14 research outputs found

    Improved Progressive BKZ with Lattice Sieving and a Two-Step Mode for Solving uSVP

    Get PDF
    The unique Shortest Vector Problem (uSVP) is one of the core hard problems in lattice-based cryptography. In NIST PQC standardization (Kyber, Dilithium), leaky-LWE-Estimator is used to estimate the hardness of LWE-based cryptosystems by reducing LWE to uSVP and considers the primal attack using Progressive BKZ (ProBKZ). ProBKZ trivially increases blocksize Ī² and lifts the shortest vector in the final BKZ block to find the unique shortest vector in the full lattice. In this paper, we show that a ProBKZ algorithm as above (we call it a BKZ-only mode) is not the best way to solve uSVP. So we present a two-step mode to solve it, where the ProBKZ algorithm is followed by a sieving algorithm with the dimension larger than the blocksize of BKZ. While instantiating our two-step mode with the sieving algorithm Pump and Pump-and-jump BKZ (PnjBKZ) presented in G6K, which are the state-of-art sieving and BKZ implementations, we show that our algorithm is not only better than the BKZ-only mode but also better than the heuristic uSVP solving algorithm in G6K. However, a ProBKZ with the heuristic parameter selection in leaky-LWE-Estimator or the optimized parameter selection in the literature (Yoshinori Aono et al. at Asiacrypt 2016), is insuļ¬€icient in optimizing the eļ¬€iciency of a two-step solving algorithm. To find the best param- eters, we design a PnjBKZ simulator which allows the choice of value jump to be more than 1. Based on the newly designed simulator, we give a blocksize and jump strategy selection algorithm, which can achieve the best simulated eļ¬€iciency in solving uSVP instances. Combining all the things above, we get a new lattice solving algorithm called Improved Progressive PnjBKZ (ProPnjBKZ for short). We test the eļ¬€iciency of our ProPnjBKZ with the TU Darmstadt LWE Challenge. The experiment result shows that our ProPnjBKZ is 7.6āˆ¼12.9 times more eļ¬€icient than the heuristic uSVP solving algorithm in G6K. Besides, we break the TU Darmstadt LWE Challenges with (n, Ī±) āˆˆ{(40, 0.035), (40, 0.040), (50, 0.025), (55, 0.020), (90, 0.005)}. Finally, we give a newly refined security estimator of LWE. The evaluation results indicate that the concrete hardness of the lattice-based NIST candidate schemes from LWE primal attack will decrease by 1.9āˆ¼4.2 bits when using our optimized blocksize and jump selection strategy and two-step solving mode. In addition, when using the list-decoding technology proposed by MATZOV in 2022, it further decreased by 8āˆ¼10.7 bits

    Topics in Lattice Sieving

    Get PDF

    Parameter selection in lattice-based cryptography

    Get PDF

    On the Security of Lattice-Based Cryptography Against Lattice Reduction and Hybrid Attacks

    Get PDF
    Over the past decade, lattice-based cryptography has emerged as one of the most promising candidates for post-quantum public-key cryptography. For most current lattice-based schemes, one can recover the secret key by solving a corresponding instance of the unique Shortest Vector Problem (uSVP), the problem of finding a shortest non-zero vector in a lattice which is unusually short. This work is concerned with the concrete hardness of the uSVP. In particular, we study the uSVP in general as well as instances of the problem with particularly small or sparse short vectors, which are used in cryptographic constructions to increase their efficiency. We study solving the uSVP in general via lattice reduction, more precisely, the Block-wise Korkine-Zolotarev (BKZ) algorithm. In order to solve an instance of the uSVP via BKZ, the applied block size, which specifies the BKZ algorithm, needs to be sufficiently large. However, a larger block size results in higher runtimes of the algorithm. It is therefore of utmost interest to determine the minimal block size that guarantees the success of solving the uSVP via BKZ. In this thesis, we provide a theoretical and experimental validation of a success condition for BKZ when solving the uSVP which can be used to determine the minimal required block size. We further study the practical implications of using so-called sparsification techniques in combination with the above approach. With respect to uSVP instances with particularly small or sparse short vectors, we investigate so-called hybrid attacks. We first adapt the ā€œhybrid lattice reduction and meet-in-the-middle attackā€ (or short: the hybrid attack) by Howgrave-Graham on the NTRU encryption scheme to the uSVP. Due to this adaption, the attack can be applied to a larger class of lattice-based cryptosystems. In addition, we enhance the runtime analysis of the attack, e.g., by an explicit calculation of the involved success probabilities. As a next step, we improve the hybrid attack in two directions as described in the following. To reflect the potential of a modern attacker on classical computers, we show how to parallelize the attack. We show that our parallel version of the hybrid attack scales well within realistic parameter ranges. Our theoretical analysis is supported by practical experiments, using our implementation of the parallel hybrid attack which employs Open Multi-Processing and the Message Passing Interface. To reflect the power of a potential future attacker who has access to a large-scale quantum computer, we develop a quantum version of the hybrid attack which replaces the classical meet-in-the-middle search by a quantum search. Not only is the quantum hybrid attack faster than its classical counterpart, but also applicable to a wider range of uSVP instances (and hence to a larger number of lattice-based schemes) as it uses a quantum search which is sensitive to the distribution on the search space. Finally, we demonstrate the practical relevance of our results by using the techniques developed in this thesis to evaluate the concrete security levels of the lattice-based schemes submitted to the US National Institute of Standards and Technologyā€™s process of standardizing post-quantum public-key cryptography

    Quantum Lattice Enumeration in Limited Depth

    Get PDF
    In 2018, Aono et al. (ASIACRYPT 2018) proposed to use quantum backtracking algorithms (Montanaro, TOC 2018; Ambainis and Kokainis, STOC 2017) to speedup lattice point enumeration. Quantum lattice sieving algorithms had already been proposed (Laarhoven et al., PQCRYPTO 2013), being shown to provide an asymptotic speedup over classical counterparts, but also to lose competitivity at relevant dimensions to cryptography if practical considerations on quantum computer architecture were taken into account (Albrecht et al., ASIACRYPT 2020). Aono et al.ā€™s work argued that quantum walk speedups can be applied to lattice enumeration, achieving at least a quadratic asymptotic speedup Ć  la Grover search while not requiring exponential amounts of quantum accessible classical memory, as it is the case for sieving. In this work, we explore how to lower bound the cost of using Aono et al.ā€™s techniques on lattice enumeration with extreme cylinder pruning assuming a limit to the maximum depth that a quantum computation can achieve without decohering, with the objective of better understanding the practical applicability of quantum backtracking in lattice cryptanalysis

    Fast Lattice Basis Reduction Suitable for Massive Parallelization and Its Application to the Shortest Vector Problem

    Get PDF
    The hardness of the shortest vector problem for lattices is a fundamental assumption underpinning the security of many lattice-based cryptosystems, and therefore, it is important to evaluate its difficulty. Here, recent advances in studying the hardness of problems in large-scale lattice computing have pointed to need to study the design and methodology for exploiting the performance of massive parallel computing environments. In this paper, we propose a lattice basis reduction algorithm suitable for massive parallelization. Our parallelization strategy is an extension of the Fukase-Kashiwabara algorithm~(J. Information Processing, Vol. 23, No. 1, 2015). In our algorithm, given a lattice basis as input, variants of the lattice basis are generated, and then each process reduces its lattice basis; at this time, the processes cooperate and share auxiliary information with each other to accelerate lattice basis reduction. In addition, we propose a new strategy based on our evaluation function of a lattice basis in order to decrease the sum of squared lengths of orthogonal basis vectors. We applied our algorithm to problem instances from the SVP Challenge. We solved a 150-dimension problem instance in about 394 days by using large clusters, and we also solved problem instances of dimensions 134, 138, 140, 142, 144, 146, and 148. Since the previous world record is the problem of dimension 132, these results demonstrate the effectiveness of our proposal

    International Symposium on Mathematics, Quantum Theory, and Cryptography

    Get PDF
    This open access book presents selected papers from International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), which was held on September 25-27, 2019 in Fukuoka, Japan. The international symposium MQC addresses the mathematics and quantum theory underlying secure modeling of the post quantum cryptography including e.g. mathematical study of the light-matter interaction models as well as quantum computing. The security of the most widely used RSA cryptosystem is based on the difficulty of factoring large integers. However, in 1994 Shor proposed a quantum polynomial time algorithm for factoring integers, and the RSA cryptosystem is no longer secure in the quantum computing model. This vulnerability has prompted research into post-quantum cryptography using alternative mathematical problems that are secure in the era of quantum computers. In this regard, the National Institute of Standards and Technology (NIST) began to standardize post-quantum cryptography in 2016. This book is suitable for postgraduate students in mathematics and computer science, as well as for experts in industry working on post-quantum cryptography

    International Symposium on Mathematics, Quantum Theory, and Cryptography

    Get PDF
    This open access book presents selected papers from International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), which was held on September 25-27, 2019 in Fukuoka, Japan. The international symposium MQC addresses the mathematics and quantum theory underlying secure modeling of the post quantum cryptography including e.g. mathematical study of the light-matter interaction models as well as quantum computing. The security of the most widely used RSA cryptosystem is based on the difficulty of factoring large integers. However, in 1994 Shor proposed a quantum polynomial time algorithm for factoring integers, and the RSA cryptosystem is no longer secure in the quantum computing model. This vulnerability has prompted research into post-quantum cryptography using alternative mathematical problems that are secure in the era of quantum computers. In this regard, the National Institute of Standards and Technology (NIST) began to standardize post-quantum cryptography in 2016. This book is suitable for postgraduate students in mathematics and computer science, as well as for experts in industry working on post-quantum cryptography

    Quantum Lattice Enumeration and Tweaking Discrete Pruning

    Get PDF
    International audienceEnumeration is a fundamental lattice algorithm. We show how to speed up enumeration on a quantum computer, which affects the security estimates of several lattice-based submissions to NIST: if T is the number of operations of enumeration, our quantum enumeration runs in roughly āˆšTāˆš T operations. This applies to the two most efficient forms of enumeration known in the extreme pruning setting: cylinder pruning but also discrete pruning introduced at Eurocrypt '17. Our results are based on recent quantum tree algorithms by Montanaro and Ambainis-Kokainis. The discrete pruning case requires a crucial tweak: we modify the preprocessing so that the running time can be rigorously proved to be essentially optimal, which was the main open problem in discrete pruning. We also introduce another tweak to solve the more general problem of finding close lattice vectors
    corecore