1,737,163 research outputs found

    087100 - Door Hardware

    Get PDF

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure

    Design Specification as a Basis to Hardware Simulation

    Get PDF
    While developing a hardware design, especially programmable hardware, it has proven useful to detect the most critical properties of a concept prior to implementing it. If a simulation method is chosen to gain such knowledge it is vital that it be able to create and adapt a suitable model on the fly. In this technical report we describe an approach meeting that criteria. It leads to an easily amendable behavioural simulation model readily applicable to any phase of hardware development. It then allows us to obtain fair estimates of many properties of the design in progress. This way enables to point out a shortfall very soon while the cost of reviewing the implementation or even the specification is still low. As the implementation becomes available, the model can then easily be adjusted and later even reused if the design becomes part of a more complex structure. The methodology is demonstrated on a recent simulation of a high-speed network design

    HaTS: Hardware-Assisted Transaction Scheduler

    Get PDF
    In this paper we present HaTS, a Hardware-assisted Transaction Scheduler. HaTS improves performance of concurrent applications by classifying the executions of their atomic blocks (or in-memory transactions) into scheduling queues, according to their so called conflict indicators. The goal is to group those transactions that are conflicting while letting non-conflicting transactions proceed in parallel. Two core innovations characterize HaTS. First, HaTS does not assume the availability of precise information associated with incoming transactions in order to proceed with the classification. It relaxes this assumption by exploiting the inherent conflict resolution provided by Hardware Transactional Memory (HTM). Second, HaTS dynamically adjusts the number of the scheduling queues in order to capture the actual application contention level. Performance results using the STAMP benchmark suite show up to 2x improvement over state-of-the-art HTM-based scheduling techniques

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results
    corecore