome(){ 
ROS_INFO("--AT HOME--"); 
} 
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void LeaveHome(){ 
ROS_INFO("--LEAVE HOME--"); 
geometry_msgs::Twist vel; 
 
 double secs =ros::Time::now().toSec(); 
 while ((ros::Time::now().toSec() - secs) <= 1.0){ 
 vel.linear.x = -0.3; 
 vel.angular.z = 0.0; 
 chatter_pub.publish(vel); 
 } 
 
 double secs2 =ros::Time::now().toSec(); 
 while ((ros::Time::now().toSec() - secs2) <= 1.0){ 
 vel.linear.x =  0.0; 
 vel.angular.z = 0.3; 
 chatter_pub.publish(vel); 
 } 
} 
 
 
 
void main_neuromodulated_program_direct_sensor() 
{ 
 //initialize neural network 
 roomba_net_init(); 
  
 ros::AsyncSpinner spinner(4); // Use 4 threads 
    spinner.start(); 
  
    ROS_INFO("Initialization Done!"); 
 double tic = ros::Time::now().toSec(); //start timer 
 ROS_INFO("Tic Saved!"); 
 //ros::Duration(5).sleep(); 
  
  
 double behave_state_time = (ros::Time::now().toSec()) - tic; 
 int behave_state = STATE_WALL_FOLLOW; 
 int new_behave_state = behave_state; 
 ROS_INFO("Behave State Time Saved!"); 
 //getinfo(2.5); //% initial battery level 
 //ROS_INFO("GetInfo Activated!"); 
 double current_time = (ros::Time::now().toSec()) - tic; 
 //loginx = 0; 
 //running the network for approximately five minutes or whatever 
minutes... 
 ROS_INFO("Current Time Logged!: [%f]", current_time); 
 //ros::Duration(5).sleep(); 
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 while (current_time < 300){ 
  
 current_time = (ros::Time::now().toSec()) - tic; 
 ROS_INFO("Inner Loop - Current Time Logged!: [%f]", 
current_time); 
 //ros::Duration(5).sleep(); 
  
  
 //vectorize_sensor_reading -- done in Odom2 subroutine 
 //vectorize_sensor_reading = [front right left right_close_front 
left_close_front] 
  
 enable_sub = 1; //activate sensor vectoring 
  
  
 while(enable_sub == 1){ //stays in loop until vectoring is done 
 ROS_INFO("Sensor Vectoring in Progress - Main Subroutine 
Paused"); 
 } 
 
 ROS_INFO("Sensor Vectoring Finished"); 
  
 ROS_INFO("WHILE LOOP DONE!!!!"); 
 //spinner.stop(); 
 //ros::Duration(15).sleep(); 
  
  
 //get bump sensor information -- done in CoreInfo subroutine 
 //spinner.start(); 
 //get dock beam status - get information from IR and 
Core(charging) subroutine 
 int beam; //true if home base detected 
  
 if ((IR_Sensor[0] > 0) || (IR_Sensor[1] > 0) || (IR_Sensor[2] > 
0)){ 
 beam = 1; 
 } 
 else{ 
 beam = 0; 
 } 
  
  
 int homed; //homed if charging or close to the docking station 
  
 if ((beam == 1) || (charger > 0)){ 
 homed = 1; 
 } 
 else{ 
 homed = 0; 
 } 
  
 battery = battery_level/battery_initial_level; 
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 //% get events (binary 1 == event occurred) 
    //event(e_battery) = rand < (1-battery);  % event more likely as 
battery level drops 
     
    if (rand_num() < (1 - battery)){ 
    event[e_battery-1] = 1; 
    } 
    else{  
    event[e_battery-1] = 0; 
    } 
     
    //event(e_beam) = beam ~=0; 
     
    if (beam != 0){ 
    event[e_beam-1] = 1; 
    } 
    else{  
    event[e_beam-1] = 0; 
    } 
  
 //event(e_bump) = BumpLeft || BumpRight || BumpFront || 
min(vectorize_sensor_reading) < too_close; % for 5 sensors 
  
 if ((bumper > 0) || (min_vector(locate) < too_close)){ 
 event[e_bump-1] = 1; 
 } 
 else{ 
 event[e_bump-1] = 0; 
 } 
  
 if (min_vector(locate) < comparing_distance){ 
 event[e_ping_value-1] = 1; 
 } 
 else{ 
 event[e_ping_value-1] = 0; 
 } 
 //% for 5 sensors comparing_max_distance = 70 
 
 //publish events here 
  
  
 //special processing for returning home 
 if (behave_state == STATE_FIND_HOME){ 
  
  //if near docking station transition to at home sub-state 
  if (homed == 1){ 
            new_behave_state = STATE_AT_HOME;} 
        //if timed out searching for docking station, abort search if 
no 
        //beam detected. if beam is detected continue searching 
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        else if ((current_time-behave_state_time) > 
FIND_HOME_TIMEOUT){ 
         if (beam == 0) 
          new_behave_state = STATE_LEAVE_HOME; 
         else 
          behave_state_time = (ros::Time::now().toSec()) - tic;  
//there was a beam, try a little longer 
         } 
        } 
      
 else if (behave_state == STATE_AT_HOME){ 
 new_behave_state = STATE_LEAVE_HOME;} 
 else if (behave_state == STATE_LEAVE_HOME){ 
 new_behave_state = STATE_WALL_FOLLOW;} 
  
 //action selection based on neural network activity. chc is non-
zero 
    //if action is selected by the network 
    else{ ROS_INFO("ROOMBA NET CYCLE ACTIVATED!"); 
     roomba_net_cycle(event, chc, achne, n, nm); 
     if (chc >= 0){ 
      new_behave_state = (chc+1);} 
    } 
     
    /* 
    spinner.stop(); 
    ROS_INFO("--State Neurons: n[0]: [%f]", n[0]); 
    ROS_INFO("--State Neurons: n[1]: [%f]", n[1]); 
    ROS_INFO("--State Neurons: n[2]: [%f]", n[2]); 
    ROS_INFO("--State Neurons: n[3]: [%f]", n[3]); 
    ROS_INFO("--Choice chc [%i]", chc); 
    ROS_INFO("--New Behave State [%i]", new_behave_state); 
 ros::Duration(15).sleep(); 
     
    spinner.start();  
    */ 
     
     
 //transitioned to a new state, print state information 
    if (behave_state != new_behave_state){ 
        behave_state_time = (ros::Time::now().toSec()) - tic; 
  
 switch(new_behave_state){ 
 case 1: //case STATE_WALL_FOLLOW 
  //if 
min(vectorize_sensor_reading(3),vectorize_sensor_reading(5))<=50 % 
while using 5 sensors 
  //       left                         left_close_front  
  if (min(locate[2], locate[3]) <= 0.77){ //wall value 
   wall = WALL_LEFT;} 
       else{ 
        wall = WALL_RIGHT;} 
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      ROS_INFO("State: WallFollow"); 
 ROS_INFO("--WALL--", wall); 
      break; 
       
      case 2: //case STATE_OPEN_FIELD 
      ROS_INFO("State: OpenField"); 
      break; 
       
      case 3: //case STATE_EXPLORE_OBJECT 
      ROS_INFO("State: ExploreObject"); 
      break; 
       
      case 4: //case STATE_FIND_HOME 
      ROS_INFO("State: FindHome"); 
      break; 
       
      case 5: //case STATE_AT_HOME 
      ROS_INFO("State: AtHome"); 
      //dock_time = toc; 
      dock_time = (ros::Time::now().toSec()) - tic; 
      break; 
       
      case 6: //case STATE_LEAVE_HOME 
      ROS_INFO("State: LeaveHome"); 
      break; 
 } 
  
 behave_state = new_behave_state; 
 } 
  
 //handle states 
    switch(behave_state){ 
     case 1: //case STATE_WALL_FOLLOW 
 
  if (wall == 0){ //if wall hasn't been defined by previous 
functions 
   if (locate[2] < locate[1]){ 
    wall = WALL_LEFT; 
   } 
   else if (locate[1] < locate[2]){ 
    wall = WALL_RIGHT; 
   } 
  }   
 
 
       //use the smallest ping sensor's value to the appropriate 
wall for following 
            if (wall == WALL_LEFT){ 
         //WallFollow (serRoombaport, event(e_bump), left); 
   WallFollow (event[e_bump-1], locate[2]);} 
            else{ 
             //WallFollow(serRoombaport, event(e_bump), right); 
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             WallFollow(event[e_bump-1], locate[1]);} 
              
            break; 
              
              
        case 2: //case STATE_OPEN_FIELD 
         //OpenField (serRoombaport, event(e_bump), left, front, 
right); 
         OpenField(event[e_bump-1], locate[2], locate[4], 
locate[1]); 
         break; 
          
        case 3: //case STATE_EXPLORE_OBJECT 
         //ExploreObject (serRoombaport, event(e_bump), left, front, 
right); 
      ExploreObject(event[e_bump-1], locate[2], locate[4], 
locate[1]); 
      break; 
     
     case 4: //case STATE_FIND_HOME 
      //FindHome (serRoombaport); 
      FindHome(); 
      break; 
       
     case 5: //case STATE_AT_HOME 
      //AtHome (serRoombaport); 
      AtHome(); 
      break; 
      
     case 6: //case STATE_LEAVE_HOME  
      //LeaveHome (serRoombaport); 
      LeaveHome(); 
      break;  
    } 
  
 //log state, event, and neural network information for post-
processing 
 //loginx = loginx + 1; 
    //log(loginx, 1) = current_time; 
    logvec[0] = current_time; 
    //log(loginx, 2) = behave_state; 
    logvec[1] = behave_state; 
    //log(loginx, 3:3+e-1) = event; 
    logvec[2] = event[0]; 
    logvec[3] = event[1]; 
    logvec[4] = event[2]; 
    logvec[5] = event[3]; 
    //log(loginx, 3+e:3+e+N+NM+e-1) = [n nm achne]; 
    logvec[6] = n[0]; 
    logvec[7] = n[1]; 
    logvec[8] = n[2]; 
    logvec[9] = n[3]; 
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    logvec[10] = nm[0]; 
    logvec[11] = nm[1]; 
    logvec[12] = achne[0]; 
    logvec[13] = achne[1]; 
    logvec[14] = achne[2]; 
    logvec[15] = achne[3]; 
    //log(loginx,17:20)= w_e_achne; % These weights are getting 
updated 
    logvec[16] = w_e_achne[0];  
    logvec[17] = w_e_achne[1]; 
    logvec[18] = w_e_achne[2]; 
    logvec[19] = w_e_achne[3]; 
    //log(loginx,21:22) = w_e_nm(1,1:2); % These weights are getting 
updated 
    logvec[20] = w_e_nm[0][0]; 
    logvec[21] = w_e_nm[0][1]; 
    //log(loginx,23:24) = w_e_nm(2,1:2);% These weights are getting 
updated 
    logvec[22] = w_e_nm[1][0];  
    logvec[23] = w_e_nm[1][1]; 
    //log(loginx,25:26) = w_e_nm(3,1:2);% These weights are getting 
updated 
    logvec[24] = w_e_nm[2][0]; 
    logvec[25] = w_e_nm[2][1]; 
    //log(loginx,27:28) = w_e_nm(4,1:2);% These weights are getting 
updated 
    logvec[26] = w_e_nm[3][0]; 
    logvec[27] = w_e_nm[3][1]; 
     
    loginx.push_back(logvec); 
    //spinner.start(); 
 } //end of timing while loop 
                                                                       
 spinner.stop(); 
 //writing of data to xls 
 ofstream f("./src/complete_test/src/results.xls"); 
 //f << m << " " << n << "n"; 
  
 //Data Headers 
 f<<"current_time"; 
 f<<" "; 
 f<<"behave_state"; 
 f<<" "; 
 f<<"event[0]-ping"; 
 f<<" "; 
 f<<"event[1]-battery"; 
 f<<" "; 
 f<<"event[2]-bump"; 
 f<<" "; 
 f<<"event[3]-beam"; 
 f<<" "; 
 f<<"n[0]-Wall_Follow"; 
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 f<<" "; 
 f<<"n[1]-Open_Field"; 
 f<<" "; 
 f<<"n[2]-Explore_Object"; 
 f<<" "; 
 f<<"n[3]-Find_Home"; 
 f<<" "; 
 f<<"nm[0]-DA"; 
 f<<" "; 
 f<<"nm[1]-5HT"; 
 f<<" "; 
 f<<"achne[0]-ping"; 
 f<<" "; 
 f<<"achne[1]-battery"; 
 f<<" "; 
 f<<"achne[2]-bump"; 
 f<<" "; 
 f<<"achne[3]-beam"; 
 f<<" "; 
 f<<"w_e_achne[0]-ping_ach"; 
 f<<" "; 
 f<<"w_e_achne[1]-bat_ach"; 
 f<<" "; 
 f<<"w_e_achne[2]-bmp_ach"; 
 f<<" "; 
 f<<"w_e_achne[3]-bea_ach"; 
 f<<" "; 
 f<<"w_e_nm[0][0]-ping_DA"; 
 f<<" "; 
 f<<"w_e_nm[0][1]-ping_5HT"; 
 f<<" "; 
 f<<"w_e_nm[1][0]-bat_DA"; 
 f<<" "; 
 f<<"w_e_nm[1][1]-bat_5HT"; 
 f<<" "; 
 f<<"w_e_nm[2][0]-bmp_DA"; 
 f<<" "; 
 f<<"w_e_nm[2][1]-bmp_5HT"; 
 f<<" "; 
 f<<"w_e_nm[3][0]-bea_DA"; 
 f<<" "; 
 f<<"w_e_nm[3][1]-bea_5HT"; 
 f<<"\n"; 
  
  
 //writes data 
 for (int i = 0; i < loginx.size(); i++) 
   { 
    for (int j = 0; j < loginx[i].size(); j++) 
     { 
      f << loginx[i][j]; 
      f << " "; 
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     }  
    f << "\n"; 
   } 
 
 
} 
 
 
 
 
 
 
 
int main(int argc, char **argv) 
{ 
  
 // %Tag(INIT)% 
 ros::init(argc, argv, "nuero"); 
 // %EndTag(INIT)% 
  
 // %Tag(NODEHANDLE)% 
   ros::NodeHandle node_handle; 
 // %EndTag(NODEHANDLE)% 
  
 //initialize neural network 
 //roomba_net_init(); 
  
 ros::Duration(15).sleep(); 
  
 ros::Subscriber sub1 = node_handle.subscribe("/odom", 0, 
OdomInfo2); //Internal Odometry sensors 
 ros::Subscriber sub2 = node_handle.subscribe("/scan", 0, 
LsrInfo); //Kinnect Camera 
 ros::Subscriber sub3 = 
node_handle.subscribe("/mobile_base/sensors/dock_ir", 0, IRInfo); 
//kobuki IR sensors 
 ros::Subscriber sub4 = 
node_handle.subscribe("/mobile_base/sensors/core", 0, CoreInfo); 
//kobuki core sensors 
 chatter_pub = 
node_handle.advertise<geometry_msgs::Twist>("/mobile_base/commands/vel
ocity", 1); 
 chatter_pub2 = 
node_handle.advertise<std_msgs::Empty>("/mobile_base/commands/reset_od
ometry", 1); 
 main_neuromodulated_program_direct_sensor(); 
 //ros::spin(); 
  
 /* 
 int chc; 
 for (int i = 1;i <=10;i++) 
 { 
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 ROS_INFO("---- LOOP NUMBER %i ----",i); 
 roomba_net_cycle(event, chc, achne, n, nm); 
 ROS_INFO("It worked."); 
 ROS_INFO("Chc: %i",chc); 
 } 
  
 event[0] = 1; 
 for (int j = 11;j <=20;j++) 
 { 
 ROS_INFO("---- LOOP NUMBER %i ----",j); 
 roomba_net_cycle(event, chc, achne, n, nm); 
 ROS_INFO("It worked."); 
 ROS_INFO("Chc: %i",chc); 
 } 
 */ 
} 
 

 

EXAMPLE OF SPIKING NEURAL NETWORK SIMULATION CODE IN C++ 
 

/* 
 * Copyright (c) 2013 Regents of the University of California. All 
rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 
 * 2. Redistributions in binary form must reproduce the above 
copyright 
 *    notice, this list of conditions and the following disclaimer in 
the 
 *    documentation and/or other materials provided with the 
distribution. 
 * 
 * 3. The names of its contributors may not be used to endorse or 
promote 
 *    products derived from this software without specific prior 
written 
 *    permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
FOR 
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 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
COPYRIGHT OWNER OR 
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, 
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
OF 
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
(INCLUDING 
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 * 
 * 
**********************************************************************
************************* * 
 * CARLsim 
 * created by:   (MDR) Micah Richert, (JN) Jayram M. Nageswaran 
 * maintained by: (MA) Mike Avery <averym@uci.edu>, (MB) Michael 
Beyeler <mbeyeler@uci.edu>, 
 *     (KDC) Kristofor Carlson <kdcarlso@uci.edu> 
 * 
 * CARLsim available from 
http://socsci.uci.edu/~jkrichma/CARL/CARLsim/ 
 * Ver 10/09/2013 
 */  
 
#include <snn.h> 
#include <ROSevent.h> 
 
//#include "../../../testbed/src/complete_test/src/vector_maker.cpp" 
 
#define N    1000 
 
#define action 70 
#define actionin 1000 
 
#define actionN N*0.1 
#define eventN N*0.1 
  
int main() 
{ 
 // create a network 
 CpuSNN s("global"); 
 
        int event_value = 2; // 0; // 0; // 0; // 0; // 6; // 6; // 6; 
// 4; // 0; // 6; // 12; // 4; // 0;  
        cout << "The value is: " << event_value; 
        //std::cin.ignore().get(); 
 
        //ACh/NE group 
 int ach=s.createGroup("ach", 4, EXCITATORY_NEURON); 
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 s.setNeuronParameters(ach, 0.02f, 0.2f, -65.0f, 8.0f); 
 
 //dopamine group 
 int dopa=s.createGroup("dopa", N, EXCITATORY_NEURON); 
 s.setNeuronParameters(dopa, 0.02f, 0.2f, -65.0f, 8.0f); 
 
 //serotonin group 
 int sero=s.createGroup("sero", N,  EXCITATORY_NEURON); 
 s.setNeuronParameters(sero, 0.02f, 0.2f, -65.0f, 8.0f); 
  
  
 //action neuron groups 
 int openfield=s.createGroup("open_field",actionN, 
EXCITATORY_NEURON); 
 s.setNeuronParameters(openfield, 0.02f, 0.2f, -65.0f, 8.0f); 
 
 int explore=s.createGroup("explore",actionN, EXCITATORY_NEURON); 
 s.setNeuronParameters(explore, 0.02f, 0.2f, -65.0f, 8.0f); 
 
 int wallfollow=s.createGroup("wall_follow",actionN, 
EXCITATORY_NEURON); 
 s.setNeuronParameters(wallfollow, 0.02f, 0.2f, -65.0f, 8.0f); 
 
 int findhome=s.createGroup("find_home",actionN, 
EXCITATORY_NEURON); 
 s.setNeuronParameters(findhome, 0.02f, 0.2f, -65.0f, 8.0f); 
  
 //event neuron input groups (battery, bump, home, object) 
 int 
ginbat=s.createSpikeGeneratorGroup("input_battery",eventN,EXCITATORY_N
EURON); 
 int 
ginbmp=s.createSpikeGeneratorGroup("input_bump",eventN,EXCITATORY_NEUR
ON); 
 int 
ginhome=s.createSpikeGeneratorGroup("input_home",eventN,EXCITATORY_NEU
RON); 
 int 
ginobj=s.createSpikeGeneratorGroup("input_object",eventN,EXCITATORY_NE
URON); 
  
 //***CONNECTIONS*** 
 
 //serotonin --> dopamine, full connection 
 s.connect(sero,dopa,"full", -1.0f, -1.0f, 1.0f, 1, 1, SYN_FIXED); 
 
 //ACh/NE --> serotonin 
 s.connect(ach,sero,"full", +1.0f, +1.0f, 1.0f, 1, 20, 
SYN_PLASTIC);//non-distracted 
  
 
 //ACh/NE --> dopamine 
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 s.connect(ach,dopa,"full", +1.0f, +1.0f, 1.0f, 1, 20, 
SYN_PLASTIC);//non-distracted 
         
 
 //openfield/explore -->dopamine 
 s.connect(openfield,dopa,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(explore,dopa,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 //wallfollow/findhome --> serotonin   
 s.connect(wallfollow,sero,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(findhome,sero,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 //dopamine --> openfield/explore 
 s.connect(dopa,openfield,"full", +5.0f, +5.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(dopa,explore,"full", +5.0f, +5.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 //serotonin --> wallfollow/findhome 
 s.connect(sero,wallfollow,"full", +5.0f, +5.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(sero,findhome,"full", +5.0f, +5.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 //OFC-PFC all-to-all 
 //openfield everything 
 s.connect(openfield,explore,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(openfield,wallfollow,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(openfield,findhome,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 s.connect(openfield,explore,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(openfield,wallfollow,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(openfield,findhome,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 //explore everything 
 s.connect(explore,openfield,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(explore,wallfollow,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(explore,findhome,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
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 s.connect(explore,openfield,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(explore,wallfollow,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(explore,findhome,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 //wallfollow everything 
 s.connect(wallfollow,openfield,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(wallfollow,explore,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(wallfollow,findhome,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 s.connect(wallfollow,openfield,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(wallfollow,explore,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(wallfollow,findhome,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 //findhome everything 
 s.connect(findhome,openfield,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(findhome,explore,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(findhome,wallfollow,"full", -1.0f, -1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 
 s.connect(findhome,openfield,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(findhome,explore,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
 s.connect(findhome,wallfollow,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); 
  
 //bump 
 //s.connect(ginbmp,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_PLASTIC); //non-distracted 
 s.connect(ginbmp,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); //distracted 
 s.connect(ginbmp,dopa,"full", +0.5f, +0.5f, 1.0f, 1, 1, 
SYN_FIXED); //risk taking 
 //s.connect(ginbmp,sero,"full", +0.5f, +0.5f, 1.0f, 1, 1, 
SYN_FIXED); //risk aversive 
 //s.setSpikeRate(ginbmp,&in); 
  
 //home 
        //s.connect(ginhome,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_PLASTIC);//non-distracted 
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        s.connect(ginhome,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED); //distracted 
 s.connect(ginhome,sero,"full", +0.5f, +0.5f, 1.0f, 1, 1, 
SYN_FIXED); 
 //s.setSpikeRate(ginlas,&in); 
  
 //battery 
 //s.connect(ginbat,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_PLASTIC);//non-distracted 
 s.connect(ginbat,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED);//distracted 
 s.connect(ginbat,sero,"full", +0.5f, +0.5f, 1.0f, 1, 1, 
SYN_FIXED); 
 //s.setSpikeRate(ginbat,&in); 
  
 //object 
 //s.connect(ginobj,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_PLASTIC);//non-distracted 
 s.connect(ginobj,ach,"full", +1.0f, +1.0f, 1.0f, 1, 1, 
SYN_FIXED);//distracted 
 s.connect(ginobj,dopa,"full", +0.5f, +0.5f, 1.0f, 1, 1, 
SYN_FIXED); 
 //s.setSpikeRate(ginex,&in); 
 
// // make random connections with 10% probability 
// s.connect(g2,g1,"random", -1.0f/100, -1.0f/100, 0.1f, 1, 1, 
SYN_FIXED); 
// // make random connections with 10% probability, and random 
delays between 1 and 20 
// s.connect(g1,g2,"random", +0.25f/100, 0.5f/100, 0.1f,  1, 20, 
SYN_PLASTIC); 
// s.connect(g1,g1,"random", +6.0f/100, 10.0f/100, 0.1f,  1, 20, 
SYN_PLASTIC); 
 
// // 5% probability of connection 
// s.connect(gin,g1,"random", +100.0f/100, 100.0f/100, 0.05f,  1, 
20, SYN_FIXED); 
 
// float COND_tAMPA=5.0, COND_tNMDA=150.0, COND_tGABAa=6.0, 
COND_tGABAb=150.0; 
//
 s.setConductances(ALL,true,COND_tAMPA,COND_tNMDA,COND_tGABAa,COND
_tGABAb); 
 
// // here we define and set the properties of the STDP.  
// float ALPHA_LTP = 0.10f/100, TAU_LTP = 20.0f, ALPHA_LTD = 
0.12f/100, TAU_LTD = 20.0f;  
// s.setSTDP(g1, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD); 
 
// // show logout every 10 secs, enabled with level 1 and output to 
stdout. 
// s.setLogCycle(10, 1, stdout); 
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// // put spike times into spikes.dat 
// s.setSpikeMonitor(g1,"results/ROSSNN/spikes.dat"); 
 
// // Show basic statistics about g2 
// s.setSpikeMonitor(g2); 
 
// s.setSpikeMonitor(gin); 
 
 float COND_tAMPA=5.0, COND_tNMDA=150.0, COND_tGABAa=6.0, 
COND_tGABAb=150.0; 
 s.setConductances(ALL,true,COND_tAMPA,COND_tNMDA,COND_tGABAa,COND
_tGABAb); 
 
 // here we define and set the properties of the STDP.  
 float ALPHA_LTP = 0.10f/100, TAU_LTP = 20.0f, ALPHA_LTD = 
0.12f/100, TAU_LTD = 20.0f;  
 s.setSTDP(dopa, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD); 
 s.setSTDP(sero, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD); 
 s.setSTDP(ach, true, ALPHA_LTP, TAU_LTP, ALPHA_LTD, TAU_LTD); 
  
 // put spike times into spikes.dat 
 s.setSpikeMonitor(ach,"results/ROSSNN/ach_spikes.dat"); 
 s.setSpikeMonitor(sero,"results/ROSSNN/sero_spikes.dat"); 
 s.setSpikeMonitor(dopa,"results/ROSSNN/dopa_spikes.dat"); 
 
 s.setSpikeMonitor(openfield,"results/ROSSNN/openfield_spikes.dat"
); 
 s.setSpikeMonitor(explore,"results/ROSSNN/explore_spikes.dat"); 
 s.setSpikeMonitor(wallfollow,"results/ROSSNN/wallfollow_spikes.da
t"); 
 s.setSpikeMonitor(findhome,"results/ROSSNN/findhome_spikes.dat"); 
  
  
 //setup some baseline input 
 PoissonRate in(eventN); 
 for (int i=0;i<eventN;i++) in.rates[i] = 1; 
  
 PoissonRate nin(eventN); 
 for (int i=0;i<(eventN);i++) in.rates[i] = 5; 
  
  
 switch(event_value){ 
  
 case 0: //no inputs 
 s.setSpikeRate(ginbat,&nin); //battery - 0  
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&nin); //bump - 0 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
  
 case 1: //battery 



129 

 

 s.setSpikeRate(ginbat,&in); //battery - 1 
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&nin); //bump - 0 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
  
 case 2: //beam 
 s.setSpikeRate(ginbat,&nin); //battery - 0 
 s.setSpikeRate(ginhome,&in); //home - 1  
 s.setSpikeRate(ginbmp,&nin); //bump - 0 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
  
 case 3: //beam+battery 
 s.setSpikeRate(ginbat,&in); //battery - 1 
 s.setSpikeRate(ginhome,&in); //home - 1 
 s.setSpikeRate(ginbmp,&nin); //bump - 0 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
  
 case 4: //bump 
 s.setSpikeRate(ginbat,&nin); //battery - 0 
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&in); //bump - 1 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
  
 case 5: //bump+ battery 
 s.setSpikeRate(ginbat,&in); //battery - 1 
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&in); //bump - 1 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
  
 case 6: //bump+beam 
 s.setSpikeRate(ginbat,&nin); //battery - 0 
 s.setSpikeRate(ginhome,&in); //home - 1 
 s.setSpikeRate(ginbmp,&in); //bump - 1 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
  
 case 7: //bump+beam+battery 
 s.setSpikeRate(ginbat,&in); //battery -1 
 s.setSpikeRate(ginhome,&in); //home - 1 
 s.setSpikeRate(ginbmp,&in); //bump - 1 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
  
 case 8: //object 
 s.setSpikeRate(ginbat,&nin); //battery - 0 
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&nin); //bump - 0 
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 s.setSpikeRate(ginobj,&in); //object - 1 
 break; 
  
 case 9: //object+battery 
 s.setSpikeRate(ginbat,&in); //battery - 1 
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&nin); //bump - 0 
 s.setSpikeRate(ginobj,&in); //object - 1 
 break; 
  
 case 10: //object + beam 
 s.setSpikeRate(ginbat,&nin);  //battery - 0 
 s.setSpikeRate(ginhome,&in);//home - 1 
 s.setSpikeRate(ginbmp,&nin); //bump - 0 
 s.setSpikeRate(ginobj,&in); //object - 1 
 break; 
  
 case 11: //object+beam+battery 
 s.setSpikeRate(ginbat,&in);   //battery -1 
 s.setSpikeRate(ginhome,&in); //home - 1 
 s.setSpikeRate(ginbmp,&nin);  //bump - 0 
 s.setSpikeRate(ginobj,&in);  //object - 1 
 break; 
  
 case 12: //object+bump 
 s.setSpikeRate(ginbat,&nin);   //battery - 0 
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&in);  //bump - 1 
 s.setSpikeRate(ginobj,&in);  //object - 1 
 break;  
   
 case 13: //object+bump+battery 
 s.setSpikeRate(ginbat,&in);   //battery -1 
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&in);  //bump - 1 
 s.setSpikeRate(ginobj,&in);  //object - 1 
 break; 
  
 case 14: //object+bump+beam 
 s.setSpikeRate(ginbat,&nin); //battery -0 
 s.setSpikeRate(ginhome,&in); //home - 1 
 s.setSpikeRate(ginbmp,&in);  //bump - 1 
 s.setSpikeRate(ginobj,&in);  //object - 1 
 break; 
  
 case 15: //all inputs 
 s.setSpikeRate(ginbat,&in);  //battery -1 
 s.setSpikeRate(ginhome,&in); //home - 1 
 s.setSpikeRate(ginbmp,&in);  //bump - 1 
 s.setSpikeRate(ginobj,&in);  //object - 1 
 break; 
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 default: 
 s.setSpikeRate(ginbat,&nin); //battery - 0 
 s.setSpikeRate(ginhome,&nin); //home - 0 
 s.setSpikeRate(ginbmp,&nin); //bump - 0 
 s.setSpikeRate(ginobj,&nin); //object - 0 
 break; 
 } 
  
// s.setSpikeRate(ginbat,&nin); //battery 
// s.setSpikeRate(ginhome,&nin); //home 
// s.setSpikeRate(ginbmp,&nin); //bump 
// s.setSpikeRate(ginobj,&nin); //object 
  
 
 //run for 10 seconds 
 for(int i=0; i < 1; i++) { 
  // run the established network for a duration of 1 (sec)  
and 0 (millisecond), in CPU_MODE 
  s.runNetwork(1, 0, GPU_MODE); 
 } 
 
 FILE* nid = fopen("results/ROSSNN/network.dat","wb"); 
 s.writeNetwork(nid); 
 fclose(nid); 
 
 return 0; 
} 
 
//FreeSpace  
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MATLAB CODE TO RUN AN IZHIKEVICH PULSE TRAIN 
 
n = 1000; 
  
t = 1:1:n; 
  
v = ones(1,n); 
u = ones(1,n); 
I = [zeros(1,100),10*ones(1,900)]; 
  
a = 0.02*ones(1,n); 
b = 0.2*ones(1,n); 
c = -65*ones(1,n); 
d = 8*ones(1,n); 
%dv = []; 
%du = []; 
vma = []; 
uma = []; 
  
  
for e = 1:n 
     
     if v(e) >= 30 
        v(e) = 30; 
        v(e+1) = c(e); 
        u(e+1) = u(e) + d(e); 
        vma = [vma v(e)]; 
        uma = [uma u(e)]; 
     else 
        vma = [vma v(e)]; 
        uma = [uma u(e)];  
        dv = (0.04*v(e)^2) + (5*v(e)) + 140 - u(e) + I(e); 
        du = a(e)*(b(e)*v(e) - u(e)); 
        v(e+1) = v(e) + dv; 
        u(e+1) = u(e) + du; 
    end 
     
    
    
end 
  
subplot(2,1,1) 
plot(t,vma) 
  
subplot(2,1,2) 
plot(t,uma) 
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Figure A1. Top graph - action potentials, Bottom graph – recovery variable 
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Appendix B 

PICTURES OF ROBOT MOTION 
B.1: Sequence of robot motion in risk aversive mode:   

  

B.2: Sequence of robot motion in risk taking mode: 

 

B.3: Sequence of robot motion in distracted mode: 
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