1,737,163 research outputs found
Mapping constrained optimization problems to quantum annealing with application to fault diagnosis
Current quantum annealing (QA) hardware suffers from practical limitations
such as finite temperature, sparse connectivity, small qubit numbers, and
control error. We propose new algorithms for mapping boolean constraint
satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In
particular we develop a new embedding algorithm for mapping a CSP onto a
hardware Ising model with a fixed sparse set of interactions, and propose two
new decomposition algorithms for solving problems too large to map directly
into hardware.
The mapping technique is locally-structured, as hardware compatible Ising
models are generated for each problem constraint, and variables appearing in
different constraints are chained together using ferromagnetic couplings. In
contrast, global embedding techniques generate a hardware independent Ising
model for all the constraints, and then use a minor-embedding algorithm to
generate a hardware compatible Ising model. We give an example of a class of
CSPs for which the scaling performance of D-Wave's QA hardware using the local
mapping technique is significantly better than global embedding.
We validate the approach by applying D-Wave's hardware to circuit-based
fault-diagnosis. For circuits that embed directly, we find that the hardware is
typically able to find all solutions from a min-fault diagnosis set of size N
using 1000N samples, using an annealing rate that is 25 times faster than a
leading SAT-based sampling method. Further, we apply decomposition algorithms
to find min-cardinality faults for circuits that are up to 5 times larger than
can be solved directly on current hardware.Comment: 22 pages, 4 figure
Design Specification as a Basis to Hardware Simulation
While developing a hardware design, especially programmable hardware, it has proven useful to detect the most critical properties of a concept prior to implementing it. If a simulation method is chosen to gain such knowledge it is vital that it be able to create and adapt a suitable model on the fly. In this technical report we describe an approach meeting that criteria. It leads to an easily amendable behavioural simulation model readily applicable to any phase of hardware development. It then allows us to obtain fair estimates of many properties of the design in progress. This way enables to point out a shortfall very soon while the cost of reviewing the implementation or even the specification is still low. As the implementation becomes available, the model can then easily be adjusted and later even reused if the design becomes part of a more complex structure. The methodology is demonstrated on a recent simulation of a high-speed network design
HaTS: Hardware-Assisted Transaction Scheduler
In this paper we present HaTS, a Hardware-assisted Transaction Scheduler. HaTS improves performance of concurrent applications by classifying the executions of their atomic blocks (or in-memory transactions) into scheduling queues, according to their so called conflict indicators. The goal is to group those transactions that are conflicting while letting non-conflicting transactions proceed in parallel. Two core innovations characterize HaTS. First, HaTS does not assume the availability of precise information associated with incoming transactions in order to proceed with the classification. It relaxes this assumption by exploiting the inherent conflict resolution provided by Hardware Transactional Memory (HTM). Second, HaTS dynamically adjusts the number of the scheduling queues in order to capture the actual application contention level. Performance results using the STAMP benchmark suite show up to 2x improvement over state-of-the-art HTM-based scheduling techniques
A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems
In this paper we present a methodological framework that meets novel
requirements emerging from upcoming types of accelerated and highly
configurable neuromorphic hardware systems. We describe in detail a device with
45 million programmable and dynamic synapses that is currently under
development, and we sketch the conceptual challenges that arise from taking
this platform into operation. More specifically, we aim at the establishment of
this neuromorphic system as a flexible and neuroscientifically valuable
modeling tool that can be used by non-hardware-experts. We consider various
functional aspects to be crucial for this purpose, and we introduce a
consistent workflow with detailed descriptions of all involved modules that
implement the suggested steps: The integration of the hardware interface into
the simulator-independent model description language PyNN; a fully automated
translation between the PyNN domain and appropriate hardware configurations; an
executable specification of the future neuromorphic system that can be
seamlessly integrated into this biology-to-hardware mapping process as a test
bench for all software layers and possible hardware design modifications; an
evaluation scheme that deploys models from a dedicated benchmark library,
compares the results generated by virtual or prototype hardware devices with
reference software simulations and analyzes the differences. The integration of
these components into one hardware-software workflow provides an ecosystem for
ongoing preparative studies that support the hardware design process and
represents the basis for the maturity of the model-to-hardware mapping
software. The functionality and flexibility of the latter is proven with a
variety of experimental results
- …
