29,927 research outputs found

    Reconfigurable Architecture For H.264/avc Variable Block Size Motion Estimation Based On Motion Activity And Adaptive Search Range

    Get PDF
    Motion Estimation (ME) technique plays a key role in the video coding systems to achieve high compression ratios by removing temporal redundancies among video frames. Especially in the newest H.264/AVC video coding standard, ME engine demands large amount of computational capabilities due to its support for wide range of different block sizes for a given macroblock in order to increase accuracy in finding best matching block in the previous frames. We propose scalable architecture for H.264/AVC Variable Block Size (VBS) Motion Estimation with adaptive computing capability to support various search ranges, input video resolutions, and frame rates. Hardware architecture of the proposed ME consists of scalable Sum of Absolute Difference (SAD) arrays which can perform Full Search Block Matching Algorithm (FSBMA) for smaller 4x4 blocks. It is also shown that by predicting motion activity and adaptively adjusting the Search Range (SR) on the reconfigurable hardware platform, the computational cost of ME required for inter-frame encoding in H.264/AVC video coding standard can be reduced significantly. Dynamic Partial Reconfiguration is a unique feature of Field Programmable Gate Arrays (FPGAs) that makes best use of hardware resources and power by allowing adaptive algorithm to be implemented during run-time. We exploit this feature of FPGA to implement the proposed reconfigurable architecture of ME and maximize the architectural benefits through prediction of motion activities in the video sequences ,adaptation of SR during run-time, and fractional ME refinement. The implemented ME architecture can support real time applications at a maximum frequency of 90MHz with multiple reconfigurable regions. iv When compared to reconfiguration of complete design, partial reconfiguration process results in smaller bitstream size which allows FPGA to implement different configurations at higher speed. The proposed architecture has modular structure, regular data flow, and efficient memory organization with lower memory accesses. By increasing the number of active partial reconfigurable modules from one to four, there is a 4 fold increase in data re-use. Also, by introducing adaptive SR reduction algorithm at frame level, the computational load of ME is reduced significantly with only small degradation in PSNR (≤0.1dB)

    Efficient hardware implementations of low bit depth motion estimation algorithms

    Get PDF
    In this paper, we present efficient hardware implementation of multiplication free one-bit transform (MF1BT) based and constraint one-bit transform (C-1BT) based motion estimation (ME) algorithms, in order to provide low bit-depth representation based full search block ME hardware for real-time video encoding. We used a source pixel based linear array (SPBLA) hardware architecture for low bit depth ME for the first time in the literature. The proposed SPBLA based implementation results in a genuine data flow scheme which significantly reduces the number of data reads from the current block memory, which in turn reduces the power consumption by at least 50% compared to conventional 1BT based ME hardware architecture presented in the literature. Because of the binary nature of low bit-depth ME algorithms, their hardware architectures are more efficient than existing 8 bits/pixel representation based ME architectures

    A High permormance hardware architecture for an sad reuse based hierarchical motion estimation algorithm for H.264 video coding

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of an SAD reuse based hierarchical motion estimation algorithm for H.264 / MPEG4 Part 10 video coding. This hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 68 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 27 VGA frames (640x480) or 82 CIF frames (352x288) per second

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Dynamically variable step search motion estimation algorithm and a dynamically reconfigurable hardware for its implementation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. For the recently available High Definition (HD) video formats, the computational complexity of De full search (FS) ME algorithm is prohibitively high, whereas the PSNR obtained by fast search ME algorithms is low. Therefore, ill this paper, we present Dynamically Variable Step Search (DVSS) ME algorithm for Processing high definition video formats and a dynamically reconfigurable hardware efficiently implementing DVSS algorithm. The architecture for efficiently implementing DVSS algorithm. The simulation results showed that DVSS algorithm performs very close to FS algorithm by searching much fewer search locations than FS algorithm and it outperforms successful past search ME algorithms by searching more search locations than these algorithms. The proposed hardware is implemented in VHDL and is capable, of processing high definition video formats in real time. Therefore, it can be used in consumer electronics products for video compression, frame rate up-conversion and de-interlacing(1)

    Efficient hardware architectures for MPEG-4 core profile

    Get PDF
    Efficient hardware acceleration architectures are proposed for the most demandingMPEG-4 core profile algorithms, namely; texture motion estimation (TME), binary motion estimation (BME)and the shape adaptive discrete cosine transform (SA-DCT). The proposed ME designs may also be used for H.264, since both architectures can handle variable block sizes. Both ME architectures employ early termination techniques that reduce latency and save needless memory accesses and power consumption. They also use a pixel subsampling technique to facilitate parallelism, while balancing the computational load. The BME datapath also saves operations by using Run Length Coded (RLC) pixel addressing. The SA-DCT module has a re-configuring multiplier-less serial datapath using adders and multiplexers only to improve area and power. The SA-DCT packing steps are done using a minimal switching addressing scheme with guarded evaluation. All three modules have been synthesised targeting the WildCard-II FPGA benchmarking platform adopted by the MPEG-4 Part9 reference hardware group

    High performance hardware architecture for half-pixel accurate H.264 motion estimation

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of half-pel accurate variable block size motion estimation for H.264 / MPEG4 Part 10 video coding. The proposed architecture includes a novel half-pel interpolation hardware that is shared by novel half-pel search hardwares designed for each block size. This half-pel accurate motion estimation hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 85 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 30 HDTV frames (1280x720) per second

    Hardware acceleration architectures for MPEG-Based mobile video platforms: a brief overview

    Get PDF
    This paper presents a brief overview of past and current hardware acceleration (HwA) approaches that have been proposed for the most computationally intensive compression tools of the MPEG-4 standard. These approaches are classified based on their historical evolution and architectural approach. An analysis of both evolutionary and functional classifications is carried out in order to speculate on the possible trends of the HwA architectures to be employed in mobile video platforms

    Low power techniques for video compression

    Get PDF
    This paper gives an overview of low-power techniques proposed in the literature for mobile multimedia and Internet applications. Exploitable aspects are discussed in the behavior of different video compression tools. These power-efficient solutions are then classified by synthesis domain and level of abstraction. As this paper is meant to be a starting point for further research in the area, a lowpower hardware & software co-design methodology is outlined in the end as a possible scenario for video-codec-on-a-chip implementations on future mobile multimedia platforms

    Energy-efficient acceleration of MPEG-4 compression tools

    Get PDF
    We propose novel hardware accelerator architectures for the most computationally demanding algorithms of the MPEG-4 video compression standard-motion estimation, binary motion estimation (for shape coding), and the forward/inverse discrete cosine transforms (incorporating shape adaptive modes). These accelerators have been designed using general low-energy design philosophies at the algorithmic/architectural abstraction levels. The themes of these philosophies are avoiding waste and trading area/performance for power and energy gains. Each core has been synthesised targeting TSMC 0.09 μm TCBN90LP technology, and the experimental results presented in this paper show that the proposed cores improve upon the prior art
    corecore