
CESNET technical report number 34/2007

Design Specification as a Basis to Hardware
Simulation

Ondřej Kuzník, Daniel Jakubík
18.12.2007

1 Abstract

While developing a hardware design, especially programmable hardware, it

has proven useful to detect the most critical properties of a concept prior to

implementing it. If a simulation method is chosen to gain such knowledge it

is vital that it be able to create and adapt a suitable model on the fly. In this

technical report we describe an approach meeting that criteria. It leads to

an easily amendable behavioural simulation model readily applicable to any

phase of hardware development. It then allows us to obtain fair estimates of

many properties of the design in progress. This way enables to point out a

shortfall very soon while the cost of reviewing the implementation or even the

specification is still low. As the implementation becomes available, the model

can then easily be adjusted and later even reused if the design becomes part

of a more complex structure. The methodology is demonstrated on a recent

simulation of a high-speed network design.

Keywords:simulation of hardware, FPGA, NIFIC, SIMLIB

2 Introduction

When designing any software or hardware product, a developer has to devise

an algorithm that fits its application. That means it is required to be free of bugs,

be able to cope with any reasonable input, comply with required standards and

meet both time and memory constraints implied. Many approaches have been

used to assure that all these criteria are met.

Besides verification and testing which are commonly used in many projects to

check correctness in the process of designing and developing hardware, it has

proven useful to have some insight in its critical properties of a concept prior

to implementing it. The necessary information can be acquired by simulation

which generally means creation of a simplified model of the said system so that

experiments can commence. Creating a model from a specification that has

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/51296274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


not yet been implemented is a task that has to be done by hand. Since every

evolution of the design means changing the model too an approach that allows

for easy modification or recreation of the model will eventually pay out.

In this report an approach fulfilling these demands is presented on an example

of a high speed network design. It has been developed under Liberouter project,

mostly for models based on simulation library for C++ SIMLIB1 but should be

applicable when creating any behavioural simulation model.

3 Modelling hardware designs

Very often the hardware design is well structured mostly with clear hierarchy

between the components and a�clear flow of processed data taking advantage of

pipelining and parallelism where possible. The topmost levels of this partitioning

are already decided and stabilised in the earliest phases of the�design and thus

a�more or less precise model can be built according to the specification when

no or only a little part of the implementation is ready.

If such a model is made, as the work on implementing the design continues,

more details are known about each of its parts that can be included in the

model to find out more about the expected behaviour. This assumes that the

model be set up of a similar set of components as the design itself and that

the components can either be specified further at any time or replaced by a

more precise representation with little effort spent on subsequent changes to

the model so that it can accommodate the new version. These requirements are

perfectly satisfied when we look at the concept of object oriented programming.

If provided with a modelling environment capable of nesting components inside

components and supporting parallelism of a type similar to the one found in

hardware, we should be able to create and maintain such a model.

3.1 SIMLIB

The name SIMLIB/C++ is an abbreviation of “SIMulation LIBrary for C++” and

has been developed by Petr Peringer at the Faculty of Information Technology

in Brno since 1991. It is a general purpose simulation environment containing

basic tools for continuous, discrete, mixed and fuzzy models. Because the

models are created directly in C++ language, it lets us use all of its features and

other advantages connected with object oriented programming.

The components can be described and put into a hierarchy based on a relation of

abstraction/specification. One of the aspects of this approach being that it brings

the ability for a concurrency, an important aspect for a hardware simulation.

1http://www.fit.vutbr.cz/ peringer/SIMLIB/

CESNET technical report number 34/2007 2



The code defining a SIMLIB simulation can be divided in two parts, definition of

the components and the experiment set up (the main function of the program).

The set up part takes care of creating and initialising the model and activating

the simulation and the components describe its structure and interactions that

affect the resulting behaviour.

The library components that can be used in discrete simulations can be divided

into active and passive ones. The active are limited to the Event and Process

class derivatives. The variety of passive components is much wider, the most

prominent being a Facility, Store and Barrier classes.

The behavior of active components should be strictly parallel, similar to the

behavior of some hardware components, and the SIMLIB seems to process

them in such way. In fact, the SIMLIB core executed them in quasi parallel

fashion, which means that the central scheduler switches among them when

they reach certain breakpoints, effectively forming a cooperative multitasking

system.

Each of the passive components gathers statistical data throughout the experi-

ment that can be written to a file after finishing its termination. They are pre-

sented in a table, so they are easy to read but harder to interpret and process

further without sophisticated preprocessing.

4 NIFIC design simulation model

NIFIC2 stands for a “Network interface card capable of packet classification,

filtering and forwarding”. It has been developed as a part of the Liberouter3

project. To ease future development, the team has decided to reimplement this

device based on a unified design platform NetCOPE�[MT06] using components

that have been substantially improved since the design was first built. At the

time it was being finished, there were several aspects of the design in need of

clearing out. Those aspects were the information on how does the maximum

available memory at certain points affect the behaviour of the whole system and

the amount of memory needed at those points for the design to reliably operate

at least at the desired speed.

The interface had not yet been operational so it could not be directly tested

in real conditions nor in test cases but enough information was known about

the relevant components to issue a creation of an abstract model of the design

whose simulation would provide the team with enough information regarding

this topic.

2http://www.liberouter.org /nific.php
3http://www.liberouter.org

CESNET technical report number 34/2007 3



4.1 Description of the NIFIC

F
L
_
B
IN
D
E
R

DISP

F
L
_
B
IN
D
E
R

FL64

FL64
F
L
_
S
P
L
IT
T
E
R

TRANSFFL64

4/8x 4/8x

FL16 MARKER FL16 HFE UH_FIFO
LUP

4x4/8x

PFIFO

4/8x

FL16

FL16

FL16

FL16

FL16

FL64

F
L
_
B
IN
D
E
R

4/8x

4x

FL16

Figure 1: The components of NIFIC and the interconnections between them

The interface is equipped with four network connections. Every packet received

on the link gets to the marker through an interconnection interface, whose

endpoint is drawn at the top of Figure 1. Marker then checks that packet’s

CRC and timestamps it, forwarding it to further processing which is the Header

Field Extractor (HFE) unit. There are four or eight of these extractors and other

components that the HFE connects to. This is why the packet is sent to HFE

that has the least amount of unprocessed data. The HFE then parses the packet

for information based on what data is relevant for the nanoprogram set up in

the Look-Up Processor (LUP). The data is stored in Unified Header format into

the UH FIFO queue. While the packet is being parsed and relevant information

stored in UH FIFO, the raw data is forwarded into Packet FIFO (PFIFO).

If for any reason the HFE cannot write the parsed information or packet contents

to the appropriate queue, it suspends processing the packet and stops writing

to the second queue until the pending write operation has succeeded. When

the HFE has finished parsing the packet, LUP can begin processing the data

according to the criteria its nanoprogram has been configured for using the data

HFE encoded into the unified header.

The LUP has an exceptional status among the NIFIC components. While same

amount of just about every component is four or eight (depending on the set-

tings), so that even partially processed packets can be fed to the next component

and don’t get mixed up, there is only one LUP instance classifying the incoming

packets from every source and then notifying the appropriate dispatcher (DISP)

whether the packet should be dropped, sent to the computer’s operating system

and/or forwarded to the network and through which connections.

There are two message queues between LUP and each of the dispatchers. One

leading directly from the LUP where all messages are stored before there is a

CESNET technical report number 34/2007 4



free space for it in the second, dispatcher’s own, message queue. The message

waits in this queue until the dispatcher has finished processing the previous

one and is ready. A packet can be flagged for dropping, then its contents are

immediately flushed from the PFIFO and nothing else happens. If the packet is

meant to be processed further, the dispatcher reads the raw packet data from

the PFIFO and copies it to the appropriate output buffers.

4.2 Principles behind the model

Building the NIFIC model, the first thing to do was separating the design from

the data (internet packets in this case) that were processed by it. All informa-

tion related to the packet is thus represented by one structure common to the

whole model, the packet itself, and a component handling it should behave like

it sees only parts of the packet that are accessible to it. This way almost every

communication between two components could be abstract, e.g. the HFE com-

ponent will not have to generate a Unified Header of a packet (contents of which

depend on the settings loaded into the design at boot time) and then simulate

its transmission to UH FIFO, it just sends a structure containing this packet (or

in C++ a pointer to that structure) and UH FIFO blocks the amount of space it

would normally take up.

At this moment we should concentrate on deciding the overall scope of the

model. There are obviously several different parts that have no or only one

connection to others and form a single logical block, in the NIFIC design there are

four such blocks, the first one is responsible for reception and integrity checking

of a packet and then feed it to the HFE units. Most of this block is not included

in the figure save the splitter, transformer and marker components. The second

block is the NIFIC core, HFE, FIFOs, the look-up processor and dispatchers

which is a natural choice as those components process a packet and control

whether it should enter another blocks, the third block is the NetCOPE interface

serving as a connection between the core/network on one side and the operating

system of the computer this card is plugged in. The last block is the connection

between the NIFIC core and the Ethernet network containing binders shown in

the figure that blend the flows of packets from dispatchers and operating system

into one ultimately leading to the transmitters. In most designs these blocks

should look just like a set of components bound together by easily describable

connections and thus form a higher abstraction layer.

Because of the strict boundary between the active and passive components in

SIMLIB environment, the magnitude of a model created by following only these

guidelines would be much too great as each component that is not entirely

passive should be represented by several processes/events plus the stores,

facilities or whatever is needed to hold its state. As the internal state of each

component contributes to the state of a whole model, these parts cannot be

CESNET technical report number 34/2007 5



easily eliminated, so the only thing remaining to be simplified is their behaviour.

Another separation has been created – a layer put between the two proposed

at the beginning of this section (components and the data), representing the

workflow inside the design. Operating on both of them it is driving all the

behaviour of the model.

4.3 Only relevant components

The purpose of a model we were building was to evaluate the constraints that

apply to the core parameters so that the interface can handle any flow of data

that can possibly come from the four Ethernet connections. As the only new

part was the NIFIC and the rest represents a NetCOPE architecture that is built

to comply with these conditions and simulation of which was none of the goals,

we can abstract from as much of its parts as we think will not affect the precision

of the results. This suits us well because several of the high level components

we divided the design into do not seem to affect the core performance.

In this case we decided to leave the component that receives packets from

network and delivers them to the input of one of the HFEs completely abstract

reflecting only the ideal conditions, namely when there are only correct packets

received from the network. Then it only merges the flows and distributes

packets to the appropriate HFEs. The discussion over the detail of modelling of

the transmitting component had been somewhat longer. If the stream of data

produced by the dispatchers and directed by the look-up processor is too fast

for even one of the four connections, the common route connecting them to

the entry point of the component will start filling and when all the buffers are

filled, will slow down every Dispatcher’s work. Yet we were trying to determine

the behaviour of the device at a stabilised state. If any of the connections is

over-utilised, no matter how much space is there in the buffers, it will eventually

be depleted. This means we only have to care about modelling the network

connections themselves, the route in between can be represented as a simple

connection, just like the previous component is. Finally there is the block

standing between the core and operating system. Since its inability to process

the flow of data will mean the same as the network connection’s and the limit

(defined by the OS’s workload at that time) can change anytime, we have to

suppose that there is none.

This way we have decided what is and what is not important at the highest level

of abstraction. The only component that is fully relevant is the NIFIC core, where

the same process we described earlier in this section took place, leaving some

components rather abstract (HFEs that only forward data and FIFOs acting like

the simplest store would) and some very detailed (the dispatchers). The last

step to creating a model is actual implementation, which is highly dependent

on the environment used.

CESNET technical report number 34/2007 6



4.4 Gathering the results

Once we have a simulation model we need to run experiments to validate it and

gather the information we want. To accomplish these goals an experiment has

to produce some data so that we have something to operate on. In our case

we needed to measure if the actual throughput meets the projected criteria and

watch the utilisation of memory segments. In the case of short time experiments

like model validation it is easier to analyse the complete history of a relevant

variable. When we are curious about the stable state properties we can either

read the state at the moment the experiment is terminated or build our own

summary. At this point the SIMLIB has saved us much work because each

passive component maintains such a summary.

4.5 Results

At first we used parameters that were most likely to occur in a common set

up along with a reasonable reserve when it came to deciding the amount of

maximum available memory at the critical points we were to investigate. The

resulting characteristics then served as a reference for judging the sensitivity of

the model to changing values of each parameter. These parameter sensitivity

checks showed that the device does not require as much space in the buffers as

initially assumed. In reality, the lower bound on the minimum space is defined

directly by the maximum size of a packet when it comes to PFIFO and one

pending message when it comes to the FIFOs between LUP and each dispatcher.

Checking the model’s sensitivity to the other parameter values revealed yet other

interesting properties of the model (and as has already been confirmed, also

the modelled interface). One of the findings was that LUP can be a bottleneck

beyond certain time it takes to process a packet since it has to serve all traffic

received on the interface. The other properties that the model has, are a robust

design of the dispatchers (that is what ultimately allows the FIFOs to be as small

as possible) and a (mis)configuration possibility such that lowers the maximum

throughput of the interface to half the ideal value. This can happen when the

LUP decides based on more data, than the HFE units can provide.

Table 1 and Table 2 represent behaviour of the model when all four Ethernet

interfaces supply it with packets at full speed. Average time between receiving

and ejecting each packet can serve as an indicator of the the interface’s load,

because from the queuing theory when a load of a system approaches its

maximum capacity, the average time spent waiting quickly climbs up towards

infinity.

CESNET technical report number 34/2007 7



HFEs PFIFO cap. LUP data LUP delay LUP FIFO Disp. FIFO Avg. delay

4 4096 B 128 B 80 ticks 4 mess. 2 mess. 984 ticks

4 2048 B 128 B 80 ticks 1 mess. 1 mess. 984 ticks

4 2048 B 128 B 160 ticks 1 mess. 1 mess. 1109 ticks

4 2048 B 128 B 250 ticks 1 mess. 1 mess. 1775 ticks

4 2048 B 128 B 260 ticks 1 mess. 1 mess. 2692 ticks

4 2048 B 128 B 265 ticks 1 mess. 1 mess. infinite

Table 1: Response of the model when stressed by Ethernet packets of all sizes.

HFEs PFIFO cap. LUP data LUP delay LUP FIFO Disp. FIFO Avg. delay

8 4096 B 128 B 80 ticks 4 mess. 2 mess. infinite

8 4096 B 128 B 16 ticks 4 mess. 2 mess. 143 ticks

8 4096 B 256 B 16 ticks 4 mess. 2 mess. 207 ticks

4 4096 B 128 B 16 ticks 4 mess. 2 mess. 146 ticks

4 4096 B 256 B 16 ticks 4 mess. 2 mess. infinite

Table 2: Response of the model when stressed by a continuous stream of

shortest packets.

5 Simulation model of bus system in NetCOPE

The other project within the Liberouter project is engaged in development of the

NetCOPE platform. It forms the basic infrastructure inside the FPGA chip and

defines an interface for communication among modules. Using this platform

can make the applications built in top of that faster in future.

In addition, the platform should be able to process the data in hardware (and

eventually transmit them to the operating system) significantly more quickly

then present applications. To achieve this goal it is necessary to find out the

maximal throughput from and to the adapter.

The simulation model of this bus architecture was created just for the verifica-

tion of the critical properties such as speed of packet processing and packet

transmission or the already mentioned throughput.

5.1 Architecture description of NetCOPE buses

The bus architecture of the NetCOPE platform consists of three different types

of buses.

Internal bus: This bus has been designed to provide high throughput for the

components connected to the host PCI interface. Every component on

this bus can operate both in Master mode and Slave mode.

CESNET technical report number 34/2007 8



Local bus: It interfaces most of the common components that do not need high

bandwidth. The components connected to this bus can only work in Slave

mode. That means that they can have only passive behavior and they do

not initiate reading or writing transaction by themselves.

Control bus: As the name suggests, this bus is reserved for control data trans-

fered between the generic Bus Master controller in the form of the PowerPC

and Bus Master component that sends data to the RAM or vice versa.

More information about this architecture is available in�[MT06].

5.2 Building the model

While modelling an efficient system, it is generally possible to abstract from the

real implementation and focus only on particular actions of the system, their

order (including parallel or exclusive processing), and duration of particular

actions. A time event or a previous action finishing are then the typical initiators

of an action.

At the beginning of the modelling process, it is necessary to decide the structure

of the constructed model.

The first thing was to separate the data from the rest of the functional model

as has been described above (Section 3.2). For that purpose, we have adapted

the class Packet, which was developed within the modelling of the NIFIC, and

especially, designed for reusing in other models. In our case each instance

of this class represents one packet processed by the system. The packets are

processed by components of the system.

As seen by incoming packets the system’s behavior is divided in two parts.

The first (TX part) represents the relay from RAM memory to the FPGA and the

second (RX part) represents the relay from the FPGA to RAM. Both data streams

are nearly independent and meet only in few components, making it possible

to split the model according to these streams. Modelling the system from the

view of the data stream corresponds to the base idea of SIMLIB, where active

elements are the processes and devices behave passively. The system can be

split more finely according to the type of the bus on which the data are being

exchanged. Then the main classes can be deduce from that.

In the subsequent step, two mutually independent generators were created.

These produce packets received in the RX or TX direction. These represent the

results of processes which take place behind the boundaries of the modelled

system. The buses were easy to model as a mere delay. It was just necessary

to ensure that the maximum bandwidth of the transport channel cannot be

exceeded and that they will arrive in the same order they were sent. Because

CESNET technical report number 34/2007 9



the Programmable DMA Controller (PDMA) was not the center of our interest, we

could accept another simplification, when we supposed that PowerPC processor

can cope with all incoming requests and all memories in PDMA have sufficient

capacity. Thanks to this abstraction PDMA could be modelled as an event,

which loads requests from the appropriate queues in a periodic intervals. Not

modelling the physical data paths allows us to abstract from many components

like endpoints (interfacing component and buses).

5.3 Results

While running the simulation two essential properties were observed. The first

one was the utilization of every component’s capacity, the second one was the

delay between a packet entered the system and when it has been successfully

transmitted outside the system. Unfortunately, the obtained results were not as

favourable as we had hoped for.

The data gained so far show, that throughput of the current architecture is about

250–350�Mb/s, while the minimum throughput should not be below 2�Gb/s, as

modelled. The problem is caused by inadequate speed of PowerPC, which is

not able to serve all requests and serves as a bottleneck of the whole system.

The simulation model can be run with different parameters. So the next step

was to find their optimal settings. It was shown that the performance of the

model does not depend on the capacity of the queues and of the buffers.

The simulation had another use. It was to find the appropriate settings of the

system components so that its throughput was the best possible. Different

changes to the design and its settings were proposed. One possible solution to

this problem could be the separation of processing the TX and RX directions as

shown by a modified model.

6 Conclusion

In this report we described a way of abstraction, which quite easily allows

representing all important features of the design while the less important can be

simplified so otherwise very complicated and vast systems can be represented

in a neat and comprehensible model. This way simulation models can be

created and maintained quickly and used at any stage of the design process.

The approach was demonstrated on a simulation of high-speed network design

and a bus subsystem and can also be used when creating a behavioural model

of a hardware design or other well structured system. Moreover, the simulation

framework established during this simulation process (i.e. NetCOPE component

models, other generic components or extensions to the SIMLIB environment)

CESNET technical report number 34/2007 10



can be reused in future simulation of new versions of this component and in

simulation of other similar designs.

The results of each model clearly pointed out the most prominent limitations

of both systems. We either defined the constraints under which the system

fits the intended purpose (in NIFIC), or proposed a change to the design that

can help achieving the desired functionality (for the internal bus). The model

implementations are stored in the project Subversion repository. Since this

repository is not publicly readable, both models are also be available from

author’s home page4.

In comparison to testing or verification, which are applicable mainly in advanced

phases of development, the simulation, with respect to the presented procedures

stated in this report, brings designers useful tool which can help them already

when drafting a system and subsequently in any state of its development.

References

[MT06] Martínek T., Tobola, J.: Interconnection System for the NetCOPE Plat-

form. Technical report 34/20065, Praha: CESNET, 2006.

4http://www.liberouter.org/ kuznik/models/
5http://www.cesnet.cz/doc/techzpravy/2006/netcope-interconnection/

CESNET technical report number 34/2007 11


