36 research outputs found

    Efficient low-complexity data detection for multiple-input multiple-output wireless communication systems

    Get PDF
    The tradeoff between the computational complexity and system performance in multipleinput multiple-output (MIMO) wireless communication systems is critical to practical applications. In this dissertation, we investigate efficient low-complexity data detection schemes from conventional small-scale to recent large-scale MIMO systems, with the targeted applications in terrestrial wireless communication systems, vehicular networks, and underwater acoustic communication systems. In the small-scale MIMO scenario, we study turbo equalization schemes for multipleinput multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) and multipleinput multiple-output single-carrier frequency division multiple access (MIMO SC-FDMA) systems. For the MIMO-OFDM system, we propose a soft-input soft-output sorted QR decomposition (SQRD) based turbo equalization scheme under imperfect channel estimation. We demonstrate the performance enhancement of the proposed scheme over the conventional minimum mean-square error (MMSE) based turbo equalization scheme in terms of system bit error rate (BER) and convergence performance. Furthermore, by jointly considering channel estimation error and the a priori information from the channel decoder, we develop low-complexity turbo equalization schemes conditioned on channel estimate for MIMO systems. Our proposed methods generalize the expressions used for MMSE and MMSE-SQRD based turbo equalizers, where the existing methods can be viewed as special cases. In addition, we extend the SQRD-based soft interference cancelation scheme to MIMO SC-FDMA systems where a multi-user MIMO scenario is considered. We show an improved system BER performance of the proposed turbo detection scheme over the conventional MMSE-based detection scheme. In the large-scale MIMO scenario, we focus on low-complexity detection schemes because computational complexity becomes critical issue for massive MIMO applications. We first propose an innovative approach of using the stair matrix in the development of massive MIMO detection schemes. We demonstrate the applicability of the stair matrix through the study of the convergence conditions. We then investigate the system performance and demonstrate that the convergence rate and the system BER are much improved over the diagonal matrix based approach with the same system configuration. We further investigate low-complexity and fast processing detection schemes for massive MIMO systems where a block diagonal matrix is utilized in the development. Using a parallel processing structure, the processing time can be much reduced. We investigate the convergence performance through both the probability that the convergence conditions are satisfied and the convergence rate, and evaluate the system performance in terms of computational complexity, system BER, and the overall processing time. Using our proposed approach, we extend the block Gauss-Seidel method to large-scale array signal detection in underwater acoustic (UWA) communications. By utilizing a recently proposed computational efficient statistic UWA channel model, we show that the proposed scheme can effectively approach the system performance of the original Gauss-Seidel method, but with much reduced processing delay

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Efficient distributed processing for large scale MIMO detection

    Get PDF
    In large scale multiple-input multiple-output (MIMO), high spectral and energy efficiencies comes at the expense of a high computational complexity baseband processing. Many contributions have been proposed to reduce such complexity using matrix inversion approximation techniques for instance. On the other hand, to reduce the constraint on the interconnects' bandwidth, fewer decentralized processing techniques have emerged. Here, we propose a computationally efficient technique based on embedding one single Gauss-Seidel iteration within every ADMM based detection iteration. The simulations are performed using an LTE-like TDD-OFDM frame structure and waveform, under perfect and non-perfect channel state information (CSI). Early results reveal that the proposed ADMM-GS algorithm can outperform the centralised GS based technique processing in a high SNR region and high load regime. In addition ADMM-GS' performance exhibits relatively less sensitivity to channel estimation error; a characteristic inherited from the centralised GS technique

    Performance evaluation and implementation complexity analysis framework for ZF based linear massive MIMO detection

    Get PDF
    This paper discusses a framework for algorithm-architecture synergy for (1) performance evaluation and (2) FPGA implementation complexity analysis of linear massive MIMO detection techniques. Three low complexity implementation techniques of the zero-forcing (ZF) based linear detection are evaluated, namely, Neumann series expansion (NSE), Gauss–Seidel (GS) and a proposed recursive Gram matrix inversion update (RGMIU) techniques. The performance analysis framework is based on software-defined radio platform. By extrapolating the real data measured average error vector magnitude versus a number of served single-antenna user terminals, GS and RGMIU are showing no performance degradation with respect to ZF with direct matrix inversion. It is shown that under high load regime NSE and GS require more processing iterations at the expense of increased processing latency. We, therefore, consider a unified approach for field-programmable gate array based implementation complexity analysis and discuss the required baseband processing resources for real-time transmission. Due to the wide differences of NSE, GS and RGMIU in terms of performance, processing complexity and latency, practical deployment and real-time implementation insights are derived

    Hardware topologies for decentralized large-scale MIMO detection using Newton method

    Get PDF
    Centralized Massive Multiple Input Multiple Output (MIMO) uplink detection techniques for baseband processing possess severe bottleneck in terms of interconnect bandwidth and computational complexity. This problem has been addressed in the current work by adapting the centralized Newton method for decentralized MIMO uplink detection leveraging several Base Station antenna clusters. The proposed decentralized Newton (DN) method achieves error-rate performance close to centralized Zero Forcing detector as compared to other decentralized techniques. Two hardware topologies, namely the ring and the star topologies, are proposed to assess and discuss the trade-off among interconnect bandwidth and throughput, in comparison with contemporary decentralized MIMO uplink detection techniques. As such the following findings are elaborated. On BS antenna cluster scaling for different MIMO system configurations, the ring topology provides high throughput at constant interconnect bandwidth, while the star topology provides lower latency with a deterministic variation in the hardware resource consumption. Due to strategic optimizations on the hardware implementation, additional user equipment can be allotted at a fractional increase in Field Programmable Gate Array resource consumption, improved energy efficiency, and increased transaction of bits per Joule. The ring topology can process additional subcarrier at a fractional increase in latency and improved system throughput

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications

    A tutorial on the characterisation and modelling of low layer functional splits for flexible radio access networks in 5G and beyond

    Get PDF
    The centralization of baseband (BB) functions in a radio access network (RAN) towards data processing centres is receiving increasing interest as it enables the exploitation of resource pooling and statistical multiplexing gains among multiple cells, facilitates the introduction of collaborative techniques for different functions (e.g., interference coordination), and more efficiently handles the complex requirements of advanced features of the fifth generation (5G) new radio (NR) physical layer, such as the use of massive multiple input multiple output (MIMO). However, deciding the functional split (i.e., which BB functions are kept close to the radio units and which BB functions are centralized) embraces a trade-off between the centralization benefits and the fronthaul costs for carrying data between distributed antennas and data processing centres. Substantial research efforts have been made in standardization fora, research projects and studies to resolve this trade-off, which becomes more complicated when the choice of functional splits is dynamically achieved depending on the current conditions in the RAN. This paper presents a comprehensive tutorial on the characterisation, modelling and assessment of functional splits in a flexible RAN to establish a solid basis for the future development of algorithmic solutions of dynamic functional split optimisation in 5G and beyond systems. First, the paper explores the functional split approaches considered by different industrial fora, analysing their equivalences and differences in terminology. Second, the paper presents a harmonized analysis of the different BB functions at the physical layer and associated algorithmic solutions presented in the literature, assessing both the computational complexity and the associated performance. Based on this analysis, the paper presents a model for assessing the computational requirements and fronthaul bandwidth requirements of different functional splits. Last, the model is used to derive illustrative results that identify the major trade-offs that arise when selecting a functional split and the key elements that impact the requirements.This work has been partially funded by Huawei Technologies. Work by X. Gelabert and B. Klaiqi is partially funded by the European Union's Horizon Europe research and innovation programme (HORIZON-MSCA-2021-DN-0) under the Marie Skłodowska-Curie grant agreement No 101073265. Work by J. Perez-Romero and O. Sallent is also partially funded by the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union’s Horizon Europe research and innovation programme under Grant Agreements No. 101096034 (VERGE project) and No. 101097083 (BeGREEN project) and by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 under ARTIST project (ref. PID2020-115104RB-I00). This last project has also funded the work by D. Campoy.Peer ReviewedPostprint (author's final draft
    corecore