2 research outputs found

    Generating pointing motions for a humanoid robot by combining motor primitives

    Get PDF
    The human motor system is robust, adaptive and very flexible. The underlying principles of human motion provide inspiration for robotics. Pointing at different targets is a common robotics task, where insights about human motion can be applied. Traditionally in robotics, when a motion is generated it has to be validated so that the robot configurations involved are appropriate. The human brain, in contrast, uses the motor cortex to generate new motions reusing and combining existing knowledge before executing the motion. We propose a method to generate and control pointing motions for a robot using a biological inspired architecture implemented with spiking neural networks. We outline a simplified model of the human motor cortex that generates motions using motor primitives. The network learns a base motor primitive for pointing at a target in the center, and four correction primitives to point at targets up, down, left and right from the base primitive, respectively. The primitives are combined to reach different targets. We evaluate the performance of the network with a humanoid robot pointing at different targets marked on a plane. The network was able to combine one, two or three motor primitives at the same time to control the robot in real-time to reach a specific target. We work on extending this work from pointing to a given target to performing a grasping or tool manipulation task. This has many applications for engineering and industry involving real robots

    Dual-arm dexterous mobile manipulator with new omnidirectional wheels

    Full text link
    [ES] Este artículo describe un manipulador móvil, bimanual y con capacidad de manipulación diestra denominado MADAR (de Mobile Anthropomorphic Dual-Arm Robot). Básicamente puede dividirse en dos partes, una base móvil y una estructura superior portando dos brazos en configuración antropomorfa con manos mecánicas diestras equipadas con sensores táctiles. La base, completamente de desarrollo propio, es de forma circular y tiene tres ruedas con un diseño novedoso que permiten una movilidad omnidireccional. La estructura superior integra elementos comerciales, como los brazos, las manos y distintos sensores, que han sido adaptados para su funcionamiento conjunto. El artículo incluye tanto la descripción de los principales elementos del hardware como del software desarrollado para su control y uso.[EN] This article describes a mobile manipulator, equipped with two arms with dexterous capabilities, called MADAR (from Mobile Anthropomorphic Dual-Arm Robot). Basically, the manipulator can be divided into two parts, a mobile base and an upper structure that includes two arms with dexterous hands equipped with tactile sensors. The base, completely self-developed, is circular in shape and has three wheels with a novel design that allow omnidirectional mobility. The upper structure integrates commercial elements, such as the arms, the hands and dierent sensors. The article includes the description of the main elements of the hardware and the software developed for its control and use.Este trabajo ha sido parcialmente financiado por el gobierno español mediante el proyecto DPI2016-80077-R.Suárez, R.; Palomo-Avellaneda, L.; Martínez, J.; Clos, D.; García, N. (2020). Manipulador móvil, bibrazo y diestro con nuevas ruedas omnidireccionales. Revista Iberoamericana de Automática e Informática industrial. 17(1):10-21. https://doi.org/10.4995/riai.2019.11422OJS1021171ABB, Jan. 2018. YuMi. www.abb.com/yumi, visitado el 2019/02/12.Adascalitei, F., Doroftei, I., Jan. 2011. Practical applications for mobile robots based on mecanum wheels - a systematic survey. Romanian Review Precision Mechanics, Optics and Mechatronics, 21-29.Adept, Jan. 2018. Pioneer manipulator. https://www.generationrobots.com/media/PioneerManipulatordatasheet.pdf.Albu-Schöffer, A., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., Hirzinger, G., May 2007. The DLR lightweight robot: Design and control concepts for robots in human environments. Industrial Robot: An Int. J. 34 (5), 376-385. https://doi.org/10.1108/01439910710774386Andersen, T., 2015. Optimizing the Universal Robots ROS driver. Tech. rep., Technical University of Denmark, Department of Electrical Engineering.Arthur Ketels and M.J.G. van den Molengraft, 2014. Open ethercat society: Home of soem and soes. openethercatsociety.github.io, visitado el 2019/02/12.Batlle, J., Barjau, A., 2009. Holonomy in mobile robots. Robotics and Auton. Systems 57 (4), 433 - 440. https://doi.org/10.1016/j.robot.2008.06.001Batlle, J., Font-Llagunes, J., Barjau, A., Jan. 2010. Calibration for mobile robots with an invariant Jacobian. Robotics and Auton. Systems 58, 10-15. https://doi.org/10.1016/j.robot.2009.09.002Bischoff, R., Huggenberger, U., Prassler, E., May 2011. KUKA youBot - A mobile manipulator for research and education. In: Proc. IEEE Int. Conf. Robotics and Automation. pp. 1-4. https://doi.org/10.1109/ICRA.2011.5980575Bridgwater, L., A. Ihrke, C., Diftler, M., Abdallah, M., Radford, N., Rogers, J., Yayathi, S., S. Askew, R., M. Linn, D., 05 2012. The robonaut 2 handdesigned to do work with tools. In: Proceedings - IEEE International Conference on Robotics and Automation. pp. 3425-3430. https://doi.org/10.1109/ICRA.2012.6224772Butterfass, J., Fischer, M., Grebenstein, M., Haidacher, S., Hirzinger, G., 2004. Design and experiences with DLR hand II. In: Proc. of World Automation Congress. Vol. 15. pp. 105-110.Clos, D., Martı́nez, J., 2015. Omnidirectional wheel, and omnidirectional mobile device. World Intellectual Property Organization (Patent WO 2015/121521 A1, lens.org/084-354-767-767-633).Company, S. R., 2015. Shadow Robot Company. Shadow Dexterous Hand. [Online] http://www.shadowrobot.com.Dean-Leon, E., Pierce, B., Bergner, F., Mittendorfer, P., Ramirez-Amaro, K., Burger, W., Cheng, G., 2017. TOMM: Tactile omnidirectional mobile manipulator. In: Proc. IEEE Int. Conf. Robotics and Autom. pp. 2441-2447. https://doi.org/10.1109/ICRA.2017.7989284Fentanes, J. P., Zalama, E., Garc'ıa-Bermejo, J. G., 2012. Plataforma robótica para tareas de reconstrucci'on tridimensional de entornos exteriores. Revista Iberoamericana de Automática e Informática industrial 9 (1), 81-82. https://doi.org/10.1016/j.riai.2011.11.009Ferriere, L., Raucent, B., May 1998. ROLLMOBS, a new universal wheel concept. In: Proc. IEEE Int. Conf. Robotics and Automation. Vol. 3. pp. 1877-1882.Fitzgerald, C., Apr. 2013. Developing baxter. In: Proc. IEEE Int. Conf. Technologies for Practical Robot Appl. pp. 1-6. https://doi.org/10.1109/TePRA.2013.6556344Garcı́a, N., Rosell, J., Suárez, R., 2017. Motion planning by demonstration with human-likeness evaluation for dual-arm robots. IEEE Trans. Systems, Man, and Cybernetics: Systems PP (99), 1-10. https://doi.org/10.1109/TSMC.2017.2756856Gerum, P., 2004. Xenomai-Implementing a RTOS emulation framework on GNU/Linux. https://xenomai.org/documentation/xenomai-2.1/pdf/xenomai.pdf, visitado el 2019/05/31.Hermann, A., Sun, J., Xue, Z., Rühl, S. W., Oberländer, J., Roennau, A., Zöllner, J. M., Dillmann, R., July 2013. Hardware and software architecture of the bimanual mobile manipulation robot hollie and its actuated upper body. In: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Wollongong, NSW, Australia, pp. 286-292. https://doi.org/10.1109/AIM.2013.6584106IOC Robotics Lab, 2014. SOEM for RTNET and Xenomai. github.com/iocroblab/soem, visitado el 2019/02/12.Khatib, O., 1999. Mobile manipulation: The robotic as-sistant. Robotics and Auton. Systems 26 (2), 175 - 183. https://doi.org/10.1016/S0921-8890(98)00067-0Kröger, T., May 2011. Opening the door to new sensor-based robot applications - The Reflexxes Motion Libraries. In: IEEE Int. Conf. Robotics and Automation. pp. 1-4. https://doi.org/10.1109/ICRA.2011.5980578Kuka Robotics, 2018. KMR iiwa. www.kuka.com/en-us/products/mobility/mobile-robot-systems/kmr-iiwa, visitado el 2019/02/12.Kurazume, R., Hasegawa, T., Oct 2006. A new index of serial-link manipulator performance combining dynamic manipulability and manipulating force ellipsoids. IEEE Trans. Robotics 22 (5), 1022-1028. https://doi.org/10.1109/TRO.2006.878949Lind, M., Schrimpf, J., Ulleberg, T., 2010. Open real-time robot controller framework. In: Proc. CIRP Conf. Assembly Technology and Systems - Responsive, customer demand driven, adaptive assembly. pp. 13-18.Montaño, A., Suárez, R., 2015. Unknown object manipulation based on tactile information. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems. pp. 5642-5647. https://doi.org/10.1109/IROS.2015.7354178Montaño, A., Suárez, R., Oct 2018a. Improving grasping forces during the manipulation of unknown objects. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 3490-3495. https://doi.org/10.1109/IROS.2018.8593655Montaño, A., Suárez, R., 2018b. Manipulation of unknown objects to improve the grasp quality using tactile information. Sensors 18 (5-1412). https://doi.org/10.3390/s18051412PAL Robotics, Jan. 2018. Tiago. tiago.pal-robotics.com, visitado el 2019/02/12.Pozyx NV, 2018. Creator Pozyx. www.pozyx.io, visitado el 2019/02/12.Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y., 2009. Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software.Reitelshöfer, S., Ramer, C., Gräf, D., Matern, F., Franke, J., Dec. 2014. Combining a collaborative robot and a lightweight Jamming-Gripper to realize an intuitively to use and flexible co-worker. In: Proc. IEEE/SICE Int. Symp. System Integration. pp. 1-5. https://doi.org/10.1109/SII.2014.7028001Roa, M., Suárez, R., Cornellà, J., 2008. Medidas de calidad para la prensión de objetos. Revista Iberoamericana de Automática e Informatica Industrial, RIAI 5 (1), 66-82. https://doi.org/10.1016/S1697-7912(08)70124-9Rojas-de-Silva, A., Suárez, R., 2016. Grasping bulky objects with two anthropomorphic hands. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems. pp. 877-884. https://doi.org/10.1109/IROS.2016.7759154ROS-I Consortium, 2012. ROS-Industrial. rosindustrial.org/, visitado el 2019/02/12.Rosell, J., Pérez, A., Aliakbar, A., Muhayyuddin, Palomo, L., Garcı́a, N., Sept. 2014. The Kautham Project: A teaching and research tool for robot motion planning. In: Proc. IEEE Int. Conf. Emerging Technologies and Factory Automation. https://doi.org/10.1109/ETFA.2014.7005143Runge, G., Borchert, G., Raatz, A., Sept 2014. Design of a holonomic ball drive for mobile robots. In: Proc. IEEE/ASME Int. Conf. Mechatronic and Embedded Systems and Applications. pp. 1-6. https://doi.org/10.1109/MESA.2014.6935568Sadun, A. S., Jalani, J., Jamil, F., Sep. 2016. Grasping analysis for a 3-finger adaptive robot gripper. In: 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA). pp. 1-6. https://doi.org/10.1109/ROMA.2016.7847806SCHUNK GmbH, 2011. Shunk dexterous hand - SDH2. schunk.com/us_en/gripping-systems/series/sdh/, visitado el 2019/02/12.SICK Vertriebs-GmbH, 2018. TiM5xx. www.sick.com/de/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim561-2050101/p/p369446, visitado el 2019/02/12.SimLab-Wonik Robotics, Set. 2012. Allegro hand is a low-cost and highly adaptive robotic hand. www.simlab.co.kr/Allegro-Hand.htm, visitadoel 2019/02/12.Suárez, R., Grosch, P., Jul 2004. Dexterous robotic hand ma-i, sofware and hardware architecture. In: Intelligent Manipulation and Grasping International Conference, IMG'04. pp. 91-96.Suárez, R., Rosell, J., Garcı́a, N., May 2015. Using synergies in dual-arm manipulation tasks. In: Proc. IEEE Int. Conf. Robotics and Automation. pp. 5655-5661. https://doi.org/10.1109/ICRA.2015.7139991Suárez, R., Palomo-Avellaneda, L., Martinez, J., Clos, D., Garcı́a, N., 2018.Development of a dexterous dual-arm omnidirectional mobile manipulator. IFAC-PapersOnLine 51 (22), 126 - 131, 12th IFAC Symposium on Robot Control SYROCO 2018. https://doi.org/10.1016/j.ifacol.2018.11.529SYNTENET, 2014. Projecto: Sincronización y teleoperación con interacción visual 3d de redes de manipuladores móviles y robots con articulaciones flexibles. Referencia: DPI2011-22471, Perido: 01/01/2012 al 31/12/2014, IP: Luis Basañez, IOC-UPC.Universal Robots, Feb. 2019. Ur5 collaborative robot arm. www.universal-robots.com/products/ur5-robot, visitado el 2019/02/12.Weiss Robotics, 2015. WTS-FT; Weiss Robotics GmbH&Co.KG. www.weiss-robotics.com/en/produkte/tactile-sensing/wts-ft-en/, visitado el 2019/02/12.Willow Garage, 2010. Willow Garage PR2. http://www.willowgarage.com/pages/pr2/overview, visitado el 2019/06/06
    corecore