
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2010 

Reconfigurable Architecture For H.264/avc Variable Block Size Reconfigurable Architecture For H.264/avc Variable Block Size 

Motion Estimation Based On Motion Activity And Adaptive Search Motion Estimation Based On Motion Activity And Adaptive Search 

Range Range 

Sumedha Kodipyaka 
University of Central Florida 

 Part of the Electrical and Electronics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Kodipyaka, Sumedha, "Reconfigurable Architecture For H.264/avc Variable Block Size Motion Estimation 
Based On Motion Activity And Adaptive Search Range" (2010). Electronic Theses and Dissertations, 
2004-2019. 1572. 
https://stars.library.ucf.edu/etd/1572 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/270?utm_source=stars.library.ucf.edu%2Fetd%2F1572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1572?utm_source=stars.library.ucf.edu%2Fetd%2F1572&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 
 

RECONFIGURABLE ARCHITECTURE FOR H.264/AVC VARIABLE 

BLOCK SIZE MOTION ESTIMATION BASED ON MOTION 

ACTIVITY AND ADAPTIVE SEARCH RANGE 

 

 

 

 

 

 

 

by 

 

 

SUMEDHA GUPTA KODIPYAKA 

B.E. Osmania University, 2007 
 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science 

in the Department of Electrical Engineering and Computer Science 

in the College of Engineering and Computer Science 

at the University of Central Florida 

Orlando, Florida 

 

 

 

Summer Term 

2010 

 

Major Professor  

Jooheung Lee 

  



ii 
 

 

 

 

 

 

 

 

© 2010 Sumedha Gupta Kodipyaka 

  



iii 
 

ABSTRACT 

Motion Estimation (ME) technique plays a key role in the video coding systems to achieve 

high compression ratios by removing temporal redundancies among video frames. Especially in 

the newest H.264/AVC video coding standard, ME engine demands large amount of 

computational capabilities due to its support for wide range of different block sizes for a given 

macroblock in order to increase accuracy in finding best matching block in the previous frames.  

We propose scalable architecture for H.264/AVC Variable Block Size (VBS) Motion 

Estimation with adaptive computing capability to support various search ranges, input video 

resolutions, and frame rates. Hardware architecture of the proposed ME  consists of scalable Sum 

of Absolute Difference (SAD) arrays which can perform Full Search Block Matching Algorithm 

(FSBMA) for smaller 4x4 blocks. It is also shown that by predicting motion activity and 

adaptively adjusting the Search Range (SR) on the reconfigurable hardware platform, the 

computational cost of ME required for inter-frame encoding in H.264/AVC video coding 

standard can be reduced significantly. 

Dynamic Partial Reconfiguration is a unique feature of Field Programmable Gate Arrays 

(FPGAs) that makes best use of hardware resources and power by allowing adaptive algorithm to 

be implemented during run-time. We exploit this feature of FPGA to implement the proposed 

reconfigurable architecture of ME and maximize the architectural benefits through prediction of 

motion activities in the video sequences ,adaptation of SR during run-time, and fractional ME 

refinement. The implemented ME architecture can support real time applications at a maximum 

frequency of 90MHz with multiple reconfigurable regions.  



iv 
 

When compared to reconfiguration of complete design, partial reconfiguration process results 

in smaller bitstream size which allows FPGA to implement different configurations at higher 

speed. The proposed architecture has modular structure, regular data flow, and efficient memory 

organization with lower memory accesses. By increasing the number of active partial 

reconfigurable modules from one to four, there is a 4 fold increase in data re-use. Also, by 

introducing adaptive SR reduction algorithm at frame level, the computational load of ME is 

reduced significantly with only small degradation in PSNR (≤0.1dB). 

  



 
 

To my wonderful parents, Chandra Sekhar and Vishalakshmi. 



 
 

ACKNOWLEDGMENTS 

I would like to first thank my parents, Chandra Sekhar and Vishalakshmi, and my brother, 

Siddharth, who have been with me in every step of my life, helping me to succeed and instilling 

in me the confidence that I am capable of doing anything I put my mind to.  

Special thanks to you my friend, Hari, for your practical and emotional support, helping me 

to consistently keep up to the competing demands of work, study and personal development. 

I would also like to thank Dr. DeMara and Dr. Wang for their review and encouragement as 

Committee Members. 

Most of all, I would like to thank Dr. Jooheung Lee for his excellent technical inspiration and 

editorial suggestions that helped me shape up this dissertation. Thank you for being a constant 

support as a mentor, right from the day one of my MS studies. 

 

  



vii 
 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGMENTS ............................................................................................................. vi 

TABLE OF CONTENTS .............................................................................................................. vii 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF TABLES .......................................................................................................................... x 

1. INTRODUCTION ................................................................................................................... 1 

1.1 Video Coding Standard ....................................................................................................................... 1 

1.2 Motion Estimation Technique ............................................................................................................. 2 

1.3 Partial Reconfiguration and its Benefits ............................................................................................. 5 

1.4 Motivation ........................................................................................................................................... 7 

1.5 Thesis Organization ............................................................................................................................. 8 

2. BACKGROUND AND RELATED WORK ........................................................................... 9 

2.1 Motion Estimation Algorithms ............................................................................................................ 9 

2.1.1 Adaptive Search Locations ........................................................................................................... 9 

2.1.2 Cost Reduction of Matching Criterion ....................................................................................... 10 

2.1.3 Lossless Fast Full Search Algorithm ............................................................................................ 11 

2.1.4 Mode Decision and Other Encoding Parameters ....................................................................... 12 

2.1.5 Fractional Motion Estimation Algorithm ................................................................................... 12 

2.2 Motion Estimation Hardware Architectures ..................................................................................... 13 

2.2.1 FSBMA Architectures ................................................................................................................. 13 

2.2.2 Fast ME Architectures ................................................................................................................ 15 

2.3 Summary ........................................................................................................................................... 16 

3. MODULAR H.264/AVC VBSME APPROACH ................................................................. 17 

3.1 Top Level Architecture ...................................................................................................................... 17 

3.2 Memory Management ...................................................................................................................... 18 

3.3 Partial Reconfigurable Module ......................................................................................................... 20 

3.4 Data Flow .......................................................................................................................................... 22 

3.6 Block Mode Selector ......................................................................................................................... 24 



viii 
 

3.6 Experimental Results......................................................................................................................... 26 

3.7 Summary ........................................................................................................................................... 29 

4. ADAPTIVE SEARCH RANGE ALGORITHM AND IMPLEMENTATION .................... 30 

4.1 Video Coding Efficiency with Variable Search Range........................................................................ 30 

4.2 Search Range Reduction Algorithm .................................................................................................. 32 

4.3 Proposed ME Architecture ................................................................................................................ 34 

4.3.1 Top Level Architecture ............................................................................................................... 35 

4.3.2 Memory Management ............................................................................................................... 36 

4.3.3 Partial Reconfigurable Module .................................................................................................. 37 

4.3.4 Data Flow ................................................................................................................................... 38 

4.4 Experimental Results......................................................................................................................... 40 

4.4.1 Simulation Results for Search Range Reduction Algorithm ....................................................... 40 

4.4.2 Proposed Partially-Reconfigurable ME Architecture Evaluation and Comparisons .................. 41 

4.5 Hardware Implementation Results ................................................................................................... 43 

4.6 Extended Approach for time multiplexing PRRs ............................................................................... 45 

4.7 Summary ........................................................................................................................................... 46 

5. CONCLUSIONS ................................................................................................................... 47 

6. REFERENCES ...................................................................................................................... 48 

7. PUBLICATION..................................................................................................................... 54 

 

  



ix 
 

LIST OF FIGURES 

Figure 1 Block diagram of hybrid encoding process for the H.264/AVC video coding standard [1]. ........... 1 

Figure 2 Partitioning of macroblock in seven different block sizes .............................................................. 3 

Figure 3 Motion Estimation with multiple reference frames. ...................................................................... 3 

Figure 4 Design layout of static and configurable regions in FPGA. ............................................................. 6 

Figure 5 Generalized 2D intra-level SAD hardware architecture supporting block size of 4x4. ................. 14 

Figure 6 Generalized 1D inter-level SAD architecture supporting SR of 8 horizontal direction. ................ 14 

Figure 7 Top level architecture of proposed VBSME. ................................................................................. 17 

Figure 8 (a) Current frame buffer structure (b) Reference frame buffer ................................................... 18 

Figure 9 Data scanning in the search window ............................................................................................ 19 

Figure 10 (a) Structure of SAD block (b) Building block of one 41 PE ......................................................... 20 

Figure 11 Number of blocks covered given the number of PRRs in active mode. ...................................... 21 

Figure 12 Different configurations of 16x1 PE Arrays ................................................................................. 21 

Figure 13 Variable Block Mode Selector for H.264/AVC Standard ............................................................. 24 

Figure 14 PSNR performance of H.264/AVC motion estimation for various video sequences .................. 30 

Figure 15 SAD computations of H.264/AVC ME for various search ranges ................................................ 30 

Figure 16 Distribution of MVs for football video sequence (QCIF @30fps) ............................................... 31 

Figure 17 Top level architecture for PRR ME supporting different search ranges ..................................... 35 

Figure 18 (a) General architecture of PR for 2-step SR (b) General architecture of PR for 4-step SR ........ 36 

Figure 19 Internal structure of 4x1 PE array ............................................................................................... 37 

Figure 20 Data sharing among neighboring ................................................................................................ 38 

Figure 21 Partitioning of SW into different 4 pixel width columns ............................................................ 38 

Figure 22 Top view of an integrated Integer-Fractional ME architecture on FPGA ................................... 44 



x 
 

LIST OF TABLES 

Table 1 Dataflow for Proposed Reconfigurable Motion Estimation Algorithm, for SW[-8, +7] ........ 23 

Table 2 Bitrate and PSNR comparison of VBSD scheme ...................................................................... 25 

Table 3 Various Criteria of Different Architectures ............................................................................. 27 

Table 4 Comparison of Different H/W Architectures for ME Algorithm for SR [-8, 7], N=16, N=4 ..... 28 

Table 5 Various Criteria of Different Architectures............................................................................. 28 

Table 6 Various Reconfigurable Architectures to Support Different Image Resolutions .................... 28 

Table 7 Hardware Resources ................................................................................................................ 29 

Table 8 Bitstream Information ............................................................................................................. 29 

Table 9 Best matching MVs covered with different SRs for football video sequence (QCIF @30fps) 31 

Table 10 Data Flow for different PRRs ................................................................................................. 39 

Table 11 Simulation results of SR Reduction Algorithm ...................................................................... 43 

Table 12 Performance results for different PRR structures ................................................................. 44 

Table 13 Hardware resources and bitstream information .................................................................. 44 

 

  



xi 
 

 

 



1 
 

INTRODUCTION 

1.1 Video Coding Standard 

Digital video compression is widely used and plays an integral part in providing ‘network 

friendly’ video representation. The technology progress in the fields of digital multimedia and 

wireless communication systems has demanded the development of several video compression 

standards over past two decades. The main goal of these standards is to develop efficient video 

coding design with improved picture quality and high rate-distortion efficiency. The H.264/AVC is 

the latest video coding standard developed by the ITU-T Video Coding Experts Group and the 

ISO/IEC Moving Picture Experts Group in 2003 [1], [2].  

 

 

Figure 1 Block diagram of hybrid encoding process for the H.264/AVC video coding standard [1]. 



2 
 

Compared to previous video coding standards, such as H.261/3 and MPEG-1/2/4, 

H.264/AVC provides many advanced coding techniques, such as integer DCT transform, intra 

prediction in the spatial domain, multiple reference pictures, variable block size motion estimation 

and compensation, context adaptive variable length coding, and context adaptive binary arithmetic 

coding to achieve higher coding efficiency. The standard related documents and reference software 

can be found in [3]. 

The H.264/AVC technique is based on hybrid video coding process. The general block 

diagram for hybrid H.264/AVC encoding process is shown in Figure 1. A given video is encoded 

frame by frame and each input frame is divided into several macroblocks. Each macroblock consists 

of 16x16 pixel data which is coded in Intra or Inter mode. In inter mode, the macroblock is predicted 

using Motion Vectors (MVs) which correspond to the displacement of the current block from its 

corresponding position in already coded previous frame(s). In Intra mode, the frame is coded without 

reference frame. The prediction scheme for Intra mode uses information of previous blocks of the 

same frame. In inter mode, the predictions error is transformed using integer transform, quantized 

and then the calculated coefficients are encoded. For frame reconstruction, the quantized coefficients 

of each block are inverse transformed at the decoder side. Since the encoding is done block by block, 

the reconstructed frame will have visible block structures. In order to reduce this blockiness, 

H.264/AVC introduces an in-loop deblocking filter. After the filter, each macroblock is completely 

decoded and stored for further processes. 

1.2 Motion Estimation Technique 

Motion Estimation (ME) is a part of Motion Compensation prediction which provides the 

best MV and distortion data of all possible modes of a given macroblock. The motion prediction of 

macroblock is performed using the information of already transmitted previous image as a reference. 



3 
 

0 0         1

0

1

0          1

2          3

0

0

1

0    1

0    1 

2    3

16x16             8x16 16x8 8x8

8x8 8x4 4x8 4x4  

Figure 2 Partitioning of macroblock in seven different block sizes 

 

Figure 3 Motion Estimation with multiple reference frames. 

 

ME techniques play a key role in the video coding systems to achieve high compression ratios by 

removing temporal redundancies among video frames. Especially in the H.264/AVC standard, ME 

engine demands large amount of complex computational capabilities due to its support for wide 

range of different block sizes for given macroblock in order to increase accuracy in finding best 

matching block. The partitions of a macroblock and sub-macroblock are shown in Figure 2. Also, in 

H.264/AVC, it is possible to refer to multiple reference frames. Figure 3. shows the concept of 

motion compensated prediction with multiple reference frames. It is shown that more than 60% of 

the video encoders computational time is consumed by the ME module [4]. 

The macroblock is partitioned as 16x16, 16x8, 8x16, and 8x8 block sizes. The 8x8 sub-block, 

can be further divided into partitions with block sizes 8x4, 4x8, and 4x4. Introduction of such smaller 



4 
 

blocks can more accurately find the best matching block match in the previous frame and also reduce 

the resultant residual errors to be encoded [5]. Hence, Variable Block Size Motion Estimation 

(VBSME) can achieve higher coding performance at the cost of increase in computational 

complexity. Therefore, efficient and hardware-friendly VBSME architectures are critical for high-

performance video encoder. 

  In Full Search Block Matching Algorithm (FSBMA), for each macro block (MB) in the 

current frame, the most similar MB within all possible locations in the Search Range (SR) in the 

reference frame is chosen. Sum of Absolute Differences (SAD) is a commonly used matching 

criterion for ME algorithm [6]. For a block-based ME, its basic functions are to calculate and 

compare the cost function used as a matching criterion between the current image block and all 

candidate blocks in the search range of reference frame. Let the block size be N×N and location of 

each block in the current frame (C) is represented by (i, j). This block must be matched with a block 

within the search window (h, v) in the reference frame (R). SAD of such searching candidate block is 

given by 

𝑆𝐴𝐷(𝑖,𝑗 ) 𝑥,𝑦 =    𝐶(𝑖,𝑗 ) 𝑥,𝑦 −  𝑠_𝑤(𝑖,𝑗 ) 𝑥1 + 𝑥 + ℎ,𝑦1 + 𝑦 + 𝑣  𝑁−1
𝑦=0

𝑁−1
𝑥=0                   (1) 

Where, c(x,y) and s_w(x,y) represent pixel value in current block and search candidate block 

respectively. (x1, y1) represents center of the search range for the given macroblock in the reference 

frame. While computationally expensive, FSBMA offers high encoding efficiency, very regular 

computational algorithm, and hence good visual quality. In order to speed-up this process, data-

adaptive ME algorithms have been introduced to modify the search center location by adaptively 

forming correlations among neighboring MVs. 



5 
 

1.3 Partial Reconfiguration and its Benefits 

Field Programmable Gate Arrays (FPGAs) are digital Integrated Circuits (ICs) that contain 

configurable logic blocks and interconnects. FPGAs are being targeted in many applications, such as 

high performance signal processing applications, to provide real-time computing capabilities. This is 

due to the fact that they incur very low-to-none Non-Recurring Engineering (NRE) costs and faster 

development time. Each generation of FPGAs are made significantly useful by introducing additional 

benefits and utilities with larger size and faster speed. Among such significant advancements is 

Dynamic Partial Reconfiguration [7]. Their main feature of partial reconfiguration process is to 

reconfigure a part of the device while the other parts of the FPGA are still active.  

In SRAM-based FPGAs, initialization of device involves loading the device with 

configuration data or configuration bitstream in order to make FPGA perform some task. This 

configures all the logic blocks, interconnects and Input/Output (I/O) interfaces. FPGAs can be 

partially reconfigured by loading it with partial configuration bitstream file. The partial bitstreams 

can be generated by two methods: difference-based and modular-based processes [8]. In difference-

based method, partial bitstreams contain information of the difference between original and new 

bitstream file so that only those logic blocks are modified. This method may not apply to real-time 

adaptive applications as both the original and the new configuration bitstream files may not be 

always available.  

In modular-based partial reconfiguration, specific areas are assigned as Partial 

Reconfigurable Regions (PRRs) which can have several Partial Reconfigurable Modules (PRMs). 

Figure 4 shows the design layout of modular-based process. The static and reconfigurable regions 

communicate through I/O ports called Bus Macros (BMs). When FPGA is loaded with partial 

bitstreams, PRR region can be modified. 



6 
 

STATIC 

REGION

PRM3

PRM2

PRM1 P
R

R
1

P
R

R
2

PRM2

PRM1

Bus Macro

B
u

s
 M

a
c
ro

B
u

s
 M

a
c
ro

FPGA  

Figure 4 Design layout of static and configurable regions in FPGA. This example consists of two PRRs 

with three and two PRMS respectively. 

 

The main benefits of partial reconfiguration on FPGA are a) the unchanged part is not 

affected and, in some cases, may continue execution, and b) a partial bitstream size is smaller than a 

full bitstream and hence lower reconfiguration time. By time-to-time analysis, the modules which are 

not necessary can be detected and loaded with ‘blank’ bitstreams to reduce dynamic power 

consumption. Reconfigurable hardware of FPGA is one solution which can provide benefits of the 

performance of Application Specific Integrated Circuits (ASICs) and the flexibility of General 

Purpose Processors (GPPs). They now accommodate digital systems with more than 10 million 

equivalent gates in its reconfigurable fabric. Its capability to support various design configurations 

during run-time and dedicated hardware components, such as microprocessors, Digital Signal 

Processing (DSP) logics, memory blocks, and other specific modules, make FPGAs one of the ideal 

platforms to implement and test those computationally demanding real-time applications. 



7 
 

 1.4 Motivation 

Firstly, ME is the most computationally intensive part in the entire video encoding system. In 

Full Search (FS) method, best MV with minimum SAD is calculated among HxV search positions as 

discussed in Section 1.2. For example, assuming each pixel undergoes 3 operations for given SR, i.e., 

absolute difference between current and reference pixel, adding the residues of all the pixels in given 

macroblock, and accumulate, ME for a QCIF (176x144), 30 frames per second (fps) video sequence 

with [-8, +7] SR takes 584 Mega operations per second (MOPS) and ME for SD (720x480), 30fps 

video sequence with [-16, +15], SR takes 32 Giga operations per second (GOPS). So, there is need to 

speed up ME process which can be done by methods like simplification of search criterion, data-

adaptive algorithms, predictive search, etc, at algorithm level and enhanced data re-use, parallelizing 

SAD computations, etc, at architecture level. Keeping this thought, we develop an approach to gain 

algorithmic and architectural benefits through a) an adaptive search range reduction algorithm to 

reduce number of search candidates during run-time and b) a pipelined systolic SAD array 

architecture to improve performance and data reuse at intra 4x4 block level as well as inter block 

level. 

Secondly, due to the ever increasing complexity of today’s chip design, it becomes common 

to use pre-defined Intellectual Property (IP) cores to simplify the system design and meet the 

requirements such as manufacturing yield and time-to-market schedule. However, commercial IP 

cores available in the market are pre-constructed circuits with details of pre-determined area, power, 

and performance provided by the vendors, and typically target for both Application Specific 

Integrated Circuits (ASICs) and FPGAs markets. As a consequence, there is a need to develop IP 

cores which can be easily customizable to avoid mismatches of computing capability between users' 

applications and the IP cores, and run-time adaptable for time varying loads of computing while 

reducing design efforts from the users. These features are particularly desirable for real time video 



8 
 

processing systems involving dynamic adaptation to the characteristics of the target applications or 

other communication systems. Our design approach is towards developing a reconfigurable IP core 

to perform the computationally complex ME module, so that it can be used in diversified applications 

with user parameters passed to the control system in the IP core for adjustment of its architecture. We 

present in details hardware - reconfigurability strategy for development of IP core that can support 

block matching ME. It is also shown how our ME architecture can adapt with various search ranges 

(SR), video formats, and frame rates by designing efficient data sharing platform, memory 

organization, modular approach in hardware design, and different configurations of processing 

element (PE) arrays during run-time. 

1.5 Thesis Organization 

Chapter 2 investigates various ME algorithms and architectures. The algorithms presented in this 

Chapter are mainly categorized as lossy and lossless methods. In lossy algorithms, the video quality 

is degraded when compared to FSBMA where in lossless methods the results are same as FSBMA. 

The various architectures discussed mainly consider memory organization, data flow, and latency 

issues. Chapter 3 presents a modular design strategy for ME hardware architecture to support 

different video formats and frame rates. This Chapter also discusses the implementation flow using 

partial reconfiguration on FPGA. As an extension, Chapter 4 presents search reduction algorithm to 

improve performance of FSBMA and hardware architecture with adaptive SR support. Also, we 

discuss an approach on time multiplexing reconfigurable area using dynamic partial reconfiguration 

by integrating the integer and fractional ME architectures. Finally, concluding remarks are given in 

Chapter 6. 



9 
 

BACKGROUND AND RELATED WORK 

2.1 Motion Estimation Algorithms 

As discussed in Chapter 1, although its computations are costly, FSBMA is most accurate 

algorithm. Hence, it is taken as reference for best video quality. In this Chapter, various strategies to 

reduce the ME computational load and related work are discussed. The methods in Sections 2.1.1, 

2.1.2, 2.1.4 are lossy and Section 2.2.3 is lossless [54]. 

2.1.1 Adaptive Search Locations 

In this class of lossy algorithm, ME is performed only on certain search points in order to 

reduce number of SAD computations. This approach can be classified into three types: a) Careful 

prediction of motion direction and selecting certain points for which ME is performed in given SR. b) 

Reducing the search window itself and perform ME in all locations of new SR. c) Hierarchical search 

with pyramid structure. All these algorithms are based on the assumptions that the motion in 

sequence of frames is regular and the distortion increases when the search locations move away from 

the minimum distortion position. Hence, by skipping such search points, computation load on ME is 

reduced significantly but with degradation of video quality. Some of the examples of type one are, 

three-step search developed in [9], [10], logarithmic search [11], [12], four step search [13], diamond 

search [14]. However, the search point selection is not regular and so is the data flow. Therefore, 

parallelizing the process of SAD computations and efficiency of memory access may not be feasible. 

The work of [15], considers these issues and shows an approach towards system optimization. For 

video sequences with large motion, these algorithms perform very poor and are sensitive to local 

minimum which further degraded ME accuracy.  



10 
 

The second type also called as Predictive Search, can be one of the solutions for the issues in 

type one algorithms. In this method, first the motion vector is predicted using the motion information 

of spatial or temporal neighboring blocks. This information along with the distortion (SAD) 

threshold, decides the final Motion Vector Prediction (MVP). In [16], MV of previous MBs on the 

top left, top, and top right are taken and their median is calculated. This result, zero MV block, and 

MV of corresponding MB in previous frames are considered to find MVP. In [17], the motion of MB 

is categorized as slow, medium, and fast mode to decide the search range. 

In hierarchical ME algorithms, a pyramid structure of coarse to fine level search is adopted. 

First, ME is performed at coarse level and then refined by estimating around the initial MV. Two to 

three levels of hierarchy are used for finding final MV. The 3SS in [9], can be considered as 

hierarchical search. In the work of [18], a threshold for SAD value is introduced. The MV refinement 

is continued for several steps until an MV with SAD value less than the threshold is obtained. ME 

hardware architecture using hierarchical search method are given in [19], [20]. 

2.1.2 Cost Reduction of Matching Criterion 

In general, SAD block matching scheme involves matching of all pixel in a given block. One 

way to reduce this is sub-sampling scheme. In the work of [21], only every alternate pixel is 

considered for matching in both horizontal and vertical direction. This way, the computation load is 

reduced by four times than typical matching method. In the work of [22], only the edge pixels which 

are supposed to have important information are considered. 

Pixel truncation is another lossy method to reduce hardware cost with small degradation in 

video quality. For example, 8-bit pixel can be reduce to 4-bits to reduce hardware resources to be 

used and can also reduce computations. The work of [23] presents an approach where pixel width can 

be changed adaptively. 



11 
 

2.1.3 Lossless Fast Full Search Algorithm 

One direct method of lossless algorithm is Partial Distortion Elimination (PDE) algorithm 

presented in [24]. If the accumulated partial distortion of candidate block is already larger than 

existing minimum SAD, the block can be skipped without any loss in image quality. Many other 

algorithms were developed based on partial distortion elimination method such as normalized PDE 

[25], probabilistic PDE [26], spiral PDE [27]. These algorithms find an approach to increase the early 

rejection process.  

Successive Elimination Algorithm (SEA) is proposed in [28]. It is based on the mathematical fact 

that |A + B| ≤ |A| + |B| for all real values of A and B. If the absolute difference between sum of 

current block pixel sum and sum of reference (or candidate) block pixel is greater than existing 

minimum SAD value, then the corresponding block is eliminated. This is illustrated as 

𝑆𝐴𝐷 𝑥,𝑦 =    𝐶 𝑖, 𝑗 −  𝑅 𝑖 + 𝑥, 𝑗 + 𝑦    ≥    𝐶𝑠 −  𝑅𝑠 (𝑆𝐸𝐴 𝑣𝑎𝑙𝑢𝑒)𝑁
𝑗=0

𝑁
𝑖=0                       (2) 

Where Cs sum of is current block pixel and Rs is reference block pixel sum. Therefore, if 

SEA value is greater than minimum SAD, then it implies that its SAD value is greater than SADmin. 

SEA combined with good MVP method can increase the rejection ratio of SAD computations. 

Winner Update algorithm presented in [29], [30] is based on the idea that we need not require 

to calculate the total sum in order to eliminate that candidate block. This can be explained by simple 

strategy employed in the game of poker. The winning player will have minimum sum of his cards. 

Each player shows one card initially and the player with lowest value card is allowed to show his 

second card and so on until the player with no cards left is the winner. The basic idea is if the 

intermediate sum of cards of a particular player already exceeds the total sum of the winning player 

then that particular player has no chance of winning. The same strategy can be applied to find 

minimum SAD of candidate blocks. However, implementation of sorting the SAD values is very 



12 
 

expensive in terms of hardware realization. All the algorithms explained in this Section have very 

minor difference in SAD calculation when compared to FSBMA. However, these minor differences 

do not cause noticeable effect on video quality. 

2.1.4 Mode Decision and Other Encoding Parameters 

Mode decision is another important aspect which contributes towards increased computations 

of H.264/AVC ME. In the JM reference software, all the 16 sub-macroblocks starting with smallest 

4x4 blocks are used and exhaustively searches for best mode. With this process, the encoding time 

for ME is increased significantly. The work in [31], presents a simplified version of mode decision 

strategy to use reduced number of sub-macroblock modes and effectively saves about 27% of bit-rate 

and significant computational time for ME with very little degradation in Peak Signal-to-Noise Ratio 

(PSNR) of the video sequence. In [32], Quantization Parameter (QP) is used for early detection of 

macroblocks with SKIP mode or with all-zero residue values and eliminates ME computations for 

that macroblock. Works in [33], [34] discuss about reduction in number of reference frames. All 

these algorithms are ‘software-oriented’ and become very complex to realize efficient hardware 

architectures. 

2.1.5 Fractional Motion Estimation Algorithm 

The H.264/AVC VBSME consists of seven different block sizes ranging from 16x16 to 4x4. 

These sub-partitions lead to a large number of possible combinations within each macroblock. In 

general, large blocks are appropriate for homogeneous areas and small partitions are appropriate for 

textured and variant motion area. Especially in complex textured pictures, the accuracy of motion 

compensation is in quarter and half pixel resolution for H.264/AVC, which can provide better 

compression performance [3], [48]. The half-pixel MV refinements are performed around the best 

integer search positions, I, from IME results. The search range of half-pixel MV refinements is ±1/2 



13 
 

pixel along both horizontal and vertical directions. This refinement has nine candidates, including the 

refinement center and its eight neighborhoods, for the best match. Then, quarter pixel refinement is 

performed in same fashion as half-pixel. The inter mode decision is done after all costs are computed 

in half-pixel and (or) quarter-pixel precision in all reference frames. 

The reference pixels are interpolated to produce fractional pixels for each search candidate. 

Afterward, residues are generated by subtracting the corresponding fractional pixels from current 

pixels. Then, the absolute values of the 4×4-based residues are accumulated as distortion cost called 

SAD. The final matching cost is calculated by adding the SAD with the MV cost. The cost can be 

correctly derived only after prediction modes of the neighboring blocks are determined. 

2.2 Motion Estimation Hardware Architectures 

2.2.1 FSBMA Architectures 

Integer pixel Full Search ME algorithm has an inherent property of common data dependency, which 

makes pipelining of such data possible in order to speed up the ME computations. Based on this 

algorithm, some efficient full search algorithms are proposed having 1-D and 2-D PE structures. In 

general, ME hardware architectures can be classified into two types: inter-level SAD architecture 

where each processing element (PE) is responsible for complete SAD for specific search location and 

intra-level SAD architecture where each PE is responsible for the partial absolute difference of a 

fixed current pixel location in the current MB, but for all search locations. In intra level architecture, 

the PE matrix size is confined to the MB size, hence occupies less area and further can be pipelined 

to design a faster ME engine. 

 



14 
 

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

D D D D

D D D D

D D D D

2D BROADCAST OF CURRENT PIXELS

REFERENCE 

PIXEL

PARALLEL ADDER UNIT
BLOCK MATCH 

SELECT

OUTPUT MIN. 

SAD

 

Figure 5 Generalized 2D intra-level SAD hardware architecture supporting block size of 4x4.  

 

PE PED D

PE PED

PE PED D

PE PED

D

D PE PED

REF. PIXEL 

SET 1

REF. PIXEL 

SET 2

CURRENT 

PIXEL
CURRENT 

PIXEL

TO 

COMPARATOR

 

Figure 6 Generalized 1D inter-level SAD hardware architecture supporting SR of 8 horizontal 

direction. 

 

Figure 5. shows generalized intra-level SAD architecture. In [35], [36], 2-D systolic PE array 

architecture was presented, where the number of PEs is equal to the MB size. The architecture has 

excess registers for the reference data to propagate and the search sequence is meander-like scanning. 



15 
 

Due to number of additional registers, this architecture has comparably low performance and latency 

is degraded. In [37], [38], intra level 2-D array architecture was proposed which satisfies H.264 

requirements with high performance. However, their architecture is supported by a data flow where 

actually 16 different PEs are accessing 16 different reference pixel data simultaneously, which 

increases the memory access per clock cycle. 

In inter-level SAD architecture, the PE matrix size is dependent on the search window (SW) 

size and with a regular data flow design, the architecture can be designed for a 1-D to a 2-D systolic 

structure. Figure 6. illustrates inter-level SAD architecture. In such architectures, reference frame 

data are broadcasted into corresponding PEs to compute SADs. Although it requires more hardware 

to have high parallelism, this type of approach effectively reduces the memory bit width. Hence, 

there is always a trade-off in ME engine performance, hardware area utilization, and most 

importantly memory bandwidth. 

The work in [39] implements 1-D PE architecture which uses pipelining to improve the data 

reuse. However, it may not support the present ME which deals with various sub-blocks within each 

macroblock. The proposed works in [38], [40] have such 2-D array structures and can achieve high 

throughput. These architectures are scalable and have the scope for extending the level of 

parallelism. However, both of the works use ASIC design based on fixed hardware architecture. 

2.2.2 Fast ME Architectures 

Architectures for fast ME algorithms can reduce the hardware cost and decrease the 

computation time with acceptable video quality. The main challenges include design of unpredictable 

data flow, memory access and sorting out systolic mapping. For example, a simplified architecture of 

three step search is presented in [41]. A real chip for 3SS is realized in [42] with 0.8um technology. 

Several architectures for other fast ME algorithms are also discussed. But in general, only the 



16 
 

simplified fast ME algorithms are chosen to facilitate the hardware realization such as the designs for 

Hierarchical Search [19], [20], Three Step Search [13], and Diamond Search [43]. In the work of 

[44], a hybrid model to support various algorithms is presented. The average computational cost 

reduction in this work is about 24%. 

In this thesis, first reconfigurable PE arrays were designed to improve performance and data 

reuse at 4x4 block level, but for fixed SR. This can be used to extend the architecture from 1-D to a 

faster 2-D SAD architecture. Further, we show how this SAD array architecture can be modified and 

reconfigured to support various SRs. If there is few motion activities in the sequence (for example, 

video captured by the surveillance camera in the hall way during night time), SR can be reduced 

further, resulting in reduction of power and hardware resources used. 

2.3 Summary 

Motion estimation engine is usually the most important module in the video encoding process. 

Significant amount of time is spent in software based module and demands good amount of hardware 

and memory bandwidth. In this Chapter, we made a detailed study of block matching algorithms and 

architectures during the past two decades. A lot of work has been done to reduce the computational 

load of ME through variety of software algorithms. However, hardware realization may not be 

feasible for each and every algorithm developed on software. The main challenge lies in developing 

hardware-oriented computational reduction algorithms, which can adapt different parameters and 

their corresponding adaptable hardware resources during run-time without turning-off the ME 

process for reconfiguration. The works discussed in this Chapter can be an inspiration for solving this 

challenge. 

  



17 
 

MODULAR H.264/AVC VBSME APPROACH 

3.1 Top Level Architecture 

 

Current 

Frame 

Buffer

Controller

BUS

Macro
BUS

Macro

Block Mode 

Selector

SAD Buffer

addr

Reference 

Frame 

Buffer
PRR1

PRR2

PRR3

PRR4

we

ME module

addr we data

c0,0, c0,1, c0,2, c0,3

B1

B2

B3

B4

B5

addr

addr
data

C
o

m
p

a
ra

to
r

SADs
MVs

Output

SADs,

mode

 

Figure 7 Top level architecture of proposed VBSME. 

 

The top level architecture of proposed scalable ME design is shown in Figure 7. The ME 

module is divided into static region and reconfigurable region. The static region of ME module 

consists of current frame buffer, reference frame buffer, controller, comparator, block mode selector, 

and SAD buffer. These modules remain unchanged after initial configuration. Controller generates 

the address to fetch the data from current frame buffer and reference frame buffer. The results of 12 

bit SAD value of 4x4 blocks from the reconfigurable region and 8 bit motion vector information 

from the comparator unit are propagated into the block mode selector unit where the best block size 

is determined. These final block modes, SADs, and corresponding MVs are stored in SAD buffer. In 

our implementation, 16 minimum SADs for each MB are computed and the best block mode and 

corresponding MV are stored into SAD buffer. The tracking range used for our implementation 

purpose is [-8, +7]. In this work, four modules, i.e., from PRR1 to PRR4, are included and tested to 

implement scalable ME computation. Each module is defined as a partial reconfigurable region 



18 
 

(PRR). Bus Macros (BM) are used to connect signals between static region and PRR. Each PRR can 

compute ME computation for 4×4 blocks within the search window. 

3.2 Memory Management 

The current frame buffer stores all the 256 pixels of current MB in internal BRAM memory. In order 

to increase throughput of memory access, it is divided into 4 dual port BRAMs with data width of 8 

bits and depth of 64 pixels as shown in Figure 8(a). Each BRAM stores pixel information of four 4×4 

blocks in a row at a given current MB. Depending on the number of active PRRs, the data flows into 

each PRR through the controller. For example, if all four PRRs are active, then PRR1-PRR4 receives 

current pixel information from C#1 - C#4 respectively. 

 

Addr1 

data1

RAM

C#1

RAM

C#2

RAM

C#3

RAM

C#4

Controller

Addr,

we1 

Dout1 

(a)

M
U

X

RAM

R#1

D
E

M
U

X

Addr1, we1

B1, 

B2, 

B3, 

B4, 

B5,  

D
o

u
t

Data

in

(b)

RAM

R#2

RAM

R#3

RAM

R#4

RAM

R#5

RAM

R#6

Addr2, we2

Addr3, we3

Addr4, we4

Addr5, we5

Addr6, we6

Sel_line2

Sel_line1

Addr2

data2

Addr3

data3

Addr4

data4

Dout2 Dout3 Dout4 

Addr,

we2 

Addr,

we3 

Addr,

we4 

 

Figure 8 (a) Current frame buffer structure (b) Reference frame buffer 

 



19 
 

Search range value [-8,7]

B5

0 1 2 3-4 -3 -2 -1

B1 B2

4 5 6 7-8 -7 -6 -5

B3 B4

 

Figure 9 Data scanning in the search window 

 

The design also includes six memories for reference frame buffer as shown in Figure 8(b). 

The search window is divided into five columns, having row size of 4 pixels, as shown in Figure 9. 

The column height is equal to the vertical size of search window. In our case, it is 31 pixel high. This 

information is stored in the BRAM with data width of 8 bits and depth of 31x4 pixels. The sixth 

BRAM is used as a temporary buffer for loading next search pixel values in parallel. 

At the beginning of the motion estimation process, the first search window is stored in the 

reference buffer R#1 – R#5 as shown in Figure 8(b). While first round of SAD computations is 

taking place, the memory R#6 is loaded with next 31×4 pixels required for SAD computation of four 

4×4 blocks of 2nd column of corresponding MB. Now, for this 2nd round of SADs, memories R#2 – 

R#6 are used, and simultaneously R#1 is updated with next pixel information. Therefore, bottle neck 

problem of memory accesses can be avoided in consecutive SAD iterations. 

 

 



20 
 

3.3 Partial Reconfigurable Module 

s_w(3,10), s_w(3,9), s_w(3,8) 

s_w(0,8), s_w(0,9), s_w(0,10), 0 

0, s_w(1,10), s_w(1,9), s_w(1,8) 

s_w(2,8), s_w(2,9), s_w(2,10), 0 

c(0,0), c(0,1), c(0,2), c(0,3) 

c(1,3), c(1,2), c(1,1), c(1,0) 

c(2,0), c(2,1), c(2,2), c(2,3) 

c(3,3), c(3,2), c(3,1), c(3,0) 

4
x
1

 P
E

4
x
1

 P
E

4
x
1

 P
E

4
x
1

 P
E

To the 

comparator

SAD

SAD

SAD

SAD

To the next 

arraySADs

c

Add 

Accum

|a-b|

Reg

 SAD 

out

cs_w

s_w(0,0), s_w(0,1), s_w(0,2), s_w(0,3) 

s_w(1,3), s_w(1,2), s_w(1,1), s_w(1,0) 

s_w(0,-4), s_w(0,-3), s_w(0,-2), s_w(0,-1) 

s_w(1,-1), s_w(1,-2), s_w(1,-3), s_w(1,-4) 

s_w(0,-8), s_w(0,-7), s_w(0,-6), s_w(0,-5) 

s_w(1,-5), s_w(1,-6), s_w(1,-7), s_w(1,-8) 

From 

the prev. 

array

s_w(∙,∙)

(a)

(b)

(c)

s_w(0,4), s_w(0,5), s_w(0,6), s_w(0,7) 

s_w(1,7), s_w(1,6), s_w(1,5), s_w(1,4) 

 

Figure 10 (a) Structure of SAD block (b) Building block of one 4×1 PE 

 (c) Architecture of one PRR with 16×1 PEs 

  



21 
 

   1

   1

   1

   1

   1

   1

   2

   2

   1

   2

   3

   4

16

1
6

4

4

 

Figure 11 Number of blocks covered given the number of PRRs in active mode. 

More the number of divisions imply more the degree of parallelism.  

 

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

PRR5
1

6
x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

PRR6

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

1
6

x
1

 P
E

 A
rr

a
y

PRR3PRR2

1
6

x
1

 P
E

 A
rr

a
y

PRR1 PRR4

 

Figure 12 Different configurations of 16x1 PE Arrays 

 

Figure 10. shows the internal structure of a 16×1 PE array. This unit consists of 16 SAD 

Units, responsible for simultaneously calculating SADs of all the search locations of one row [-8, +7] 

(i.e., 16 pixels) in the search window. The four PRRs are responsible for calculating SADs of four 

‘different 4x4’ blocks simultaneously. For this, 1, 2 or 4 PRRs can be configured for computation. 

Now, by increasing number of 16×1 PE Arrays, for calculating SAD for the ‘same 4x4’ 

current block, data reuse and performance can be improved. This can be done by introducing PRR5, 

which contains additional 4 16x1 PE arrays, the data reuse for each block is improved and so is the 

SAD computation speed. Each 16x1 PE array here will compute SADs for the first column of four 

4x4 blocks in Figure 11. While the PRR1-4 compute SADs of search candidates of a particular row, 

PRR5 computes SADs for search candidates of next row simultaneously but with initial latency of 4 



22 
 

clock cycles. The various types of modules that can be configured are shown in Figure 12. For 

implementation purpose, we use reconfigurable PRR1 – PRR4. 

3.4 Data Flow 

The absolute difference (AD) of specific pixel in current block and reference block can be 

computed as shown below 

𝐴𝐷(𝑖,𝑗 )
(𝑥 ,𝑦)

 ℎ, 𝑣 = |𝐶 𝑖 ,𝑗   𝑥,𝑦 − 𝑠_𝑤 𝑖,𝑗  (𝑥 + ℎ,𝑦 + 𝑣)|                                (3) 

Here, (x, y) is pixel location within block, i.e., 0≤(x, y)≤n-1. Part of search window (s_w) is 

observed to be common with neighboring blocks. So, this search window data can be exploited by 

using 4 PRRs where each PRR computes SAD of neighboring block. Hence, data reuse is improved 

by increasing number of PRRs from 1 to 2 and 2 to 4. From equation (2), it is clear that current pixel 

information c(x, y) is common for evaluating every SAD (h, v) where -8≤(h,v)≤+7. So, this data can 

be shared with all search candidates row-wise (h) as well as column-wise (v). If we implement one 

16×1 PE Array, all search locations with common ‘h’ are computed in parallel. This parallelism can 

be extended to 2-D, i.e., for all ‘h’ as well as ‘v’ by implementing two 16×1 (partial data reuse 

improvement) or four 16×1 (full data reuse improvement) PE Arrays. These 16x1 PE arrays share the 

current block data and search window data. Now each of PRR1 – PRR4 uses one PE array. If we 

introduce four more arrays (PRR5), two rows of pixel values in the search window can be processed 

simultaneously. Similarly, if we introduce PRR6, then four rows of pixel values in the search 

window can be processed simultaneously. 

  



23 
 

Table 1 Dataflow for Proposed Reconfigurable Motion Estimation Algorithm, for Search 

Window [-8, +7] 

   
SADs of corresponding 4x4 Blocks, 

i.e., SAD(i, j) 

Showing SAD flow of 

first current block 

Showing SAD flow of 

first current block 

B5, B4, B3, B1, B2 c 

SAD locations 

(h, v) 

(1PRR) (2PRRs) (4PRRs) PRR(1-5) PRR(1-6) 

s_w(-8,-8)-(-8,10)        

s_w(-7,-7)-(-7,10) c(0,0)-c(0,3)       

s_w (-6,-6)-(-6,10) c(1,0)-c(3,3)       

s_w (-5,-5)-(-5,10) c(2,0)-c(3,3)       

s_w (-4,-4)-(-4,10) c(3,0)-c(3,3)       

s_w (-3,-3)-(-3,10) c(0,0)-c(3,3) (-8,-8) - (-8,7) SAD(0,0) SAD(0,0) SAD(0,0) SAD(-8,-8) - (-8,7) SAD(-8,-8) - (-8,7) 

s_w (-2,-2)-(-2,10) c(1,0)-c(3,3)     SAD(-7,-8) - (-7,7) SAD(-7,-8) - (-7,7) 

s_w (-1,-1)-(-1,10) c(2,0)-c(3,3)      SAD(-6,-8) - (-6,7) 

s_w (0,0)-(0,10) c(3,0)-c(3,3)      SAD(-5,-8) - (-5,7) 

s_w (1,1)-(1,10)  (-4,-8) - (-4,7) SAD(0,0) SAD(0,0) SAD(0,0) SAD(-4,-8) - (-4,7) SAD(-4,-8) - (-4,7) 

s_w (2,2)-(2,10) … (-8,-8) - (-8,7)  SAD(1,0) SAD(1,0) SAD(-3,-8) - (-3,7) SAD(-3,-8) - (-3,7) 

s_w (3,-8)-(3,10) …      SAD(-2,-8) - (-2,7) 

.. …      SAD(-1,-8) - (-1,7) 

.. … (0,-8) - (0,7) SAD(0,0) SAD(0,0) SAD(0,0) SAD(0,-8) - (0,7) SAD(0,-8) - (0,7) 

..  (-4,-8) - (-4,7)  SAD(1,0) SAD(1,0) SAD(1,-8) - (1,7) SAD(1,-8) - (1,7) 

s_w (6,-8)(6,10)  (-8,-8) - (-8,7)   SAD(2,0)  SAD(2,-8) - (2,7) 

s_w (7,-8)-(7,10) c(3,0)-c(3,3)      SAD(3,-8) - (3,7) 

 c(0,0)-c(0,3) (4,-8) - (4,7) SAD(0,0) SAD(0,0) SAD(0,0) SAD(4,-8) - (4,7) SAD(4,-8) - (4,7) 

  (0,-8) - (0,7)  SAD(1,0) SAD(1,0) SAD(5,-8) - (5,7) SAD(5,-8) - (5,7) 

  (-4,-8) - (-4,7)   SAD(2,0)  SAD(6,-8) - (6,7) 

  (-8,-8) - (-8,7)   SAD(3,0)  SAD(7,-8) - (7,7) 

  (-7,-8) - (-7,7) SAD(0,0) SAD(0,0) SAD(0,0) SAD(-6,-8) - (-6,7)  

  (4,-8) - (4,7)  SAD(1,0) SAD(1,0) SAD(-5,-8) - (-5,7)  

  …   … … … 

 

In the proposed architecture, the search window is divided into 5 columns and the pixel data 

are scanned simultaneously from these columns as shown in Figure 9. During initial 4 clock cycles, 

the pixel information of first row in the search window (s_w(0,0)(-8,v) - s_w(0,0)(7,v)) is stored in 

the latches. In the next clock cycle, the current pixel information (c(0,0)) becomes available to each 

16x1 PE array when it starts SAD computations. During this cycle, the next row pixel information in 

the search window is continuously read and pipelined into the latches.  More precise details of data 



24 
 

flow into the latches are shown in Figure 10(c). These partial SADs are stored in each PE array After 

16 clock cycles SADs are propagated into the comparator unit for MV generation. The detailed data 

flow for different PRRs architecture is shown in Table 1. According to the number of PRRs 

operating, the controller unit can efficiently have the data flow pipelined among the PRRs to increase 

data reuse. 

3.6 Block Mode Selector 

check check check check

check

check check check

check

check check check check

check

check check check check

check

checkcheck checkcheck

check

check

 

Figure 13 Variable Block Mode Selector for H.264/AVC Standard 

 

In the H.264/AVC standard, mode decision algorithm is left open to the developer. Given the 

quantization parameter (QP) and the Lagrange parameter, λmode, the mode decision can be performed 

by minimizing the following equation, 

Jmode  MBk , Ik QP, λmode  = Distortion MBk , Ik QP, λmode  +  λmode ∙ Rate MBk , Ik QP, λmode       (4) 

Where Ik denotes all possible coding modes and their corresponding MVs. Due to the huge 

computation complexity and sequential issues in the high complexity mode of H.264/AVC, it is less 

suitable for real-time applications. In this Chapter, we discuss a low complexity mode decision [31]. 



25 
 

The function of this unit is to merge SADs of 4x4 blocks that are exact matches. The 

resulting merge follows the rules of allowable block patterns for the H.264/AVC ME. For our 

implementation, merging decision is based on motion vectors of neighboring 4×4 blocks. If the MV 

displacements are exact match, then we merge the neighboring blocks [31]. The Variable Block Size 

Decision (VBSD) approach reduces the number of optimal sub-macroblocks for motion 

compensation operations and uses less hardware resources when compared to the technique used in 

JM software. Table 2. gives the comparison results of PSNR and bitrate with JM software. On an 

average, it reduces 5% of bitrate with only 0.04dB of PSNR degradation. In other words, data 

computational load is reduced and so is the ME computation time. 

Figure 13. shows the block mode selector tree. The values of SADs and MVs are read from 

output of comparator unit. The comparator unit finds the best SAD for given block, by reading the 

output SADs from the PRR(s). The final resultant block mode and corresponding SADs are stored in 

the output SAD buffer unit. 

Table 2 Bitrate and PSNR comparison of VBSD scheme 

 

 

Container Carphone Foreman Football Hall Suzie

PSNR(dB)
36.348 37.398 36.711 36.560 37.711 37.568

Bitrate(Kpbs) 45.382 119.000 139.300 745.820 60.890 91.820

PSNR(dB) 36.319 37.345 36.655 36.472 37.676 37.555

Bitrate(Kpbs) 44.007 117.020 124.350 696.330 58.059 90.440

ΔPSNR
-0.029 -0.053 -0.056 -0.088 -0.035 -0.013

Δbitrate -1.375 -1.980 -14.950 -49.490 -2.831 -1.380

JM

V
B

S
D

 S
c
h

e
m

e
 [

3
1

]



26 
 

3.6 Experimental Results 

Table 5 gives the performance characteristics of our design when various reconfigurable 

structures are used. From this Table, it is clear that as the number of PRRs increases, the number of 

SADs that are computed in parallel also increases. This actually depicts the degree of parallelism and 

data reuse. 

Table 6 shows the time required for SAD computations for each frame at a maximum clock 

frequency of 90MHz. Suppose the frame rate of a video sequence be 30fps, then the maximum 

allowable time that ME engine can take is 33ms for each frame. If the image resolution is either 

QCIF or CIF, we can reduce the hardware by using only 1 or 2 PRRs and still maintaining required 

ME time. However, if the image is of higher resolution, then a faster ME engine is needed. In that 

case, number of PRRs configured can be increased. Partial reconfiguration of these modules can 

allow best utilization of FPGA hardware resources. 

At architecture level, the performance of our proposed architecture for different operating 

PRRs is compared with previous works of [45], [37], [46], [47]. Table 3 shows general 

characteristics of number of PEs, latency, operating cycles, bit width information summarizing the 

level of parallelism and data reuse. It also includes the scalability factor which plays important role in 

reconfigurable design methodology. The macro block size is taken as N×N and the smaller block as 

n×n. For block in the current frame, one reference block that is best match to it, in the search range of 

H×V, is selected. ‘P’ represents the number of 16x1 PE arrays present, i.e., P=1,2,4,8,16 for 

combination of PRRs(1), (1&2), (1-4), (1-5) and (1-6) respectively. ‘q’ represents number of current 

blocks accessed in parallel, i.e., q=1,2 or 4 for combination of PRRs(1), (1&2), [(1-4) or (1-5) or (1-

6)] respectively. From the Table 5, it is clear that the ME engine speeds up with increase in PRRs and 



27 
 

at the same time only 1 PRR can be configured in applications where hardware resource and power 

consumption are critical criteria. 

The memory bit width is defined as the number of bits the algorithm accesses from the 

memory in each cycle. It is one of the factors to determine efficient memory management and degree 

of parallelism. The works of [45], [37], and [47] compute 16 SADs in parallel hence have large bit 

width, but their data flow is not regular. Memory bandwidth is defined as the number of memory 

access to complete ME for one MB. It is the one to determine the efficient data reuse capability. 

From Table 4, it is shown that by increasing the number of PRRs, data reuse is significantly 

increased when compared to previous works. 

Table 7 gives the synthesis result and Table 8 shows the partial bit stream size of each PRR 

module. The design is implemented on Xilinx Virtex2Pro (XC2VP30) FPGA development board. 

Synthesis is done using ISE Foundation Tool. The full and partial bit streams are generated using 

PlanAhead 10.1 Tool. Bitstreams obtained from the synthesized design are used to reconfigure the 

FPGA through JTAG. 

Table 3 Various Criteria of Different Architectures 

 

  

Architecture Latency
Bit Width for 

ref. frame
Operating Cycles

Scalability/ 

Modularity

[45] N 2 ∙ N ∙ 8 [H ∙ V] + N - 1
Memory bitwidth 

constraints

[37] N (N + 1) ∙ 8 [H ∙ V] + N - 1
Memory bitwidth 

constraints

[46] N ∙ (V+1) 2 ∙ 8 [H ∙ V] + N ∙ (V+1) -

[47] H + N N ∙ 8 H ∙ (V + N) -

Proposed work n ∙ (n + 1) [(H/n) + 1] ∙ 8 [H ∙ V] ∙ (n
3
/P ∙ R) Yes



28 
 

 

Table 4 Comparison of Different Hardware Architectures for VBSME Algorithm for Search 

Range [-8, 7], N=16, N=4 

\ 

 

Table 5 Various Criteria of Different Architectures 

No. of PRRs No. of SADs  
Buffer cycles 

for each MB 

1 16/16 cycles 16 

2 32/16 cycles 32 

4 64/16 cycles 64 

5 128/16 cycles 72 

6 256/16 cycles 88 

 

Table 6 Various Reconfigurable Architectures to Support Different Image Resolutions 

Display Type 
Type of 

Reconfigurable 

architecture 

Estimated time for 
SAD computation for 

each frame @ 90MHz 

QCIF (174×144) 1PRR 5.5ms 

CIF (352×288) 1PRR 17.7ms 

 2PRR 9ms 

720×480 1PRR 62ms 

 2PRR 31.7ms 

 4PRR 15.9ms 

1920×1080 1PRR 366ms 

 2PRR 183ms 

 4PRR 92ms 

 5PRR 47.8ms 

 6PRR 24.6ms 

 

1 PRR 40 8 184

2PRRs 40 16 92

4PRRs 40 32 46

8PRRs 40 64 23

16PRRs 40 128 11.5

[45] 256 - 76

[37] 136 - 48

[46] 16 - 10.5

[47] 128 - 77.6

Bit width for 

ref. frame 

(bits/cycle)

Bit width 

for current 

frame 

(bits/cycle)

Bandwidth 

for ref. 

Frame 

(Kbits/MB)

Architecture

(with r = 16x1)



29 
 

Table 7 Hardware Resources 

Module LUTs 
Slice Flip 

Flops 

MUX 

18x18 
BRAMs 

16×1 PE Array 1109 871 - - 

Static & Memory 

Buffers 
874 327 7 15 

 

Table 8 Bitstream Information 

Bitstreams Size (Bytes) 

PRR1 90640 

PRR2 105472 

PRR3 90640 

PRR4 105472 

3.7 Summary 

In this Chapter, we presented an approach to design integer pixel H.264/AVC variable block size 

scalable ME engine. Its regular structure, regular data flow, and memory management make it 

possible to implement IME-FSBMA. The Chapter includes all the modules like PE Array, mode 

selector, and memory unit. The proposed architecture has lower memory bandwidth and latency. 

Simulation results show that our design can increase data reuse significantly and thereby reduce the 

memory bandwidth overhead. Further through partial reconfiguration approach, depending on input 

image resolution, it can adopt suitable number of PRRs during runtime. In summary, our architecture 

presents an inherent capacity to adjust the hardware resources, which forms basis for a novel self 

adaptive full-search algorithm. 

 

  



30 
 

ADAPTIVE SEARCH RANGE ALGORITHM AND 

IMPLEMENTATION 

4.1 Video Coding Efficiency with Variable Search Range 

In video coding applications, the search range for motion estimation should be large enough 

to cover the motion displacements, but at the same time, increase in the SR also causes a problem of 

increasing computational overhead. Figure 14. shows the Peak Signal to Noise Ratio (PSNR) 

performance of H.264/AVC using motion estimation with different Search Ranges (SR), and 40 

frames from different video sequences with CIF (352×288 pixels) resolution are encoded at 30fps.  

The results show that after SR (  32), the PSNR is saturated indicating significant increase in 

computational overhead. This is illustrated in Figure 15, where computational cost is calculated as 

the number of SAD evaluation for full search ME algorithm. 

 

 

Figure 14 PSNR performance of 

H.264/AVC motion estimation for various 

video sequences  
 

 

Figure 15 SAD computations of H.264/AVC ME 

for various search ranges 
 

 

35.28

35.31

35.34

35.37

35.4

35.43

35.46

35.49

35.52

35.55

35.58

35.61

35.64

0 8 16 24 32 40 48

P
e

ak
 S

ig
n

al
 to

 N
o

is
e

 R
at

io
 (

P
SN

R
)

Absolute value  of search range

FootBall Stefan Foreman Flower

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

0 8 16 24 32 40 48 56 64 72

N
u

m
b

e
r 

o
f 

S
A

D
s

Absolute value of search range



31 
 

H.264/AVC standard introduces other new features, such as multiple reference frames and up 

to quarter pixel resolution ME. Applying these two methods for all the search points, further 

increases the computational load, making hardware implementation essential. In order to accelerate 

these computations, quarter pixel ME can be performed by using certain integer pixel points which 

have lowest coding cost. Therefore, the performance of integer pixel ME at the first round needs to 

be more accurate so that the following sub-pixel ME can produce the best results. Therefore, after an 

efficient motion vector prediction, the search range center can be set depending on surrounding 

motion vectors. This can be useful to reduce the SR size [JVT-P026]. There is a good chance that the 

search range can be reduced for the same video sequence depending on the behavior of motion 

vectors of neighboring blocks as well as previous frames without much degradation of PSNR and 

compression ratio. 

Table 9 Percentage of the best matching MVs covered with different search ranges for football video 

sequence (QCIF @30fps) 

 

 

Figure 16 Distribution of MVs for football video sequence (QCIF @30fps) 

SR PSNR Bitrate % of vectors covered

±8 36.545 738.75 87.61

±16 36.553 713.42 91.66

±24 36.596 705.67 98.49

±32 36.617 692.93 100.00



32 
 

 

Figure 16. shows the example of absolute motion vector displacements after applying 

prediction-based MV and re-evaluating center of search range. The x-axis gives the absolute value of 

motion displacement vector and the y-axis gives the probability of occurrence for different values of 

MVs. Table 9. gives the performance variation for different values of SRs. Analysis has been 

performed for various sequences and is derived that most of the best motion vectors are very near the 

predicted center of SR and hence by adaptively reducing the SR, we can achieve great reduction in 

computational complexity as well as hardware resources used. 

From careful analysis of these plots for various video sequences, we conclude that more than 

90% of the MVs fall under the search range of ±6 to ±12 (for QCIF resolution @30fps) with very 

small degradation in video quality. From the above analysis, it is derived that by reducing the SR 

further, we can reduce the computational complexity of ME. 

4.2 Search Range Reduction Algorithm 

Performing exhaustive search is computationally very expensive and adds great complexity 

to ME. A full search algorithm for each block candidate requires [(2R+1)∙2] SAD computations 

where [+R,-R] is the search window size. We present an approach to reduce this search range (R) 

adaptively based on the correlation of the motion vectors as described in Section 4.1. This approach 

is based on the assumptions that motion field is smooth and changes slowly frame by frame. The 

correlation among MVs for the neighboring blocks is very high and hence current MV is likely to be 

near the search center which is predicted by using the previously encoded MVs of the neighboring 

blocks. 

 



33 
 

 

The adaptive search range algorithm can be described in the following steps: 

a) Initially set the SR for all the reference frames (for the case of multiple or single referenced 

frame algorithm) to maximum SR (i.e., [-32, +32]).  

b) Perform prediction algorithm as used in the JM software and obtain Motion Vector 

Prediction (MVP). Then, set the SR center in the reference frame accordingly. For simplicity 

in hardware implementation, all the block types for current macroblock share the same MVP 

(Fast Full Search in JM). 

c) Perform Fast Full Search ME and simultaneously store the number of MVs falling into 

different category of absolute displacement. (i.e., number of MVs with displacement 0,1,2, 

and so on). The averaged MV, MVavg, for a given macroblock in previous R reference frames 

is estimated by the equation below: 

𝑀𝑉𝑎𝑣𝑔 =  
1

𝑅
  

1

𝑀

𝑅
𝑟=1  𝑚𝑣𝑟𝑖

𝑀
𝑖=1                                            (5) 

Where M is number of sub-blocks in each macroblock. The optimal SR can be estimated by 

using this MVavg. 

d) Set the search range for the next frame such that the SR covers at least Th (Threshold) % of 

total MVs. ‘Th’ can vary from 90-100% depending on the user requirement: higher 

performance/PSNR, less computational complexity or hardware resources utilized, and so on. 

There are some algorithms which update SR at macroblock level for software oriented 

implementations. In our approach, SR is updated at frame level. Hence, it is assumed that SR 

is fixed for all macroblocks in particular frame. 

e) Given minimum SAD threshold increase or maintain the new SR. The SAD threshold for 

given average MV of a frame is listed in [51]. 

f) Continue from step (b) onwards. 



34 
 

4.3 Proposed ME Architecture 

As discussed in Chapter 1, the basic functions of a block-based ME are to calculate and 

compare the matching criterion between the current image block and all candidate blocks in the 

search range of reference frame. In H.264/AVC, seven different block sizes are specified for ME 

process as shown in Figure 2. Therefore, an ideal encoder has to examine all possible combinations 

of MB division modes to select the best mode among them. Hence, VBSME improves motion 

tracking over fixed block size algorithm especially by giving attention to highly active sub-block. A 

4x4 block can be considered as a preliminary block. Using SAD of this sub-block, SADs of larger 

blocks can be computed by simply adding the corresponding sub-block SADs. A total of 41 sub-

blocks including macroblock have to be evaluated for the motion vector selection. In SR reduction 

approach discussed earlier (Sections 4.1, 4.2), we consider MVs corresponding to all the 41 sub-

blocks for setting suitable SR for the following frame. 

The ME architecture is separated into different Partial Reconfigurable Regions (PRRs). Each PRR 

consists of PE arrays, where each PE is responsible for computing SAD of a specific searching 

candidate. In the later Sections, we show how each PRR can be configured to support increasing or 

decreasing SR in steps of 2, 4 and 8 (in both X and Y directions). Increasing the number of PRRs: 

1,2,3,4 can support SRs with ±2, ±4, ±6, ±8 respectively if the PRR is configured for 2-step SR. 

Similarly, to support set of SRs [±4, ±8, ±12, and ±16], the PRRs can be configured for 4-step SR.   



35 
 

4.3.1 Top Level Architecture 

Current 

MB 

Buffer

Control And Address 

Generation Unit

Bus Macro

S
W

 

B
u

ff
e

r
P

E
 A

rr
a

y

SAD Unit

Block 

Adder 

Unit

Compar-

ator

S
W

 

B
u

ff
e

r
P

E
 A

rr
a

y

S
W

 

B
u

ff
e

r
P

E
 A

rr
a

y

S
W

 

B
u

ff
e

r
P

E
 A

rr
a

y

User Control – increasing search range

PRR1 PRR2 PRR3 PRR4

STATIC PRR
 

Figure 17 Top level architecture for partially reconfigurable ME supporting different search ranges  

 

The modified top level architecture to support different SRs is shown in Figure 17. The 

architecture discussed in Chapter 3, forms the basis of this new architecture. In Section 3.2, it is 

discussed that the reference frame buffer size depends on the number of horizontal search range 

pixels. For example, if SR is ±8, we need five buffers; each one storing four column lengths of 

reference pixels. But now as SR is not fixed, the reference frame buffer also changes. Hence, it is 

desirable to move this buffer into reconfigurable area along with PE array. In our implementation, 

SADs for each 4x4 block are computed, sent to block mode selector unit, and the resultant MVs and 

corresponding SADs are stored in SAD buffer. For implementation purpose, we configured the PRRs 

for 2-step SR. In this work, four modules, i.e., from PRR1 to PRR4, are included and tested to 

implement scalable ME computation.  

 



36 
 

4.3.2 Memory Management 

RAM

R#1

RAM

R#2

RAM

R#3

        IF Controller

16x1 PE Array

Addr1, we1 Addr2, we2 Addr3, we3

Reference Block 

Data in

B2B1

SADs

RAM

R#3

Addr4, we4

16x1 PE Array

SADs

MUX

B3 B4

RAM

R#1

RAM

R#2

RAM

R#3

        IF Controller

16x1 PE Array

MUX

Addr1, we1 Addr2, we2 Addr3, we3

Reference Block 

Data in

B0B1

SADs
a1, a2, a3 a4

a1, a2, a3 a4

(a) (b)  

Figure 18 (a) General architecture of partial reconfiguration module for 2-step SR (b) General 

architecture of partial reconfiguration module for 4-step SR 

 

Memory management becomes an essential aspect for modular designs as the data flow into 

each module should be made regular and at the same time memory bandwidth should be at the 

minimum level. The current frame buffer architecture is discussed in Section 3.2. Its size is equal to 

MB size, i.e. 16x16 pixels. As all the sub-blocks in a macroblock are assumed to share same MVP, 

SR is overlapped between different 4×4 sub-blocks. In our PE design, we pipeline four 4×4 blocks to 

effectively re-use the SR data. 

To support 2-step SR, the reference frame buffer includes 3 BRAMs as shown in Figure 

18(a). Each BRAM stores 4×V pixels from the reference frame, where ‘V’ is the vertical height of 

SR covering one macroblock. R#1 stores these pixel data and R#2 stores the additional 3 pixel data 

needed for border 4×4 block positions in SR. Third BRAM is used as a temporary buffer for loading 

next search pixel values simultaneously. This can be one approach where the data flow is not 

interrupted and SAD computations can be performed continuously for different blocks. 



37 
 

4.3.3 Partial Reconfigurable Module 

b1

SAD3

SADs

a1

b2

SADSAD0

SADSAD1

SADSAD2

 

Figure 19 Internal structure of 4x1 PE array 

Figure 19. shows the internal structure of 4×1 PE array, having 4 SAD units. Each PRR 

consists of four such PE arrays including total of 16 SAD units (SAD0-SAD15). The four sets of 

SAD array (SAD0-SAD3), (SAD4-SAD7), (SAD8-SAD11), and (SAD12-SAD15) are responsible 

for simultaneously calculating SADs of four 4×4 blocks corresponding to a column of particular 

macroblock. 

Each PRR is responsible for SADs of ±2 SR for four blocks and by increasing the PRRs from 

1, 2, 3, and 4, the ME design can support ±2, ±4, ±6, and ±8 SR respectively. Similarly, the PRR 

structure can be designed to support increasing/decreasing SR in steps of 4 (Figure 18(b)) and 8. This 

can be useful for video with very high motion activities and high resolution which require optimum 

SR to be greater than ±8. For implementation purpose, we use 4 PRRs which can support 

increasing/decreasing SR in steps of ±2. 

Here from this work and also from work from Chapter 3, it can be shown that by rearranging 

the SAD units and with proper memory management unit, we can design a modular ME engine to 

support various requirements from the user, such as frame rate, video resolution, and search range, 



38 
 

and to maximize the benefits by fully utilizing the trade-offs among video signal characteristics, 

computing power, and reconfigurable hardware resources. 

4.3.4 Data Flow 

Modified data flow is shown in Table 10. We have discussed some of the previous ME 

architectures in Chapter 2 which perform FS with highly parallel computations. All PEs are 

connected through fixed wires and the level of parallelism is fixed. In the work of [39], computations 

of horizontal pixels in parallel can be performed, but if the SR is changed, it should be fully 

reconfigured to support variations in SR. The architecture proposed in [37], can perform parallel 

computation of fixed 16x16 pixels. However, such kinds of fixed architectures may not be suitable if 

SR is varying during run time. 

4x4 (a)

4x4 (b)

4x4(c)

S
e

a
rc

h
 W

in
d

o
w

 o
f 
b

lo
c
k
 a

S
e

a
rc

h
 W

in
d

o
w

 o
f 
b

lo
c
k
 b

 

Figure 20 Data sharing among neighboring  

4x4 blocks 

 

 

-2 -1 0 1 0 1 2 3-4 -3 -2 -1

Search range value [-2,2) Search range value [-4,4)

B1 B2 B1 B2 B3

 

Figure 21 Partitioning of SW into different 4 pixel 

width columns 

 

 



39 
 

The search window data can be shared among different blocks (Figure 20) as well as among 

SADs of different locations of the same block. In this work, we divide the SW into different columns 

in order to pipeline the data to increase the performance of ME. However, the number of parts 

divided depends on the SR value. For example, the SW is divided into 2, 3, 4, 8 parts for SR values 

of ±4, ±6, ±8, ±16 respectively. Figure 21 shows the division of SW for different configurations of 

SR including extra 3-pixel width column for border search locations. 

 

Table 10 Data Flow for different PRRs 

 

 

 

(1PRR) (2PRRs) (3PRRs) (4PRRs)

s_w(-8,-8)-(-8,10)

s_w(-7,-7)-(-7,10) c(0,0)-c(0,3)

s_w (-6,-6)-(-6,10) c(1,0)-c(3,3)

s_w (-5,-5)-(-5,10) c(2,0)-c(3,3)

s_w (-4,-4)-(-4,10) c(3,0)-c(3,3)

s_w (-3,-3)-(-3,10) c(0,0)-c(3,3) SAD(0,0) (-2,-2)-(-2,1) (-4,-4)-(-4,3) (-6,-6)-(-6,5) (-8,-8) - (-8,7)

s_w (-2,-2)-(-2,10) c(1,0)-c(3,3)

s_w (-1,-1)-(-1,10) c(2,0)-c(3,3)

s_w (0,0)-(0,10) c(3,0)-c(3,3)

s_w (1,1)-(1,10) SAD(0,0) (-2,-2)-(-2,1) (0,-4)-(0,3) (-2,-6)-(-2,5) (-4,-8) - (-4,7)

s_w (2,2)-(2,10) … SAD(1,0) (-4,-4)-(-4,3) (-6,-6)-(-6,5) (-8,-8) - (-8,7)

s_w (3,-8)-(3,10) …

.. …

.. … SAD(0,0) (-2,-2)-(-2,1) (2,-6)-(2,5) (0,-8) - (0,7)

.. SAD(1,0) (0,-4)-(0,3) (-6,-6)-(-6,5) (-4,-8) - (-4,7)

s_w (6,-8)(6,10) SAD(2,0) (-4,-4)-(-4,3) (-6,-6)-(-6,5) (-8,-8) - (-8,7)

s_w (7,-8)-(7,10) c(3,0)-c(3,3)

c(0,0)-c(0,3) SAD(0,0) (-2,-2)-(-2,1) (4,-8) - (4,7)

SAD(1,0) (2,-6)-(2,5) (0,-8) - (0,7)

SAD(2,0) (0,-4)-(0,3) (-6,-6)-(-6,5) (-4,-8) - (-4,7)

SAD(3,0) (-4,-4)-(-4,3) (-6,-6)-(-6,5) (-8,-8) - (-8,7)

… … … … …

SAD locations (h, v)

B5, B4, B3, B2, B1 c

SADs of 

corresponding 

4x4 Blocks, 

i.e., SAD(i, j)

Initial 

Latency: 4 

clock cycles

Initial 

Latency: 16 

clock cycles

Initial 

Latency: 12 

clock cycles

Initial 

Latency: 8 

clock cycles



40 
 

Table 12 shows various levels of parallelism adapted by our proposed ME architecture, when 

SR is varied dynamically. The number of SADs computed in parallel for each block is equal to the 

horizontal width of the SW. This 1-D parallel architecture can be extended to 2-D by simply adding 

additional PE arrays to perform SADs of different rows for the same 4x4 block. The detailed 

description of this is given in Chapter 3, where the PRR number 5 and 6 account for pipelining the 

data in vertical direction and PRRs 1,2 and 4 account for pipelining the data in horizontal direction of 

SW. 

The architecture implemented supports parallelism in horizontal direction. For example, if 

the SR value is ±8, the set of row pixels; [-8,-5], [-4,-1], [0, 3], [4, 7] flow into the PRRs 1, 2, 3, and 

4 respectively, and these PRRs perform corresponding SADs in parallel. In addition to this, each 

PRR is further divided into four 4x1 PE Arrays to compute SADs for four different 4x4 blocks. 

These four blocks correspond to a particular column in the given macroblock. 

4.4 Experimental Results 

4.4.1 Simulation Results for Search Range Reduction Algorithm 

The performance comparison of Search Range Reduction Algorithm with the JM 12.4 

Reference Software is given in Table 11. Simulations are done for different threshold values. The 

algorithm is compared in terms of performance; PSNR, bitrate, computational complexity, and 

hardware utilization. 

All the simulations are performed on various video sequences (in QCIF Format, 30 fps) to 

verify the proposed algorithm. These are compared with the Fast Full Search algorithm in JM 

software with parameters set to baseline profile (no B Slices), one reference frame, and fixed SR for 



41 
 

60 encoded frames. Fast Full Search is chosen because it uses same SR for all blocks of particular 

macroblock. 

The computational complexity is determined by the following parameter: 

Reduction in Computational Cost= 1 −  
𝑃×𝑃

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 _𝑆𝑅
 × 100%                           (6) 

where ‘P×P’ corresponds to the average SR calculated for particular video sequence corresponding to 

SR Reduction Algorithm, and ‘Original_SR’ is the reference SR (i.e., ±32). From Table 11, it is clear 

that the computation cost is greatly reduced by the adaptive SR reduction algorithm at the cost of 

little degradation in video quality (small decrease in PSNR and increase in bitrate). Thus, such 

algorithms will be very useful in reducing hardware costs significantly. 

The hardware utilization is determined by the following: 

Hardware Utilization = 
𝑈𝑠𝑒𝑑 _𝑃𝐸_𝐴𝑟𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 _𝑃𝐸𝑠_𝑆𝑡𝑎𝑡𝑖𝑐
 × 100                                           (7) 

where ‘Used_PE_Array’ is given by average number of PE Arrays which are configured to process 

the video sequence, and ‘Total_PE_Static’ is total number of PE Arrays that support reference SR 

(i.e., ±32). For videos with very little or still motion, such as container sequence, very less hardware 

is required and for videos with irregular and high motion like football sequence, more hardware 

resources are required. 

4.4.2 Proposed Partially-Reconfigurable ME Architecture Evaluation and Comparisons 

Table 12 gives the performance characteristics of our design when various reconfigurable 

structures are used. As the SR increases, the ME Engine should adaptively set the hardware 

architecture so that it can cope with the timing requirements. From the table, it is clear that as SR 

increases, the number of SADs computed also increases accordingly, depending on type of SR 



42 
 

configuration; 2,4, or 8-step SR, so that the total SAD computation time for each MB remains nearly 

the same for a given SR. For example, to configure for SR value ±4, it takes 2PRRs when 2-step SR 

approach is used, and 1PRR when 4-step SR approach is used. However, time estimated in either of 

approaches remains almost the same (i.e., 5.55ms in 2-step approach and 5.33ms in 4-step approach). 

This depicts the degree of parallelism. 

Table 12 also shows the time required for SAD computations for each frame (QCIF 

resolution) at a maximum clock frequency of 90MHz. Suppose the frame rate of a video sequence be 

30fps, then the maximum allowable time that ME engine can take is 33ms for each frame. The 

architecture described in this paper is a 1-D SAD parallel architecture and this can be extended 

toward 2-D parallel architecture so as to support higher resolutions.  

  



43 
 

Table 11 Simulation results of SR Reduction Algorithm 

 

4.5 Hardware Implementation Results 

Table 13 gives the synthesis result and shows the partial bit stream size of each PRR module. The 

design is implemented on Xilinx Virtex2Pro (XC2VP30) FPGA development board. Synthesis is 

done using ISE Foundation Tool. The full and partial bit streams are generated using PlanAhead 10.1 

Tool. Bitstreams obtained from the synthesized design are used to reconfigure the FPGA through 

JTAG. 

  

Threshold Container Carphone Foreman Football Hall Suzie

PSNR(dB) 100.00% 36.348 37.398 36.711 36.617 37.717 37.562

Bitrate(kbps) 100.00% 45.380 119.000 139.660 692.930 60.630 91.920

99.50% 36.344 37.370 36.693 36.578 37.720 37.567

99.00% 36.345 37.370 36.692 36.570 37.721 37.560

97.00% 36.343 37.369 36.680 36.581 37.703 37.554

95.00% 36.334 37.350 36.642 36.542 37.696 37.545

99.50% 45.270 119.180 139.310 710.950 60.890 92.320

99.00% 45.270 118.180 140.310 712.930 60.740 92.350

97.00% 46.880 118.000 141.730 745.820 60.920 92.370

95.00% 47.250 118.110 150.570 750.800 60.920 94.120

99.50% -0.004 -0.028 -0.018 -0.039 0.003 0.005

99.00% -0.003 -0.028 -0.019 -0.047 0.004 -0.002

97.00% -0.005 -0.029 -0.031 -0.036 -0.014 -0.008

95.00% -0.014 -0.048 -0.069 -0.075 -0.021 -0.017

99.50% -0.110 0.180 -0.350 18.020 0.260 0.400

99.00% -0.110 -0.820 0.650 20.000 0.110 0.430

97.00% 1.500 -1.000 2.070 52.890 0.290 0.450

95.00% 1.870 -0.890 10.910 57.870 0.290 2.200

99.50% 97.890 85.940 72.960 42.350 77.440 92.250

99.00% 98.120 90.890 85.300 62.870 84.500 97.260

97.00% 99.230 89.720 88.400 66.580 90.310 97.260

95.00% 99.230 91.120 92.610 71.780 92.550 98.030

99.50%  14.500 37.500  52.300 75.937 47.500 27.500

99.00%  13.750 30.200 38.300 60.937 39.375 17.600

97.00%  8.790  28.200 34.062 56.875 31.125  17.600

95.00%  8.790  27.630 27.187 53.125 27.347 14.060

Computational 

Cost Reduction %

Hardware 

Utilization

ΔBitrate

 JM
 S

R
 R

e
d

u
c
ti

o
n

 A
lg

o
r
it

h
m

PSNR(dB)

Bitrate(kbps)

Δ
PSNR



44 
 

Table 12 Performance results for different PRR structures 

 

 

Table 13 Hardware resources and bitstream information 

 

 

 

 

FME

Current 

MB 

Buffer

Control And Address 

Generation Unit

Bus Macro

S
W

 

B
u

ff
e

r
P

E
 A

rr
a

y
 (

IM
E

)

SAD Unit

Block 

Adder 

Unit

Compar-

ator

S
W

 

B
u

ff
e

r
P

E
 A

rr
a

y
 (

IM
E

)

User Control – increasing search range, 

video resolution, and FME inclusion 

PRR1 PRR2 PRR3

STATIC PRR

IME

 

Figure 22 Top view of an integrated Integer-Fractional ME architecture on FPGA 

No. of 

SADs/ 

16cycles

Buffer 

cycles in 

MB

Time 

(ms)

No. of 

SADs/ 

16cycles

Buffer 

cycles in 

MB

Time 

(ms)

No. of 

SADs/ 

16cycles

Buffer 

cycles in 

MB

Time 

(ms)

1 4 768 2.96 8 1024 5.33 16 1024 8.56

2 8 1216 5.55 16 1216 8.78 32 1216 14.24

3 12 1408 7.87 24 1152 10.94 - - -

4 16 1600 9.20 32 1600 14.66 - - -

PRR

Steps ±2SR Steps ±4SR Steps ±8SR

Module LUTs SliceFFs MUX BRAMs PRR1 PRR2 PRR3 PRR4

Static 996 435 6 6

105472 90640 90640

16x1 PE 

Array
1036 679 2 4

Bitstreams 105472



45 
 

4.6 Extended Approach for time multiplexing PRRs 

As discussed in this Chapter, the approach of dynamic Search Range adaptability for Integer 

Motion Estimation (IME) hardware implementation exploits the very advantage of space-

multiplexing the reconfigurable hardware resources. However, in a video coding standard, integer 

and fractional ME can work together and hence can share hardware resources. Now this Section 

further extends an idea on benefits of time multiplexing a reconfigurable area between two 

functionalities, integer and fractional ME. We see from Table 11 & 12 that in particular video 

scenarios, only a few PRRs are active. So, the unused PRRs can form basis of fractional ME and 

hence utilizing PR benefits to its best. 

Figure 22 depicts an approach on the integrated architecture of Integer-Fractional ME. We 

now know that depending on the Search Range, video resolution, and frame rate, the PR Region can 

be active or blank. There are two ways of reconfiguring this PR Region to achieve good scalability of 

IME computations. Firstly, PE arrays for IME computation can be added using dynamic partial 

reconfiguration to improve timing constraints for high video formats. Secondly, if it is unused by 

IME, the PRR can be utilized for Fractional Motion Estimation (FME) functionality using dynamic 

partial reconfiguration to refine the results. This FME will be especially useful in video sequences 

involving complex textured pictures, in order to provide better compression performance. In this way 

ME computations are not interrupted when switching between different numbers of PE arrays. This 

scenario is particularly useful in applications where hardware resources are critical and demands 

effective usage.  

 



46 
 

4.7 Summary 

In this Chapter, we presented an improved design of Motion Estimation processing engine 

which is able to execute for different search range values. The architecture is based on scalable 

design proposed in Chapter 3.The proposed ME design first introduces a search range reduction 

technique at frame level, in order to smartly adapt towards various video sequences and at the same 

time reduce the computational complexity wherever possible. Simulation results show that by 

reducing the SR, the computational complexity of ME can be reduced significantly with only small 

degradation in PSNR (≤0.1dB). Results show that our design increases the performance of ME 

engine for different PRR structures and the architecture can support various resolutions of video 

sequences with a maximum frequency of 90MHz. Further through partial reconfiguration approach, 

depending on input search range, it can adopt suitable number of PRRs during runtime without 

turning off the FPGA. Moreover, it will be also beneficial since small number of PRRs can be 

selected and used for the FPGA device with less hardware resource available. 

  



47 
 

CONCLUSIONS 

Because of ever growing technology of multimedia, the communication of the image and 

video data is an essential part. In order to employ effect in a limited transmission bandwidth, in 

conveying the most high quality user information, it is necessary to have efficient compression 

method in image and data. Motion Estimation (ME) and Compensation techniques, which can 

eliminate temporal redundancy between adjacent frames effectively, have been widely applied to the 

video compression coding standards. A systolic VBSME architecture with advanced search window 

memory organization is proposed, which is suitable for low-end applications with limited bandwidth. 

Then, scalable parallel-tree VBSME architecture is discussed for high-end products. The key feature 

of this VBSME architecture is that the number of PE groups is configurable. For a search range of 

H×V pixels, where H is width and V is height, up to H SAD groups can be configured to work in 

parallel with a processing speed of 16 clock cycles to fulfill a VBSME. Search Range reduction 

based Fast ME algorithm proposed in Chapter 4 further adds to speed-up the process without much 

degradation in PSNR. By using this algorithm, about 70% of computational savings and about 42% 

hardware resource savings are achieved. 

Traditional IPs implemented on FPGA device provide a simplified solution for a given 

complex system, but, it is not feasible to achieve adaptive computation capabilities with hardware 

efficiency. Reconfigurable hardware shows a possibility to adaptively share hardware resources 

through spatial and time-multiplexing procedures. In this thesis, we explore proposed architectural 

and algorithmic design approaches for Motion Estimation computations in order to adaptively share 

hardware resources. The two algorithms: integer and fractional pixel ME are used as an example to 

analyze the trade-offs between video quality and hardware resources, and through these parameters, 

the benefits of dynamic partial reconfiguration are explored.   



48 
 

REFERENCES 

1. RICHARDSON, I. E. G. 2003. H.264 and MPEG-4 Video Compression. Wiley, NJ. 

2. WIEGAND, T., AND SULLIVAN, G. J. 2007, The H.264/AVC Video Coding Standard. IEEE 

Signal Processing Magazine 24, Mar., 148-153. 

3. H.264/AVC Reference Software Version JM12.4. Available from 

http://iphome.hhi.de/suehring/tml/. 

4. CHUNG, W. C. 2004. Implementing the H.264/AVC Video Coding Standard on FPGAs. Xcell 

Journal i51. 

5. WEDI, T., AND MUSMANN, H. G. 2003, Motion- and aliasing-compensated prediction for 

hybrid video coding, IEEE Transactions on Circuits and Systems for Video Technology 13, 577–

587, July 2003. 

6. SUBRAMANYA, S. R., PATEL, H., AND ERSOY, I., 2004. Performance evaluation of block-

based motion estimation algorithms and distortion measures, Proc. International Conference on 

Information Technology: Coding and Computing  2, 2-7, Apr. 2004. 

7. LYSAGHT, P., BLODGET, B., MASON, J., YOUNG, J. 2006, Invited paper: Enhanced 

architectures, design methodologies and CAD tools for dynamic reconfiguration of Xilinx 

FPGAs. In Proceedings of International Conference on Field Programmable Logic, 1-6. 

8. XILINX 2006. Early Access Partial Reconfiguration. User Guide 208. 

9. KOGA, T., LINUMA, K., HIRANO, A., IIJIMA, Y., AND ISHIGURO, T. 1981, Motion 

compensated interframe coding for video conferencing. Proc. National Telecomm. Conf. 9, no. 6, 

1–5, 1981.  

10. LI, R., ZENG, B., AND LIOU, M. L. 1994, A New Three-step Search Algorithm for 

BlockMotion Estimation. IEEE Trans. Circuits Syst. Video Technol. 4, no. 4, 438-442, Aug. 

1994. 

http://iphome.hhi.de/suehring/tml/


49 
 

11. JAIN, J. R., AND JAIN, A. K. 1981, Displacement measurement and its application in interframe 

image coding, IEEE Trans. Comm. 29, no. 12, 1799-1808,  Dec. 1981. 

12. KAPPAGANTULA, S., AND RAO, K. R. 1985, Motion Compensated Interframe Image 

Prediction, IEEE Trans. Comm. 33, no. 9, 1011–1015, 1985. 

13. RICHMOND II, R. S., AND HA, D. S. 2001, A low-power motion estimation block for low bit-

rate wireless video, ACM International Symposium on Low-Power Electronics Design 2001, 60-

63, Aug. 2001. 

14. THAM, J.Y., RANGANATH, S., RANGANATH, M., AND KASSIM, A. A. 1998, A Novel 

Unrestricted Center-biased Diamond Search Algorithm for Block Motion Estimation, IEEE 

Trans. Circuits Syst. Video Technol. 8, no. 4, 369–377, 1998. 

15. HUANG, Y. W., MA, S. Y., SHEN, C. F., AND CHEN, L. G. 2003, Predictive Line Search: An 

Efficient Motion Estimation Algorithm for MPEG-4 Encoding Systems on Multimedia 

Processors, IEEE Trans. Circuits and Syst. Video Technol. 13, no. 1, 111–117, 2003. 

16. TOURAPIS, A. M., AU, O. C., AND LIU, M. L. 2002, Highly Efficient Predictive Zonal 

Algorithms for Fast Block-matching Motion Estimation, IEEE Trans. Circuits Syst. Video 

Technol. 12, no. 10, 934–947, 2002. 

17. LEE, L. W., WANG, J. F., AND LEE, J. Y. 1993, Dynamic search-window adjustment and 

interlaced search for Block-Matching Algorithm, IEEE Trans. Circuits Syst. Video Technol. 3, no. 

1, 85-87, Feb. 1993. 

18. SHI, Y. Q., AND XIA, X. 1997, A Thresholding Multiresolution Block Matching Algorithm, 

IEEE Trans. Circuits Syst. Video Technol. 7, no. 2, 437-440, Apr. 1997. 

19. WANG, B. M., YEN, J. C., AND CHANG, S. 1994, Zero waiting-cycle hierarchical block 

matching algorithm and its array architectures, IEEE Trans. Circuits Syst. Video Technol. 4, no. 

1, 18-28, Feb. 1994. 



50 
 

20. LEE, J. H., LIM, K. W., SONG, B. C., AND RA, J. B. 2001, A Fast Multiresolution Block 

Matching Algorithm and its VLSI Architecture for Low Bit-rate Video Coding, IEEE Trans. 

Circuits Syst. Video Technol. 11, no. 12, 1289– 1301, 2001. 

21. BIERLING, M. 1988, Displacement Estimation by Hierarchical Block Matching, Proc. of SPIE 

Visual Comm. Image Processing 1988, 942–951, 1988. 

22. WANG, Y., AND KURODA, H. 2000, A Globally Adaptive Pixel decimation Algorithm for 

Block-motion Estimation, IEEE Trans. Circuits Syst. Video Technol. 10, no. 6, 1006–1011, 2000. 

23. HE, Z. L., TSUI, C. Y., AND CHAN, K. K. 2000, Low-power VLSI design for motion 

estimation using adaptive pixel truncation, IEEE Trans. Circuits Syst. Video Technol. 10, no. 5, 

669-678, Aug. 2000. 

24. BEI, C. D., AND GRAY, R. M. 1985, An improvement of minimum distortion encoding 

algorithm for vector quantization, IEEE Trans Comm. 33, no. 10, 1132-1133, Oct. 1985. 

25. CHEUNG, C. K., AND PO, L. M. 2000, Normalized Partial Distortion Search Algorithm for 

Block Motion Estimation, IEEE Trans Circuits Syst. Video Technol. 10, no. 3, 417– 422, 2000. 

26. LENGWEHASATIT, K., AND ORTEGA, A. 2001, Probabilistic Partialdistance Fast Matching 

Algorithms for Motion Estimation, IEEE Trans. Circuits Syst. Video Technol. 11, no. 2, 139–

152, 2001. 

27. KIM , J. N., RYU, T. K., AND JEONG, Y. J. 2006, A Fast Partial Distortion Elimination 

Algorithm Using Selective Matching Scan, International Symposium on Computer and 

Information Sciences (ISCIS 2006), 125-133, Nov. 2006. 

28. LI, W., AND SALARI, E. 1995, Successive elimination algorithm for motion estimation, IEEE 

Trans. Image Processing 4, no. 1, 105-107, Jan. 1995. 

29. CHEN, Y. S., HUANG, Y. P., AND FUH, C. S. 2001, Fast block matching algorithm based on 

the winner-update strategy, IEEE Trans. Circuits Syst. Video Technol. 10, no. 8, 1212-1222, Aug. 

2001. 



51 
 

30. ZHOU, J. L., LI, J., AND YU, S. S. 2004, Modified winner-update search algorithm for fast 

block matching, Pattern. Recognition Letters 25, no. 7, 807-846, May 2004. 

31. HSU, C. L., AND HO, M. H. 2007, High-Efficiency VLSI Architecture Design for Motion-

Estimation in H.264/AVC, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A, no. 

12 2818-2825, Dec. 2007. 

32. PAO, I. M., AND SUN, M. T. 1999, Modeling Dot Coefficients for Fast Video Encoding, IEEE 

Trans. Circuits Syst. Video Technol. 9, no. 4, 608–616, 1999. 

33. CHEN, M. J., CHIANG, Y. Y., LI, H. J., AND CHI, M. C. 2004, EfficientMulti-frame Motion 

Estimation Algorithms forMPEG-4 AVC/JVT/H.264, Proc. of IEEE Int. Symp. Circuits Syst. 

(ISCAS 2004), 737–740, 2004. 

34. SU, Y., AND SUN, M. T. 2004, Fast Multiple Reference Frame Motion Estimation for H.264, 

Proc. of IEEE International Conference on Multimedia and Expo (ICME 2004), no. 1, 695-698, 

2004. 

35. VOS, L. D., AND STEGHERR, M., 1989, Parameterizable VLSI architectures for the full-search 

blockmatching algorithm. IEEE Trans. Circuits Syst. 36, 1309–1316, Oct. 1989. 

36. KOMAREK, T., AND PIRSCH, P. 1989, Array Architectures for Block Matching Algorithms, 

IEEE Trans. Circuits Syst. 36, no. 2,1301–1308, 1989. 

37. CHEN, C.Y., CHIEN, S.Y., HUANG, Y.W., CHEN, T.C., WANG, T.C. AND CHEN, L.G. 

2006. Analysis and architecture design of variable block-size motion estimation for H.264/AVC. 

IEEE Trans. Circuits Syst. 2, 53, 578-593, Feb. 2006. 

38. KIM, M., HWANG, I., AND CHAE, S. 2005. A fast VLSI architecture for full-search variable 

block size motion estimation in MPEG-4 AVC/H.264. Proceedings of the 2005 Asia and South 

Pacific Design Automation Conference (ASP-DAC '05), 631-634, Jan. 2005. 

39. YANG, K. M., SUN, M. T., AND WU, L., 1989. A family of VLSI designs for motion 

compensation Block Matching Algorithm. IEEE Trans. Circuits and Systems 36, 1317-1325 Oct. 

1989. 



52 
 

40. LIU, Z., SONG, Y., IKENAGA, T., AND GOTO, S., 2006, A fine-grain scalable and low 

memory cost variable block size motion estimation architecture for H.264/AVC. IEICE 

Transactions on Electronics 89, 1928-1936, Dec. 2006. 

41. JONG, H. M., CHEN, L. G., AND CHIUEH, T. D. 1994, Parallel Architectures for 3-step 

Hierarchical Search Block-matching Algorithm, IEEE Trans. Circuits Syst. Video Technol. 4, no. 

4, 407–416, 1994. 

42. CHEN, T. H. 1998, A cost-effective three-step hierarchical search block-matching chip for 

motion estimation, IEEE J. Solid State Circuits 33, no. 8, 1253-1258, Aug. 1998. 

43. CHAO, W. M., HSU, C. W., CHANG, Y. C., AND CHEN, L. G. 2002, A Novel Motion 

Estimator Supporting Diamond Search and Fast full Search, Proc. of IEEE Int. Symp. Circuits 

Syst. (ISCAS 2002), 492–495, 2002. 

44. CHAO, W. M., CHEN, T. C., HSU, C. W., CHANG, Y. C., AND CHEN, L. G. 2003, 

Computationally Controllable Integer, Half, and Quarter-pel Motion Estimator for MPEG-4 

Advanced Simple Profile, Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’03), 788–791, 2003. 

45. HUANG, Y. W., WANG, T. C., HSIEH, B. Y., AND CHEN, L. G. (2003) Hardware architecture 

design for variable block size motion estimation in MPEG-4 AVC/JVT/ITU-T H.264. In 

Proceedings of IEEE International Symposium on Circuits and Systems, Bangkok, Thailand. 2, 

796-799. 

46. ROMA, N., AND SOUSA, L., (2002) Efficient and Configurable Full-Search Blockmatching 

Processors. IEEE Trans. Circuits Systems Video Technol. 12, 1160–1167. 

47. ZHANG, L., AND GAO, W., (2005) Improved FFSBM Algorithm and its VLSI Architecture for 

Variable Block Size Motion Estimation of H.264, IEEE Int. Symp. Intell. Signal Process. Comm. 

Syst. 445–448. 

48. CHEN, T.-C., CHEN, Y.-H., TSAI, C.-Y., AND CHEN, L.-G. 2006. Low power and power 

aware fractional motion estimation of H.264/AVC for mobile applications. In Proceedings of 

IEEE international symposium on circuits and systems (ISCAS’06). 



53 
 

49. JVT-P026, 2005, Fast ME in the JM reference software, Available from wftp3.itu.int/av-arch/jvt-

site/2005_07_Poznan/JVT-P026r1.doc. 

50. CHEN, Y., CHEN, T., CHIEN, S., HUANG, Y., AND CHEN, L. 2008. VLSI Architecture 

Design of Fractional Motion Estimation for H.264/AVC. J. Signal Process. Syst. 53, 3 (Dec. 

2008), 335-347. 

51. SONG; T., OGATA, K.; SAITO, K.; SHIMAMOTO, T., 2007. Adaptive Search Range Motion 

Estimation Algorithm for H.264/AVC.IEEE International Symposium on Circuits and Systems, 

2007. (May 2007) 3956-3959. 

52. CHEN, Z., SONG, Y., IKENAGA, T., AND GOTO, S. 2008. Adaptive Search Range Algorithms 

for Variable Block Size Motion Estimation in H.264/AVC. IEICE Trans. Fund. Electron. Comm. 

Comp. Sci. E91-A, 4 (Apr. 2008), 1015-1022. 

53. HUANG, J., PARRIS, M., LEE, J., AND DEMARA, R. F. 2009. Scalable FPGA-based 

architecture for DCT computation using dynamic partial reconfiguration. ACM Trans. Embed. 

Comput. Syst. 9, 1 (Oct. 2009), 1-18.  

54. HUANG, Y. W., CHEN, C. Y., TSAI, C., SHEN, C. F., AND CHEN, L. G. 2006. Survey on 

Block Matching Motion Estimation Algorithms and Architectures with New Results. Journal of 

VLSI Signal Processing 42. (Feb. 2006), 297-320.  

55. XILINX 2007b. Virtex-4 Family Overview. Xilinx Data Sheet 112. 

56. XILINX 2008. Virtex-4 FPGA Configuration. Xilinx User Guide 071. 

  

file:///C:/Users/Hari%20Salkapuram/Desktop/wftp3.itu.int/av-arch/jvt-site/2005_07_Poznan/JVT-P026r1.doc
file:///C:/Users/Hari%20Salkapuram/Desktop/wftp3.itu.int/av-arch/jvt-site/2005_07_Poznan/JVT-P026r1.doc


54 
 

PUBLICATION 

1. GUPTA, S. K., AND LEE, J., 2009, A Scalable H.264/AVC Variable Block Size Motion 

Estimation Engine Using Partial Reconfiguration. In Proceedings of International Conference on 

Engineering of Reconfigurable Systems and Algorithms, Las Vegas, U.S.A, 219-225. July 2009. 


	Reconfigurable Architecture For H.264/avc Variable Block Size Motion Estimation Based On Motion Activity And Adaptive Search Range
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	1.1 Video Coding Standard
	1.2 Motion Estimation Technique
	1.3 Partial Reconfiguration and its Benefits
	1.4 Motivation
	1.5 Thesis Organization

	BACKGROUND AND RELATED WORK
	2.1 Motion Estimation Algorithms
	2.1.1 Adaptive Search Locations
	2.1.2 Cost Reduction of Matching Criterion
	2.1.3 Lossless Fast Full Search Algorithm
	2.1.4 Mode Decision and Other Encoding Parameters
	2.1.5 Fractional Motion Estimation Algorithm

	2.2 Motion Estimation Hardware Architectures
	2.2.1 FSBMA Architectures
	2.2.2 Fast ME Architectures

	2.3 Summary

	MODULAR H.264/AVC VBSME APPROACH
	3.1 Top Level Architecture
	3.2 Memory Management
	3.3 Partial Reconfigurable Module
	3.4 Data Flow
	3.6 Block Mode Selector
	3.6 Experimental Results
	3.7 Summary

	ADAPTIVE SEARCH RANGE ALGORITHM AND IMPLEMENTATION
	4.1 Video Coding Efficiency with Variable Search Range
	4.2 Search Range Reduction Algorithm
	4.3 Proposed ME Architecture
	4.3.1 Top Level Architecture
	4.3.2 Memory Management
	4.3.3 Partial Reconfigurable Module
	4.3.4 Data Flow

	4.4 Experimental Results
	4.4.1 Simulation Results for Search Range Reduction Algorithm
	4.4.2 Proposed Partially-Reconfigurable ME Architecture Evaluation and Comparisons

	4.5 Hardware Implementation Results
	4.6 Extended Approach for time multiplexing PRRs
	4.7 Summary

	CONCLUSIONS
	REFERENCES
	PUBLICATION

