2,395 research outputs found

    On the Quantitative Hardness of CVP

    Full text link
    \newcommand{\eps}{\varepsilon} \newcommand{\problem}[1]{\ensuremath{\mathrm{#1}} } \newcommand{\CVP}{\problem{CVP}} \newcommand{\SVP}{\problem{SVP}} \newcommand{\CVPP}{\problem{CVPP}} \newcommand{\ensuremath}[1]{#1} For odd integers p1p \geq 1 (and p=p = \infty), we show that the Closest Vector Problem in the p\ell_p norm (\CVP_p) over rank nn lattices cannot be solved in 2^{(1-\eps) n} time for any constant \eps > 0 unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to "almost all" values of p1p \geq 1, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of \CVP_2 (i.e., \CVP in the Euclidean norm), for which a 2n+o(n)2^{n +o(n)}-time algorithm is known. In particular, our result applies for any p=p(n)2p = p(n) \neq 2 that approaches 22 as nn \to \infty. We also show a similar SETH-hardness result for \SVP_\infty; hardness of approximating \CVP_p to within some constant factor under the so-called Gap-ETH assumption; and other quantitative hardness results for \CVP_p and \CVPP_p for any 1p<1 \leq p < \infty under different assumptions

    On the Closest Vector Problem with a Distance Guarantee

    Get PDF
    We present a substantially more efficient variant, both in terms of running time and size of preprocessing advice, of the algorithm by Liu, Lyubashevsky, and Micciancio for solving CVPP (the preprocessing version of the Closest Vector Problem, CVP) with a distance guarantee. For instance, for any α<1/2\alpha < 1/2, our algorithm finds the (unique) closest lattice point for any target point whose distance from the lattice is at most α\alpha times the length of the shortest nonzero lattice vector, requires as preprocessing advice only NO~(nexp(α2n/(12α)2))N \approx \widetilde{O}(n \exp(\alpha^2 n /(1-2\alpha)^2)) vectors, and runs in time O~(nN)\widetilde{O}(nN). As our second main contribution, we present reductions showing that it suffices to solve CVP, both in its plain and preprocessing versions, when the input target point is within some bounded distance of the lattice. The reductions are based on ideas due to Kannan and a recent sparsification technique due to Dadush and Kun. Combining our reductions with the LLM algorithm gives an approximation factor of O(n/logn)O(n/\sqrt{\log n}) for search CVPP, improving on the previous best of O(n1.5)O(n^{1.5}) due to Lagarias, Lenstra, and Schnorr. When combined with our improved algorithm we obtain, somewhat surprisingly, that only O(n) vectors of preprocessing advice are sufficient to solve CVPP with (the only slightly worse) approximation factor of O(n).Comment: An early version of the paper was titled "On Bounded Distance Decoding and the Closest Vector Problem with Preprocessing". Conference on Computational Complexity (2014

    Search-to-Decision Reductions for Lattice Problems with Approximation Factors (Slightly) Greater Than One

    Get PDF
    We show the first dimension-preserving search-to-decision reductions for approximate SVP and CVP. In particular, for any γ1+O(logn/n)\gamma \leq 1 + O(\log n/n), we obtain an efficient dimension-preserving reduction from γO(n/logn)\gamma^{O(n/\log n)}-SVP to γ\gamma-GapSVP and an efficient dimension-preserving reduction from γO(n)\gamma^{O(n)}-CVP to γ\gamma-GapCVP. These results generalize the known equivalences of the search and decision versions of these problems in the exact case when γ=1\gamma = 1. For SVP, we actually obtain something slightly stronger than a search-to-decision reduction---we reduce γO(n/logn)\gamma^{O(n/\log n)}-SVP to γ\gamma-unique SVP, a potentially easier problem than γ\gamma-GapSVP.Comment: Updated to acknowledge additional prior wor

    New Shortest Lattice Vector Problems of Polynomial Complexity

    Full text link
    The Shortest Lattice Vector (SLV) problem is in general hard to solve, except for special cases (such as root lattices and lattices for which an obtuse superbase is known). In this paper, we present a new class of SLV problems that can be solved efficiently. Specifically, if for an nn-dimensional lattice, a Gram matrix is known that can be written as the difference of a diagonal matrix and a positive semidefinite matrix of rank kk (for some constant kk), we show that the SLV problem can be reduced to a kk-dimensional optimization problem with countably many candidate points. Moreover, we show that the number of candidate points is bounded by a polynomial function of the ratio of the smallest diagonal element and the smallest eigenvalue of the Gram matrix. Hence, as long as this ratio is upper bounded by a polynomial function of nn, the corresponding SLV problem can be solved in polynomial complexity. Our investigations are motivated by the emergence of such lattices in the field of Network Information Theory. Further applications may exist in other areas.Comment: 13 page

    Compute-and-Forward: Finding the Best Equation

    Get PDF
    Compute-and-Forward is an emerging technique to deal with interference. It allows the receiver to decode a suitably chosen integer linear combination of the transmitted messages. The integer coefficients should be adapted to the channel fading state. Optimizing these coefficients is a Shortest Lattice Vector (SLV) problem. In general, the SLV problem is known to be prohibitively complex. In this paper, we show that the particular SLV instance resulting from the Compute-and-Forward problem can be solved in low polynomial complexity and give an explicit deterministic algorithm that is guaranteed to find the optimal solution.Comment: Paper presented at 52nd Allerton Conference, October 201

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    Reduction algorithms for the cryptanalysis of lattice based asymmetrical cryptosystems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008Includes bibliographical references (leaves: 79-91)Text in English; Abstract: Turkish and Englishxi, 119 leavesThe theory of lattices has attracted a great deal of attention in cryptology in recent years. Several cryptosystems are constructed based on the hardness of the lattice problems such as the shortest vector problem and the closest vector problem. The aim of this thesis is to study the most commonly used lattice basis reduction algorithms, namely Lenstra Lenstra Lovasz (LLL) and Block Kolmogorov Zolotarev (BKZ) algorithms, which are utilized to approximately solve the mentioned lattice based problems.Furthermore, the most popular variants of these algorithms in practice are evaluated experimentally by varying the common reduction parameter delta in order to propose some practical assessments about the effect of this parameter on the process of basis reduction.These kind of practical assessments are believed to have non-negligible impact on the theory of lattice reduction, and so the cryptanalysis of lattice cryptosystems, due to thefact that the contemporary nature of the reduction process is mainly controlled by theheuristics
    corecore