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Abstract

In this thesis we discuss the design, cost, and use of algorithms called lattice sieves.
These are a class of algorithms that iteratively obtain shorter lattice vectors by taking
well chosen combinations from a large set of such. We focus on the cryptanalytical as-
pects of lattice sieves; their ability to find short lattice vectors allows them to be used in
the cryptanalysis of several problems upon which post quantum cryptography is being
built, for example the learning with errors problem. The threat model for post quan-
tum cryptography involves the construction and use of large, fault tolerant, quantum
computers. This necessitates the analysis of quantum variants of lattice sieves. These
quantum variants may require less computation to find short lattice vectors than their
classical counterparts, a topic two of the papers below examine. After giving preliminar-
ies we present three publications, each concerned with a different aspect of lattice sieves.

In the first we codify and implement an abstract framework, the General Sieve Kernel,
that collates many recent improvements in lattice sieving. This framework moves
beyond the idea of using a lattice sieve as a ‘one shot’ shortest vector problem oracle,
and instead imbues it with a state which is maintained between sieving operations.
Using our implementation of this framework we are able to design and experiment with
new lattice reduction procedures and ultimately solve previously unsolved instances of
shortest vector and learning with errors type problems.

In the second we consider time memory trade offs for quantum variants of a large class
of lattice sieves called k-sieves. These quantum variants require an exponential amount
of qRAM, a type of quantum memory that allows quantum superposition access to
classical data. This is an expensive resource, so we are concerned with the optimal time
complexity that can be achieved when restricting memory. One sieving procedure we
design has a time complexity moderately larger than the state of the art for quantum
lattice sieves while requiring significantly less qRAM.
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In the third we consider the non asymptotic speedups obtained by applying various
quantum search algorithms to classical lattice sieves. In particular we design quantum
circuits for these sieves and estimate their cost in a number of cost models. These
cost models represent different assumptions about the cost of maintaining an error free
quantum memory. In doing so we give a new heuristic analysis of various techniques
used in practical lattice sieves and estimates for where quantum sieving will begin to
outperform classical sieving under the various cost models.
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Chapter 1

Introduction

Modern cryptography is full of statements like ‘Y is hard if X is hard’, and ‘we build
Z from Y ’. But what are these mysterious X, Y , and Z? What does it mean for X or
Y to be hard, or to build Z from Y ?

To begin to answer the first of these questions, X and Y are problems. Simple
examples might include

• given two integers, find their sum,

• given a finite list of real numbers, arrange them in ascending order,

• given an integer, find its prime factorisation,

and so on. These problems all share some structure. One receives an input (a pair of
integers, a finite list, an integer) and is asked to perform some task, before giving an
output of a particular form (a sum, an ordered list, a prime factorisation). This gives
an intuitive idea of what a problem is.

What about a problem being hard? Let us start with the example of adding two
integers together. Perhaps 6 + 7 = 13 is easy, and perhaps 1417 + 2613 = 4030 is easy
too, but the latter is somehow harder. If one applies the addition method we learn as
children, to add the ones and carry any tens, add the tens and carry any hundreds,
and so forth, there is simply more to do when one has more digits to add. When we
speak of the hardness of a problem, we are never really talking about a single instance
of this problem, but rather how its hardness grows as a function of the input size. To
attempt a little formalism, we will measure the input size of the addition problem
as the maximum number of base 10 digits required to give either of the summands
and call this n. In the 1417 + 2613 = 4030 example n = 4, and if instead we had
1417 + 12613 = 14030 we would have n = 5. We also define some basic operations to
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which we assign one unit of cost. For example here we might say that adding two single
digit integers together costs one unit of cost, as does calculating the carry, and as does
reading a digit of input. In this simple computational model, with a little squinting, it
becomes clear that one must read some number in {n+ 1, . . . , 2n} of digits of input
and perform no more than 3n addition and carry operations. We therefore end up
with a cost function of something like

Cadd : {1, 2, . . . } → [0,∞), Cadd(n) ≤ 5n.

Here the domain {1, 2, . . . } of the cost function represents the length of the input, and
the evaluation of the cost function represents the minimum cost of the addition. Note
that we have the inequality because we have described (the add and carry method)
only one procedure for addition. This procedure has the cost given as the upper bound.
We have not shown that addition of two integers cannot be performed with a lower cost
– though it cannot be too much lower, as to solve a general instance with input of size n
one must sometimes read 2n digits. Let us therefore say that the cost of addition grows
as something like 5n in the input size. This is not very fast! To double this cost we
must double the size of the input. Imagining some world where cryptography depends
on the ‘hardness’ of addition, if your preferred adversary doubles their computing
power, you have to double to length of your inputs.

Perhaps unsurprisingly therefore, addition is not considered a hard problem. If we
let CX denote the cost function for some problem X, what kind of function should CX

be for us to consider X to be a hard problem? Some reasonable candidates might be

• CX(n) = 2n, exponential growth,

• CX(n) = n!, factorial growth, otherwise known as total overkill,

• CX(n) = nlog n, something a little more subtle,

and so on. Why are these reasonable candidates? In the first example, to double the
cost of the problem one need only increase the input size by one. The factorial in the
second example grows even faster.

The final example contains a little subtlety, but is still sufficient. It is less simple
to calculate how much one must increase n by to double the cost, and for any ε > 0
eventually (1 + ε)n will dominate nlog n. That is, the fraction nlog n/(1 + ε)n tends to
0, so nlog n is not an example of exponential growth. However it does grow faster
than any polynomial in n; it is superpolynomial. In particular take any integer
d ≥ 0 and some positive real numbers α0, . . . , αd, and consider the polynomial p(n) =
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α0 + α1n+ · · ·+ αdn
d. With a little thought one can see that if we let logN = d+ 1,

as soon as n ≥ N we have that nlog n is a polynomial of a higher degree than p(n) and
will therefore dominate it.

For various reasons, a problem whose cost grows superpolynomially in the size of its
input is a definition of ‘hard’ which we find useful in cryptography. A problem that is
not hard is said to be easy, and able to be solved efficiently. One reason for considering
this definition of hard is that often we are not able to achieve the gold standard of
statements introduced at the beginning: ‘Y is hard if X is hard’. Instead we settle
for ‘Y is hard if a somewhat easier version of X is hard’. We call this ‘somewhat
easier’ qualifier the loss of such a statement, and in cryptography it is often known
quantitatively. Moreover, we often have polynomial loss, and so if the cost grows
superpolynomially we can account, at least in theory, for the loss without needing to
increase the input size too much.

Let us return to our three candidate problems. We have seen that addition is easy.
It is left as an interesting Sunday afternoon to the reader to think about how to assign
input size and what operations should be assigned unit cost in the case of ordering a
set of reals, and to show that it is also easy.

We are therefore left with the final problem, which, despite also being simple to
state, is different from the others. The final problem is somehow harder than the
first two,1 in that no one knows, ignoring some caveats to come below, how to do it
efficiently. More specifically, if we let the input size be the number of bits of the integer
being factorised, i.e. its length base 2, then every known procedure that returns the
prime factors has a superpolynomial cost.

The fastest known algorithm is the General Number Field Sieve [LL93], implemen-
tations of which [Tea17] are to this day breaking factoring challenges [Zim20]. The
General Number Field Sieve solves the factoring problem with asymptotic cost

Cfactor(n) ∈ exp
((

(64/9)1/3 + o(1)
)

(log n)1/3(log log n)2/3
)
,

which is a fancy way of saying that it is superpolynomial. Note though that proving a
problem is hard is an entirely different kettle of fish to proving it is easy. To prove
something is easy it is enough to exhibit a single procedure which has a cost that
is less than superpolynomial. To prove something is hard one must show that no
such procedure exists, and depending on the problem, this can be significantly more
challenging. No one has proven that Cfactor is superpolynomial, and perhaps it is not.

1Although, catch me on a slow day and they are all borderline impossible.
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However, as understanding and finding prime factors is both a fundamental problem
in pure mathematics, as well as something with huge real world importance (spoiler:
factoring plays an important role in modern cryptography), it is a problem that has
been considered in a great amount of depth for many years by some very clever people.
It is what I like to call a ‘problem with a pedigree’. This is one of the most interesting
facets of cryptography, often when it is proven that ‘Y is hard if X is hard’, X is
not some unconditionally hard problem, but merely a problem which is much better
studied and understood than Y , and ultimately, one in which people have more faith.

If we return to the beginning again, we had a second statement, ‘we build Z from
Y ’. Here Z is not a problem, but some cryptographic object. For example consider
a public key encryption scheme. This is some cryptographic object where the public
(people who are not me, and in possession of some public information) can encrypt a
message such that only I can decrypt it by using some secret information known only
to me. To say that Z is built from Y means that someone who is not me, and therefore
not in possession of this secret information, must solve an instance of problem Y to
decrypt a message, or more generally violate some other abstract security definitions.
It should now be clear why we might want Y to be hard.

In general a cryptographic object comes with a semantic description of its inputs and
ouputs, as well as security definitions. These definitions are formalisms of statements
like ‘someone who is not in possession of the secret information cannot decrypt’. It can
be difficult enough to build cryptographic objects that rely on problems in this way,
nevermind on problems that are well understood and thought to be hard. This is why
we want a statement like ‘Y is hard if X is hard’; if we can build Z from Y and then
show the hardness of Y relies on the hardness of a much more understood or studied
problem such as X, then we have a good basis for the security of Z.

1.1 Turing, his machines, and quantum computing

Alan Turing was a British mathematician, cryptanalyst, and a surprisingly good runner.
During his studies at Cambridge he developed the idea of a universal computing machine
that has come to be known as a Turing machine [Tur37], and in the process answered
the ‘Entscheidungsproblem’ problem set by Hilbert and Ackermann in 1928 [HA28]
in the negative. This problem asks whether there is an algorithm that takes as input
any mathematical statement and outputs True or False. During the war these ideas
on computing were brought to bear on the problem of breaking Axis naval ciphers,
building on the crucial work of Polish cryptanalysts and French spies [Tur18, Bak18].
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After the war he went on to design several early computers at the National Physical
Laboratory and later at Manchester University.

The Churchill post war government prosecuted Turing for the ‘gross indecency’ of
being a gay man. As his punishment he chose chemical castration rather than prison,
and he died by cyanide poisoning in 1954.

In recent years attempts have been made to rectify, to some small extent, this
national disgrace. In 2013 he received a posthumous pardon, and in 2017 a law was
passed by the British parliament that has come to be known as ‘Turing’s Law’.2 This law
granted a blanket pardon to all gay men for their historical ‘offences’. Turing’s portrait
now adorns the highest denomination bank note printed by the Bank of England (£50),
and he is venerated as a national hero. Nonetheless, we should not attempt to separate
his treatment as a human being from his rarefied academic achievements, or forget the
lessons it can teach us in the present day.

Leaving behind the horrors of history, Turing machines offer a method to formalise
the above discussion of problem, cost, and procedure. The full definition and details
of Turing machines are not relevant for this introduction, but rather the effect their
description had on ideas of computability. Intuitively a Turing machine is formed of
an infinitely long one dimensional tape which can be read from and written to by a
magnetic head. This tape is separated into cells, each of which contains some symbol
from a finite alphabet. The machine has some state, and at the beginning of each step
of computation the head reads the symbol from the current cell on the tape. Depending
on this read and the current state of the machine, it may erase or overwrite the symbol
in the cell, it moves the head either left or right, and it alters its internal state. There
is a state called the halting state such that, if the machine ever attains this state, it
halts. When a machine halts it has finished its computation.

The complexity of solving a problem on a Turing machine can then be thought
of as the number of steps of computation before it halts. What about this physically
impossible infinite tape stretching to the horizon in either direction? This represents a
cost that we have not yet discussed, the memory cost required to solve a problem. This
infinite tape exists only to allow the Turing machine however much memory it requires
for its computation. There is a special symbol in the language of the machine which
is blank, and this blank symbol is the only one allowed to appear infinitely often on
the tape. We call the memory requirement of the Turing machine the largest number
of non blank cells on the tape at any step in the computation before it halts. The

2https://www.legislation.gov.uk/ukpga/2017/3/part/9/chapter/1/crossheading/
pardons-for-certain-abolished-offences-etc/enacted.

https://www.legislation.gov.uk/ukpga/2017/3/part/9/chapter/1/crossheading/pardons-for-certain-abolished-offences-etc/enacted
https://www.legislation.gov.uk/ukpga/2017/3/part/9/chapter/1/crossheading/pardons-for-certain-abolished-offences-etc/enacted
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problems we considered above do not require much memory, but for many considered
in this thesis the memory cost will be exponential in the size of the input.

Besides offering rigorous formalism to ideas of algorithms and computability, Turing
machines led to an informal statement that has come to be known as the Church–Turing
thesis, named with another early pioneer in the theory of computation, Alonzo Church.
It can be stated as

Any algorithmic process can be simulated efficiently using a Turing machine.

This is not a formal statement without a definition of ‘algorithmic process’, but for
some definition of algorithmic process for which the above statement is true, the
Church–Turing theorem says that no matter what kind of machine we use to perform
an algorithm (an abacus, a Babbage engine, a desktop computer, and so forth), we
can simulate it efficiently with a Turing machine. In words, ‘simulate[d] efficiently’
means that any problem that has an efficient solution on e.g. a desktop computer also
has an efficient solution on a Turing machine. This means that we need only consider
computational costs in the Turing machine model.3

It turns out that the above statement of the Church–Turing theorem is not quite
strong enough. In the 1970s Solovay and Strassen developed an efficient probabilistic
primality test [SS77] for which the use of randomness was essential. Shortly thereafter
many algorithms that make fundamental use of randomness were developed, and
in many cases no efficient deterministic (i.e. algorithms that do not make use of
randomness) equivalent algorithms were known.4 This leads to the definition of a
probabilitistic Turing machine – this is a Turing machine that has a further random
tape. This is an infinite tape of uniformly distributed bits which can be read from and
used to determine actions and state changes in a computation step. For example, if
the Turing machine has a particular state and reads a particular symbol from its main
tape, it may read a bit from its random tape and move its head left if the bit is 0 and
right if the bit is 1. The amount of randomness read from this tape is also considered
a cost, alongside steps of computation and memory. We therefore arrive at an adapted
version of the Church–Turing thesis.

Any algorithmic process can be simulated efficiently using a probabilistic Turing
machine.

3For the avoidance of doubt, we never do this. Instead we focus on complexity in asymptotic and
circuit based models.

4We note that this is no longer the case for primality testing [AKS04].
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Having had to alter the statement of this theorem once, why not again? Thoughts
like this led Benioff [Ben82], Feynman [Fey82], Deutsch [Deu85], and others in the
1980s to consider the existence of a computational device that could efficiently simulate
any physical system. Such a computational device, let us call it Q, would be a good
candidate for a further strengthening of the Church–Turing theorem,

Any algorithmic process can be simulated efficiently using Q.

No prizes for guessing that Q stands for ‘quantum’, which were the physical laws upon
which these authors tried building a computing machine. Thus was born the notion of
a quantum computer.

The functional importance of the above is that it leaves open the question ‘can a
quantum computer do things that even a probabilistic Turing machine cannot?’, or put
more precisely, ‘are there algorithmic processes that a quantum computer can perform
efficiently, but a probabilistic Turing machine cannot?’. One candidate for such an
algorithmic process is the reason this thesis exists.

1.2 Wherefore this thesis

In 1994 Shor gave a quantum algorithm [Sho94] that, to this day, efficiently solves
problems not thought to have efficient solutions on probabilistic Turing machines. A
quantum algorithm is one that runs on a quantum computer, and as discussed above
we model a classical computer by a probabilistic Turing machine. Shor’s algorithm can
solve a fairly general class of problems, but it is best known for solving a particular few.
One such problem is the factorisation of integers into their prime factors, a problem
we saw earlier and for which the best known classical algorithm has superpolynomial
complexity.

As well as being an enormous theoretical breakthrough, factoring has an important
place in modern cryptography. If quantum computers are built that can run Shor’s
algorithm, whole swathes of modern cryptography (e.g. public key encryption schemes)
become insecure. This is not helped by the fact that another problem solved efficiently
by Shor’s algorithm is the discrete logarithm problem, which will not be discussed in
this introduction, but plays a similarly fundamental role in modern cryptography.

Another important quantum algorithm is Grover’s quantum mechanical search
algorithm [Gro96]. This is an algorithm that square roots the complexity of finding a
marked element in an unstructured list. More concretely let us say we have some list of
N elements which has no structure (or at least, we know nothing about its structure),
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and exactly one element has some special property, or is ‘marked’. Using a classical
computer we expect to check approximately N/2 elements of our list for this property
before finding the one that has it. Using a quantum computer the same task can be
performed in approximately

√
N checks, for some appropriately altered definition of

a check. Moreover these complexities are known to be optimal in both the classical
and quantum cases. Note that this does not immediately mandate an upgrade to the
Church–Turing thesis, as the square root of a polynomial function is polynomial, and
similarly the square root of a superpolynomial function is superpolynomial. That is,
Grover’s search algorithm does not give an efficient quantum algorithm where only an
inefficient classical algorithm exists. However, the ability to search more quickly for
marked elements in lists meaningfully improves several cryptanalytic algorithms, and
throughout this thesis Grover’s algorithm will be both examined and used to design
new algorithms.

These quantum threats to cryptography have led to a search for new problems
Y from which to build cryptographic objects Z. These problems Y need to be post
quantum, that is, problems for which no efficient solution exists even given the use of a
large scale, fault tolerant quantum computer. In essence, such a quantum computer
is one that can run long computations without errors accumulating and invalidating
the output. Often these post quantum Y , or the problems X for which we have the
statement ‘Y is hard if X is hard’, have a little less pedigree than factoring integers or
finding a discrete logarithm.

Several standards bodies around the world, perhaps most notably NIST (the
National Institute for Standards and Technology of the United States), are far into
the process of standardising post quantum cryptography [NIS17]. Large technology
companies such as Google [Mat16] and Cloudflare [Kri19] are also already trialling
post quantum cryptography for internet protocols, to smooth its eventual passage into
general usage. Submissions to the NIST process have been solicited from academia
and industry, and cryptography built from several classes of candidate post quantum
problems is currently under examination. One of these candidate classes is the class
of lattice problems, such as the learning with errors problem (LWE), or the NTRU
problem.5

One way to solve these problems is to search for short vectors in mathematical
objects called lattices; one way to perform this search is to use an algorithm called a
lattice sieve; and one way to understand the effect lattice sieves have on post quantum
cryptography is to further their design and analysis. This finally is the topic of this

5My favourite possibility for this acronym is ‘Number Theorists R Us’ [Why05].
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thesis. It intends to add a smidgen of pedigree to the problem of solving lattice
problems via finding short vectors in lattices.

1.3 Contents of this thesis

This thesis contains amended and annotated versions of the following three publications.

1. Albrecht M.R., Ducas L., Herold G., Kirshanova E., Postlethwaite E.W., Stevens
M. (2019) The General Sieve Kernel and New Records in Lattice Reduction.
In: Ishai Y., Rijmen V. (eds) Advances in Cryptology – EUROCRYPT 2019.
EUROCRYPT 2019. Lecture Notes in Computer Science, vol 11477. Springer,
Cham.

2. Kirshanova E., Mårtensson E., Postlethwaite E.W., Roy Moulik S. (2019) Quan-
tum Algorithms for the Approximate k-List Problem and Their Application to
Lattice Sieving. In: Galbraith S., Moriai S. (eds) Advances in Cryptology –
ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science, vol
11921. Springer, Cham.

3. Albrecht M.R., Gheorghiu V., Postlethwaite E.W., Schanck J.M. (2020) Esti-
mating Quantum Speedups for Lattice Sieves. In: Moriai S., Wang H. (eds)
Advances in Cryptology – ASIACRYPT 2020. ASIACRYPT 2020. Lecture Notes
in Computer Science, vol 12492. Springer, Cham.

Throughout the above papers this boxed environment will occasionally
appear. It will contain (hopefully) helpful notes or further working
that I believe would damage the prose as is. As such these boxes can
be safely ignored, unless further details are desired.

The following publications were also written during my studies at Royal Holloway.

1. Albrecht M.R., Curtis B.R., Deo A., Davidson A., Player R., Postlethwaite, E.W.,
Virdia F., Wunderer T. (2018) Estimate All the {LWE, NTRU} Schemes!. In:
Catalano D., De Prisco R. (eds) Security and Cryptography for Networks. SCN
2018. Lecture Notes in Computer Science, vol 11035. Springer, Cham.

2. Behnia R., Postlethwaite E.W., Ozmen M.O., Yavuz A.A. (2020) Lattice-Based
Proof-of-Work for Post-Quantum Blockchains. Accepted at CBT 2021.
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3. Postlethwaite E.W., Virdia F. (2021) On the Success Probability of Solving
Unique SVP via BKZ. In: Garay J.A. (eds) Public-Key Cryptography – PKC
2021. PKC 2021. Lecture Notes in Computer Science, vol 12710. Springer,
Cham.

4. Hashimoto H., Katsumata S., Postlethwaite E.W., Prest T., Westerbaan B.
(2021) A Concrete Treatment of Efficient Continuous Group Key Agreement via
Multi-Recipient PKEs. Accepted at ACM CCS 2021.

The final paper was written while I was undertaking an internship at PQShield in
Oxford, UK, under the pedagogical flair of Thomas Prest.

My research was supported by the EPSRC and the UK government as part of the
Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London
(EP/P009301/1).

1.4 Organisation of this thesis

In Chapter 2 we introduce the notions and mathematical concepts required for this
thesis. There is a focus on lattices, lattice reduction algorithms, lattice sieves, and an
introduction to quantum notation and quantum search.

In Chapter 3 we present the first paper of this thesis [ADH+19a]. The focus of this
paper is how one can use a lattice sieve as the fundamental operation in a stateful
machine we call the General Sieving Kernel. Taking this view of lattice sieves allows
us to design new algorithmic procedures for lattice reduction tasks, and ultimately for
finding short vectors in lattices. We marry this new algorithmic freedom with techniques
from the literature and a large implementation effort to solve lattice challenges in
higher dimensions than had been previously achieved.

In Chapter 4 we present the second paper of this thesis [KMPM19a]. The focus of
this paper is exploring the asymptotic time memory trade offs available to us when
considering quantum variants of previously classical lattice sieve designs. Such trade
offs are especially important for quantum lattice sieves due to the exponential memory
they require needing to be quantumly accessible. This requires a potentially expensive
resource called qRAM (quantum random access memory). We develop tailored quantum
search routines based on Grover’s algorithm and its generalisations to give smooth
time memory trade offs for these lattice sieves.
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In Chapter 5 we present the final paper of this thesis [AGPS20]. The focus of this
paper is the effect that different cost models have on the feasibility and magnitude
of complexity improvements given by quantum lattice sieves. Whereas in the above
chapter we work asymptotically, where the differences between these cost models
disappear, here we focus on concrete quantum circuits for certain lattice sieve tasks.
We examine three lattice sieves under several cost models, including one that takes
into account the cost of maintaining error free quantum states, and provide software
and estimates for their performance.





Chapter 2

Preliminaries

Here we introduce the relevant generic technical ideas and notations used throughout
this thesis.

2.1 Basic notation

We use N = {0, 1, . . . },Z,Q,R,C to denote the natural numbers, integers, rationals
reals, and complex numbers, respectively. We may write e.g. R+ = {x : x ∈ R, x > 0}
to denote the strictly positive entries of such a set, when this is well defined. For
n ∈ N let [n]0 = {0, 1, . . . , n} and for n ∈ N \ {0} let [n] = {1, . . . , n}. For a function
f : X → Y we denote the image of f as Im f = {f(x) : x ∈ X}. We denote the absolute
value of a real as | · | : R→ [0,∞), x 7→ x if x ≥ 0, and x 7→ −x otherwise. For a set
X we let |X| denote its cardinality and idX the identity function on it. By ⌊ · ⌋ and
⌈ · ⌉ we denote the usual floor and ceiling operators. We denote the rounding function
⌈ · ⌋ : R→ Z which rounds x to the integer y that minimises |x− y|. In the case of ties,
i.e. x = n+ 1/2 for n ∈ Z, we define ⌈x⌋ = ⌈n+ 1/2⌋ = n+ 1. Throughout log is the
natural logarithm, and log2 is the logarithm base 2.

Vectors, norms, angles and subsets of Rd

Let Rd denote Euclidean space of dimension d and let ei represent the ith canonical
basis vector. Denote x ∈ Rd as x = (x1, . . . , xd)t, where t denotes transposition. Define
the inner product ⟨ · , · ⟩ : Rd × Rd → R, (x,y) 7→ ∑

i xi · yi. The inner product implies
the Euclidean norm ∥x∥ = ⟨x,x⟩1/2. Denote, for arccos : [−1, 1] → [0, π], the angle
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between two vectors as

θ(x,y) = arccos
 ⟨x,y⟩
∥x∥ ∥y∥

 .
Let

Bd (r; x) = {y ∈ Rd : ∥x− y∥ < r}, B̄d (r; x) = {y ∈ Rd : ∥x− y∥ ≤ r},

denote the open and closed balls of radius r around x, respectively. If x is omitted it
is read as 0. Let Sd−1 = {x ∈ Rd : ∥x∥ = 1}.

For a ring R and a given R-module M , we define the span under R of a countable
set S ⊂M as

spanR (S) =
 ∑

i∈I⊂N
αi · si : αi ∈ R, si ∈ S

 ,
where we usually take M = Rd and R = Z or R = R. We say S is formed of linearly
independent vectors if there does not exist a sequence (αi)i∈I different from (0)i∈I such
that ∑i∈I αi · si = 0.

Matrices

Let In(R) denote the n × n identity matrix over ring R, which will be left implicit.
Let Mn×m(R) be the set of n×m matrices over the ring R, if n = m we write Mn(R).
Let 1n(R) ∈ Mn×1(R) denote the all ones vector, for which we write 1 and assume
the dimension and ring are clear from context. We let the determinant be the unique
function det : Mn(R) → R such that it is multilinear, alternating, and det(In) = 1.
The general linear group (GLn(R), · ) is the group under matrix multiplication of all
A ∈ Mn(R) such that A is invertible over R, or equivalently that the determinant of
A is a unit of R, i.e. det(A) ∈ R×. The special linear group (SLn(R), · ) is a normal
subgroup of the general linear group, in particular the kernel of the homomorphism
det : GLn(R) → R×, so that A ∈ SLn(R) has det(A) = 1R. We write the inverse of
A as A−1 and A−1 ·A = A ·A−1 = In. For any free R-module M of rank n, usually
M = Rn in our case, the transform A : M → M,m 7→ A ·m for A ∈ GLn(R) is an
automorphism of M . We note the special case R = Z where R× = {−1, 1} and so the
elements of GLn(Z) are unimodular, i.e. their determinants are in {−1, 1}.We recall that
the determinant is multiplicative, and for A ∈ GLn(R) we have det(A−1) = 1/ det(A).

For a ring R and a matrix B ∈ Md×n(R) we usually write B ∈ Rd×n. We write B =
(b1 · · ·bn) as its column vectors, and let B[i] = bi and B[i : j] = (bi · · ·bj−1). If bi =
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(bi
1, . . . , b

i
d)t then let B[i, j] = bi

j. If B ∈ Rd×n then we define ∥B∥ = max{∥bi∥ : i ∈
[n]}.

Measure and topology

We consider Lebesgue measurable sets in Rd and denote the measure of some such
S ⊂ Rd as vol(S). Sometimes we prefer to refer to the specific measure and denote by
Ld the Lebesgue measure on Rd and write Ld(S) in place of vol(S). We denote L1 by
L. If X is a topological space and S ⊂ X, then the interior of S is defined as the union
of all open sets of X contained as subsets of S. In Euclidean space this is equivalent
to all points s ∈ S ⊂ Rd such that there exists a radius rs > 0 with Bd (rs; s) ⊂ S. If
X is a topological space and Y ⊂ X is equipped with the subspace topology, then we
say Y is compact if every open cover of Y has a finite subcover. In Euclidean space
this is equivalent to Y being closed and bounded, e.g. B̄d (r; x) ⊂ Rd. A convex set is
a subset X of a vector space V over an ordered field F such that for all x, y ∈ X the
line segment lx,y = {(1− t) · x+ t · y : t ∈ [0, 1] ∩ F} that joins x and y has lx,y ⊂ X.
A convex function is a real valued function f whose epigraph (the points ‘above the
curve’) is a convex set. A real valued function f is concave if and only if −f is convex.
For a subset X of a vector space V over a field F we define αX = {α · x : x ∈ X} for
any α ∈ F . A subset X of a vector space V is said to be symmetric around 0, the
additive identity of the vector space, if for all x ∈ X we have X = (−1) ·X. Here −1
is the additive inverse of the scalar multiplicative identity of V .

The function Γ(z) =
∫∞

0 xz−1e−x dx for z ∈ C with positive real part is the classical
gamma function. The volume of an open or closed ball of radius r in Rd is given by

vol(Bd (r; x)) = vol(B̄d (r; x)) =
πd/2

Γ(1 + d/2) · r
d,

for any x ∈ Rd, and we define Vd(r) = vol(Bd (r)). In particular we define vd = Vd(1)
as the volume of the unit ball in dimension d.

Probability

Let (Ω, F, P ) be a probability space, so that Ω is a non empty set, F ⊂ 2Ω is a σ-algebra
of the power set of Ω, and P : F → [0, 1] is a probability measure.

We consider random variables X : Ω→ S, which are measurable functions between
the measure spaces (Ω, F ) and (S,B(S)) where B(S) denotes the Borel σ-algebra
of the topological space S. To concretise a little, we may think of e.g. S = Zn×m

q ,
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the finite set of all n by m matrices over the ring Zq. Since S is countable, if we
equip S with the discrete topology then B(S) = 2S; the Borel σ-algebra is just the
power set of S. The random variable X is then any map from Ω to S such that
X−1(A) = {ω ∈ Ω: X(ω) ∈ A} is measurable in Ω, i.e. X−1(A) ∈ F , for all A ∈ B(S).
If the image of X is countable (as in the example above) we call it a discrete random
variable, else it is a continuous random variable. For A ∈ B(S), i.e. the measurable
A ⊂ S, we define Pr[X ∈ A] = P ({ω ∈ Ω: X(ω) ∈ A}). In particular for {a} ∈ B(S)
we write Pr[X = a] = P ({ω ∈ Ω: X(ω) = a}).

If S = R then we call X : Ω → R a real valued random variable. A real valued
random variable defines a cumulative distribution function (cdf) FX : R → [0, 1] as
FX(a) = Pr[X ∈ (−∞, a]], or Pr[X ≤ a] for short. For a discrete real valued random
variable X, FX uniquely defines a probability mass function (pmf),

fX : ImX → [0, 1], x 7→ Pr[X ≤ x]− Pr[X < x].

The pmf fX has the property that for any measurable A, Pr[X ∈ A] = ∑
x∈A∩Im X fX(x).

For a continuous real valued random variable X, FX does not uniquely define a
probability density function (pdf), the continuous analogue of a pmf. Instead we call
any function fX : R→ R a pdf, or density, for X when

Pr[X ∈ A] =
∫
A

fX(x) dL,

for all measurable A.
Let X : Ω→ S be a random variable, then we write x← X to mean a sample taken

from ImX with probability Pr[X = x]. A collection X1, . . . , Xn : Ω → S of random
variables are said to be i.i.d. if they are pairwise independent and for all measurable A
they have Pr[X1 ∈ A] = · · · = Pr[Xn ∈ A]. We will often refer to samples from a given
random variable as being i.i.d. If these samples are x1, . . . , xn then this shorthand
means that each was sampled as xi ← Xi for i.i.d. X1, . . . , Xn. We denote by U(S) the
uniform random variable over a finite set S. We denote by N(µ, σ2) the normal random
variable with mean µ and variance σ2. We may write e.g. X ∼ N(µ, σ2) to denote
that X is a random variable distributed as N(µ, σ2). Let E [X] and V [X] denote the
expectation and variance of a random variable X.
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We may not always abide by the notational conventions above for probability. For
example if we fix some n ∈ Z+ and an a ∈ [n] then

Pr
b←U([n])

[b > a] = 1− a/n

represents the probability that a uniformly sampled b from [n] is larger than some fixed
a ∈ [n]. One could define Ω = [n] and an indicator random variable Xa : Ω→ {0, 1}
per a such that Xa(b) = 1 if b > a and Xa(b) = 0 otherwise. Given Xa then the above
is equivalent to Pr[Xa = 1], but (I think) more readable.

Asymptotic notation

We define the Bachmann–Landau asymptotic notation following [Knu97, CLRS09].
Let f and g be real valued functions defined on some unbounded subset of the positive
real numbers S ⊂ R+. Then we define

• f ∈ O(g)⇔ ∃M > 0, s0 ∈ S such that for all s ≥ s0 we have f(s) ≤M · |g(s)|,
i.e. f is eventually bounded above by a constant multiple of g,

• f ∈ o(g)⇔ for all M > 0,∃ s0 ∈ S such that for s ≥ s0 we have |f(s)| < M ·|g(s)|,
i.e. f is eventually dominated by g,

• f ∈ Ω(g)⇔ g ∈ O(f), i.e. f is eventually bounded below by a constant mutiple
of g,

• f ∈ ω(g)⇔ g ∈ o(f), i.e. f eventually dominates g,

• f ∈ Θ(g) ⇔ f ∈ O(g) and f ∈ Ω(g), i.e. f is eventually bounded above and
below by (different) constant multiples of g. Equivalently, g ∈ Θ(f).

We also define a class poly(n) of functions. If S is any unbounded subset of N then
f : S → N is such that f(n) ∈ poly(n) if there exists an s0 ∈ S and p(x) ∈ Z[x] such
that for all s ≥ s0 we have |f(s)| ≤ p(s).

A function f : N → R is negligible (in n) if for any c ∈ N there exists an Nc ∈ N
such that for all n ≥ Nc we have f(n) ≤ 1/nc. Let f(n) be the probability of the nth

event occurring in some sequence of events parameterised by n. The probability of this
sequence is said to be negligible if f is negligible. The probability of this sequence
is said to be overwhelming if the probability of them not happening, i.e. 1− f(n), is
negligible.
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Quantum notation

For some U ∈ Cn×n we denote by U† the conjugate transpose, i.e. U†[i, j] = U[j, i].
We also, in the relevant sections, make use of braket notation. We work over the Hilbert
space Cn and let |ψ⟩ represent a column vector and ⟨φ| represent a row vector. Then
⟨φ|ψ⟩ and |ψ⟩ ⟨φ| are the standard Hermitian inner and outer product, respectively.
Concretely

⟨φ|ψ⟩ = φ†ψ ∈ C, |ψ⟩ ⟨φ| =


ψ1
...
ψn

(φ1 · · · φn

)
∈ Cn×n.

Miscellaneous

When considering elements of the ring Zq we will sometimes take a representative
element of them in Z. For even q we call {−q/2, . . . , q/2−1} the balanced representation
of Zq in Z, and similarly {−(q − 1)/2, . . . , (q − 1)/2} for odd q.

For n ∈ Z+ we let Sn denote the permutation group on n points.

2.2 Lattices

In this thesis we consider Euclidean lattices, these are discrete additive subgroups of a
Euclidean space. In particular we work with the Euclidean space Rd, see e.g. [Cas97,
Sie89] for a thorough introduction.

Definition 2.2.1 (Euclidean lattices in Rd). A lattice is a discrete additive subgroup
(Λ,+) <

(
Rd,+

)
, that is, it is an additive subgroup and there exists a neighbourhood

U of the identity 0 such that U ∩ Λ = {0}.

We drop the group theoretic notation from this point on. The Euclidean distance
on Rd allows us to consider it as a metric space, and so we may take this neighbourhood
U as some open Euclidean ball with positive radius. An equivalent way [Cas97, III.4]
to define a lattice Λ is as the integer span of a basis.

Definition 2.2.2 (Lattice basis). A set of vectors B ⊂ Rd is a basis for Λ if spanZ (B) =
Λ and B is formed of linearly independent vectors. We say that B generates Λ.

Definition 2.2.3 (Lattice rank and dimension). If B of size n is a basis for Λ ⊂ Rd

we call d the dimension of Λ and n the rank of Λ. If n = d we call the lattice full rank.
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When working with a basis we may write the vectors of B as the column vectors
of some matrix B = (b1 · · ·bn) ∈ Rd×n.1 We make heavy use of matrix notation for
bases, and where clear from context switch between the set B and matrix B at will.
We will use the terminology of Definition 2.2.3 also for B and B.

Definition 2.2.4 (Matrix form). The lattice generated by a set of linearly independent
vectors B = {bi}n

i=1 is

Λ = spanZ (B) =
{

n∑
i=1

vi · bi : vi ∈ Z
}

= {B · v : v ∈ Zn} ,

for B = (b1 · · ·bn) ∈ Rd×n. We may write Λ(B) to define this lattice.

For every lattice Λ = Λ(B) of dimension d and rank greater than one, there are a
countably infinite number of bases that generate Λ. Indeed for any U ∈ GLn(Z), a
unimodular matrix, Λ(B) = Λ(B ·U), and |GLn(Z)| is countably infinite for n ≥ 2.
For example consider the integer matrix Λ = Z2, one possible basis is B = I2, but it
also has the following bases

B ·U = U, where U =
1 i

0 1

 ,
for all i ∈ Z. Each such U ∈ Z2×2 and has det(U) = 1 and one can easily check that
for any v1, v2 ∈ Z

B ·

v1

v2

 = B ·U ·

U−1 ·

v1

v2

 = B ·U ·

v1 − iv2

v2

 ,
so that Λ(B) ⊂ Λ(B ·U), and

B ·U ·

v1

v2

 = B ·

v1 + iv2

v2

 ,
for the reverse inclusion. In general, U being unimodular is equivalent to it being
invertible over the integers, and therefore the maps v 7→ U · v and v 7→ U−1 · v
are bijections of Zn. For any two bases B,C such that Λ(B) = Λ(C) we have
|B| = |C| = n ≤ d. There cannot be more than d vectors in either as they would not
be linearly independent, and if |B| < |C| then one can show the vectors of C are not

1In Chapter 3 we index from 0 to better reflect the implementation.
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linearly independent. Furthermore, there exists a U ∈ GLn(Z) such that C = B ·U.
Indeed we may write ci = xi,1b1 + · · · xi,nbn with xi,j ∈ Z, and hence

C = B ·X, for X[i, j] = xj,i

and similarly we may write bi = yi,1c1 + · · ·+ yi,ncn with yi,j ∈ Z and

B = C ·Y, for Y[i, j] = yj,i.

Therefore we have
C = B ·X = C ·Y ·X,

where Y and X are integer matrices and the columns of C are linearly independent,
as it is a basis. Therefore Y ·X = In and Y = X−1, so X ∈ GLn(Z). Together these
statements say that there are countably many bases for a lattice of rank greater than
one, and that they are all related by unimodular transforms.

When considering a non full rank lattice Λ = Λ(B) with basis B ∈ Rd×n, we may
always instead consider it as a full rank lattice in Rn such that none of its properties
with respect to the Euclidean distance are altered. See [Gal12, Lem. 16.1.5] for the
proof, modulo minor notational differences.

Lemma 2.2.1 (Projection to full rank). Let the non full rank lattice Λ have basis
B ∈ Rd×n. There exists a linear map P : Rd → Rn such that P (Λ) is a full rank
lattice. Furthermore, if S = spanR (B) and x1,x2 are arbitrary elements of S, then
∥P (x1)∥ = ∥x1∥ and ⟨P (x1), P (x2)⟩ = ⟨x1,x2⟩. Finally, for x ∈ Rd \ S, P (x) = 0.

In particular, the above tells us that (Euclidean) lengths are invariant under
the transformation P . If we are considering a measurable set X ⊂ S then its d
dimensional volume will always be 0, that is Ld(X) = 0. Instead we implicitly set
vol(X) = Ln(P (X)). Due to the invariance of lengths and inner products under P
this is the same volume as if one considered the n dimensional volume implied by
S ∼= Rn. Hence, from this point forward, provided we are only considering Euclidean
properties, we may consider full rank lattices. Given the group structure of lattices,
we may consider subgroups. These are called sublattices.

Definition 2.2.5 (Sublattice). Given a lattice Λ, any Λ′ ⊂ Λ which is also a lattice is
called a sublattice of Λ.

If Λ is a rank n lattice then the rank of Λ′ is n′ ∈ [n]0, e.g. Λ = Z2 has sublattices
{0},Z× {0}, and Z2. If B ∈ Rd×n and Λ′ = Λ(B′) is a sublattice of Λ = Λ(B) then
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B′ = B ·T for some full rank T ∈ Zn×n′ with n′ ≤ n. If n = n′ the rank is unchanged.
We also define a primitive sublattice. This is a type of sublattice that we will later
project the full lattice against, and this property ensures the resulting object is a lattice.

Definition 2.2.6 (Primitive sublattice). A sublattice Λ′ of Λ is primitive when any
basis B′ = (b1 · · ·bn′) of Λ′ can be completed into a basis B = (b1 · · ·bn′ bn′+1 · · ·bn)
of Λ.

If B = (b1 · · ·bn) is a basis of Λ, there are some natural candidates for primitive
sublattices.

Definition 2.2.7. Let B = (b1 · · ·bn) ∈ Rd×n be a basis for Λ = Λ(B), then for
i ∈ [n] define Bi = (b1 · · ·bi) and Λi = Λ(Bi).

Indeed, all bases of Λi are of the form Bi · Ui for some Ui ∈ GLi(Z). We may
always complete Bi ·Ui with (bi+1 · · ·bn) since B ·U is a basis of Λ when we take U
to be the element of GLn(Z) formed as

U =
Ui 0

0 In−i

 .
2.2.1 Invariants of a lattice

There are several useful quantities that, while they can be computed with respect
to a particular basis of some lattice Λ, are in fact invariants of Λ. This means they
depend only on Λ and not on the representation of it. The first we will define is
the volume, which gives some notion of density for a lattice; the bigger the volume,
the less dense the lattice. The second is the collection of lattice minima, each is the
length of a shortest non trivial lattice vector not included in the span of the previous
minima. Finding these lengths, and in particular lattice vectors that have them, will
be a fundamental problem considered in this thesis. The final invariant is the Hermite
factor of a lattice. While the volume gives an idea of density, it is simple to alter it
in uninteresting ways via e.g. scaling the lattice. The Hermite factor of a lattice is a
function of the volume and the first minimum (and is therefore trivially an invariant
itself) that is subject to a famous upper bound of Minkowski.

Volume

As a lattice Λ is a subgroup of Rd we can consider the quotient group Rd/Λ of cosets
x + Λ for x ∈ Rd. For any two vectors in such a coset, y, z ∈ x + Λ, we write
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y ≡ z mod Λ, and there exists a w ∈ Λ such that y− z = w. A fundamental domain
for Λ is a subset of Rd containing exactly one element of each such coset.

Definition 2.2.8. A fundamental domain of Λ is some F ⊂ Rd such that for all
x ∈ Rd the coset x + Λ intersects F in a unique point. That is, for all x ∈ Rd, there
exists a unique x′ such that F ∩ (x + Λ) = {x′}.

A consequence of this definition is that for any point x ∈ Rd there exists a unique
pair (x′,wx) ∈ F ×Λ such that x = x′+ wx. That is, for any x ∈ Rd there is a unique
x′ such that x ≡ x′ mod Λ and x′ ∈ F . Note that for any y ∈ Rd the translation
y + F of a fundamental domain F is itself a fundamental domain.

A fundamental parallelotope of a lattice is a region described by some basis.

Definition 2.2.9. Given a basis B of lattice Λ the (closed) fundamental parallelotope
of this basis is

P̄(B) =
{

n∑
i=1

αi · bi : αi ∈ [0, 1]
}
.

It is not quite a fundamental domain since 0 ∈ P̄(B) and b1 ∈ P̄(B), and so setting
x = 0 means x + Λ intersects P̄(B) at least twice. If we associate the opposite facets
of P̄(B) we have a torus, each point of which can be uniquely represented a point in
the open parallelotope.

Definition 2.2.10. Given a basis B of lattice Λ the fundamental parallelotope of this
basis is

P(B) =
{

n∑
i=1

αi · bi : αi ∈ [0, 1)
}
.

If B is full rank, then P(B) is an example of a fundamental domain for Λ.

Remark 2.2.1. If B ∈ Rd×n is not full rank then P(B) fails to be a fundamental
domain for any x ∈ Rd \ spanR (B), since the intersection of P(B) and x + Λ is
empty. Assume we are in this non full rank case. Then we will always implicitly alter
Definition 2.2.8 to quantify only over x ∈ spanR (B). Given this, P(B) is once again a
fundamental domain for Λ. Since the d dimensional volume Ld(P(B)) = 0 we make
use of the convention given below Lemma 2.2.1; we set vol(P(B)) = Ln(P (P(B))).
Finally, for any y ∈ spanR (B) the translation y + P(B) is a fundamental domain for
Λ, but for y ∈ Rd \ spanR (B) it is not.

Let x = α1 · b1 + · · · + αn · bn for αi ∈ R, then the map ϕ : spanR (B) → P(B)
given by

x 7→ (α1 − ⌊α1⌋) · b1 + · · ·+ (αn − ⌊αn⌋) · bn ∈ P(B),
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gives the unique representative of the lattice coset x + Λ in P(B). This map preserves
lattice cosets as only integer multiples of basis vectors are subtracted, and demonstrates
that P(B) is a fundamental domain for Λ. Note that the volumes of P̄(B) and P(B),
and any translates of either, are equal.

If we let y = − (b1 + · · ·+ bd) /2 and consider y+P(B) then we have a fundamental
domain centred around 0.

Definition 2.2.11. Given a basis B of lattice Λ the centred fundamental parallelotope
of this basis is P1/2(B) = y + P(B) for y = − (b1 + · · ·+ bd) /2, or equivalently

P1/2(B) =
{

n∑
i=1

αi · bi : αi ∈ [−1/2, 1/2)
}
.

For any fundamental domain F of Λ = Λ(B) it follows from Definition 2.2.8 that
we can partition spanR (B) with sets w +F for w ∈ Λ. We therefore have the partition

spanR (B) =
⋃

w∈Λ
w + P1/2(B),

which intuitively tells us that the volume of a fundamental domain can be thought
of as the volume that can be given to a single lattice vector; the larger this volume,
the less dense the lattice. We therefore calculate the volume of P(B) and call it the
volume of Λ.

Definition 2.2.12 (Volume). Given a lattice Λ and a basis B ∈ Rd×n that generates
it, the volume of Λ is

vol(Λ) =
√

det(BtB).

Note that in the case of full rank lattices vol(Λ) = |det(B)|.

The volume is an invariant of the lattice, in that, though we define it with respect
to a given basis, it is equal for all bases of Λ. For U ∈ GLn(Z),√

det((B ·U)t(B ·U)) =
√

det(Ut) · det(BtB) · det(U) =
√

det(BtB).

It is also often called the determinant of Λ, given the above definition. If Λ′ ⊂ Λ
is a sublattice such that Λ′ = Λ(B′), Λ = Λ(B), and B′ = B · T then we know
vol(Λ′) =

√
det(Tt ·T) · vol(Λ).
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Lattice minima

The next invariants are the n minima of a rank n lattice. The first minimum of Λ is
defined as λ1(Λ) = min{∥w∥ : w ∈ Λ \ {0}}. The second minimum wants to somehow
encode the length of the ‘next shortest’ vector of Λ, but note that, as in Λ = Zn,
there can be many linearly independent vectors of length λ1(Λ). We also do not want
the second minimum to return the length of some multiple of a vector w such that
∥w∥ = λ1(Λ), e.g. in Λ = Z× 3Z we want λ1(Λ) = 1 from w = (1, 0)t and λ2(Λ) = 3
from w′ = (0, 3)t, and not λ2(Λ) = 2 from 2 · w. We therefore take the following
definition that concerns itself with the next shortest vectors that are not in the span of
vectors that satisfy the previous minima.

Definition 2.2.13 (Minima of Λ). For a rank n lattice Λ ⊂ Rd and i ∈ {1, . . . , n},
the ith minimum is

λi(Λ) = inf
{
r : r ∈ R+, spanR (Bd (r) ∩ Λ) ∼= Rj, for j ≥ i

}
.

So the lattice Λ = Z× Z× 3Z has λ1(Λ) = λ2(Λ) = 1 and λ3(Λ) = 3, as we expect.
We have some immediate bounds on the minima of a Λ given any basis for it. Indeed

λi(Λ) ≤ max{bj : j ≤ i}, for any 1 ≤ i ≤ n, (2.1)

since the maximum is taken over a set of i linearly independent vectors.

Hermite factor

Finally we introduce the Hermite factor of a lattice. While it is true that we may
partition space such that each vector in some Λ is given vol(Λ) volume, we cannot
bound this volume, and we may take any lattice and scale it to give it any positive
volume we desire; vol(α ·Λ) = αn · vol(Λ), for α > 0. We make the following definition,
of the ratio of the first minimum of a lattice and the nth root of its volume, to disallow
such ‘artifical’ manipulations.

Definition 2.2.14 (Hermite Factor). For a lattice Λ of rank n we define its Hermite
factor as

h(Λ) = λ1(Λ)
vol(Λ)1/n

.

While it is clear that this quantity cannot be lower bounded, e.g. Λ = Z × αZ
has h(Λ) = 1/

√
α for α ≥ 1, Minkowski proved [Min96] a famous theorem on convex
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bodies that leads to an upper bound on the Hermite factor. For this we appeal to
Lemma 2.2.1 to consider full rank lattices.

Theorem 2.2.2 (Minkowski’s First). Let Λ ⊂ Rd be a full rank lattice, and let C be a
measurable subset of Rd such that it is convex, symmetric around 0 and has volume
greater than 2d · vol(Λ). Then C contains a non zero vector of Λ.

We note that the requirement to have the volume of C be strictly greater than
2d · vol(Λ) can be relaxed to greater than or equal if C is also compact, see e.g. [Hen02]
and note that elements of the class Kd

0 used therein2 are compact. By taking C = B̄d (r)
such that B̄d (r) has volume 2d · vol(Λ), we have λ1(Λ) ≤ r. Solving for r gives the
following.

Corollary 2.2.3. For any full rank lattice Λ ⊂ Rd we have

λ1(Λ) ≤ 2 · v−1/d
d · vol(Λ)1/d,

and consequently the following upper bound on the Hermite factor of any full rank
Λ ⊂ Rd

h(Λ) ≤ 2 · v−1/d
d ,

where vd = Vd(1).

We note a useful upper bound, 2 ·v−1/d
d <

√
d. Minkowski’s second theorem [Min96]

is a strengthening of his first in that it relates the volume of C to the product of all d
minima, not just the first. To state it we must define a more general notion of minima.

Definition 2.2.15. Let C be a bounded measurable subset of Rd which has non empty
interior, is convex, and is symmetric around 0. We define

λi(C,Λ) = inf
{
r ∈ R+ : spanR (rC ∩ Λ) ∼= Rj, for j ≥ i

}
Setting C = B̄d (1) retrieves Definition 2.2.13, i.e. λi(Λ) = λi(B̄d (1) ,Λ) for all i.

Theorem 2.2.4 (Minkowski’s Second). Let Λ ⊂ Rd be a full rank lattice, and let C be
a measurable subset of Rd such that it is convex, symmetric around 0 and has volume
greater than 2d · vol(Λ). Then λ1(C,Λ) · · ·λd(C,Λ) ≤ 1.

Once again we can appeal to compactness, and therefore to closed balls, to remove
the strictly greater than requirement on the volume of C. An immediate rewrite of the
above in the same manner as for Minkowski’s first theorem gives

2These are convex bodies which are compact by definition, as opposed to general convex sets.
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Corollary 2.2.5. For any full rank lattice Λ ⊂ Rd and 1 ≤ j ≤ d we have

h(Λ) ≤
 j∏

i=1
λi(Λ)

1/j

vol(Λ)−1/d ≤ 2 · v−1/d
d .

We may take j in this range as the products are non decreasing as j increases.
The j = 1 case equals h(Λ) by definition, and Minkowski’s second theorem gives the
maximal j = d case. Indeed, letting C = B̄d (r) such that Vd(r) = 2d · vol(Λ) we
have λ1(C,Λ) · · ·λd(C,Λ) ≤ 1, or equivalently that λ1(Λ) · · ·λd(Λ) ≤ rd. We calculate
rd = 2d · v−1

d · vol(Λ), and the corollary follows.
We also define Hermite’s constant, which is the supremum of h(Λ)2 over lattices Λ

of a given rank.

Definition 2.2.16 (Hermite’s constant). Let Λd be the class of all full rank lattices
Λ ⊂ Rd. The Hermite constant in dimension d is

γd = sup
Λ∈Λd

λ1(Λ)2

vol(Λ)2/d
.

The bound on h(Λ) from Corollary 2.2.3 therefore tells us γd ≤ 4 · v−2/d
d , as it is

independent of Λ. A better bound due to Blichfeldt [Bli29] is

Theorem 2.2.6 (Blichfeldt’s bound on γd). For all d ≥ 1 we have

γd ≤

 2
π

 · Γ(2 + d/2)2/d.

Hermite constants are known exactly only for a few small dimensions, see Ta-
ble 2.1, but there exist tight asymptotic bounds (and less tight non asymptotic
bounds [WCW19]) that show it is linear in d. For example [Ngu10],

d

2πe + log(πd)
2πe + o(1) ≤ γd ≤

1.744d
2πe (1 + o(1)).

Interestingly, it is not known whether (γd)d is increasing.
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dimension 1 2 3 4 5 6 7 8 24

γd 1 2/
√

3 21/3 √
2 81/5 (64/3)1/6 641/7 2 4

Table 2.1 The known exact values of Hermite’s constant. See [Mar03] for d ≤ 8
and [CK04] for d = 24.

2.2.2 Some lattices

Modular lattices

Here we give the construction of two types of lattice that appear frequently in lattice
based cryptography. They are both modular lattices, meaning that elements of them
are periodic with respect to some modulus.

Definition 2.2.17 (Modular lattices). A lattice Λ ⊂ Rd is modular if there exists
some positive integer q such that

qZd ⊆ Λ ⊆ Zd.

Note that this definition requires Λ to be full rank, since it includes qZd. In
particular, Λ ⊂ Zd is an integer lattice and, by letting Q equal all lattice points with
coordinates in {0, . . . , q − 1}, can be represented as Q+ qZd. Equivalently, checking
whether w ∈ Λ is equivalent to checking whether there exists a w′ ∈ Q such that
w ≡ w′ mod q.

The two lattices are constructed from a matrix of the form A ∈ Zn×m
q with n ≤ m,

which we note is not a basis for either lattice. We break the convention used thus far of
n representing the rank in this construction, to better reflect the use of these lattices
in cryptography; the lattices formed will be full rank and have rank and dimension
equal to m. The first lattice is the lattice of the kernel of A,

Λ⊥q (A) = {w ∈ Zm : A ·w ≡ 0 mod q}.

We note that this is indeed a lattice via the group theoretic definition; the group
properties are immediate and the discreteness follows from Λ⊥q (A) ⊂ Zm. It is also
clearly modular and full rank, as it contains qZm. The second lattice is the row span
of A modulo q,

Λq(A) = {w ∈ Zm : w ≡ At · v mod q, v ∈ Zn}.
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This too is a clearly a full rank modular lattice. We can determine the volumes of these
two lattices directly by constructing bases for them. Note that permuting the columns
of A permutes the order of the coordinates of w ∈ Λ⊥q (A) or w ∈ Λq(A). This is not
the same as permuting the columns of some basis. A basis of Z× 2Z is B = (e1 2e2),
if we swap the columns to form basis B′ we still have Λ(B′) = Z× 2Z and not 2Z× Z.
We can however remember the permutation of the columns of A and apply its inverse
to the coordinates of w to retrieve our original lattice. We therefore find a basis for any
column permutation of A. We first set A = (A1|A2) with A1 ∈ Zn×n

q an element of
GLn(Zq), and A2 ∈ Zn×(m−n)

q . What is the probability we can form such an invertible
A1? Using [Han06, Cor. 2.9], if q = pe1

1 . . . pes
s is the prime factorisation of q, we know

the proportion of invertible matrices is given by

|GLn(Zq)|
|Mn(Zq)|

=
s∏

i=1

n−1∏
j=0

(
1− pj−n

i

) .
Each bracketed product concerning pi is bounded below by the q-Pochhammer symbol
(1/pi; 1/pi)∞ [Koe14, p. 27] which in our case represents the limit as n → ∞. For
each α ∈ (0, 1/2] we have that (α;α)∞ > 1/4, and so the total product is greater
than 4−s, and in reality is larger as (α;α)∞ tends towards 1 as α→ 0. If we sample
A← U(Zn×m

q ) we have ⌊m/n⌋ independent uniform choices for A1, each of which has
probability greater than 4−s of being invertible. There are in fact

(
m
n

)
possibilities for

A1, though they are not independent and some may repeat. We note that q is often a
prime power or a small polynomial in n in lattice based cryptography, so s ∈ O(log n)
in the worst case, and often s = 1. Certainly therefore m ∈ poly(n) is sufficient to
ensure we can form an invertible A1 and in the case where q is prime one can take
m = 2n to guarantee A1 is full rank with overwhelming probability [Mic11, Sec. 3.1].

Let us therefore assume we have an invertible A1. We may now form the following
two bases in Zm×m

B⊥A =
qIn −A−1

1 ·A2

0 Im−n

 , BA =
 In 0(

A−1
1 ·A2

)t
qIm−n

 (2.2)

and check that they are such that Λ⊥q (A) = Λ(B⊥A) and Λq(A) = Λ(BA). To make BA

and B⊥A integer bases we are implicitly choosing representatives in Z for the entries
of A−1

1 ·A2, e.g. the balanced representation. This choice is unimportant in theory,
but the balanced representation minimises the size of the entries of these bases. We
therefore have, when there exists a permutation of columns such that A1 is invertible,
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that vol(Λ⊥q (A)) = qn, vol(Λq(A)) = qm−n. In general we have vol(Λ⊥q (A)) ≤ qn and
vol(Λq(A)) ≥ qm−n. In particular for q prime, where the notion of rank is well defined,
if A has rank 0 ≤ i ≤ n over Zq then vol(Λ⊥q (A)) = qi and vol(Λq(A)) = qm−i.

In what follows we focus on B⊥A that have maximal volume, though similar state-
ments are true for BA with minimal volume. If we sample a basis of the form

B⊥R =
qIn R

0 Im−n

 ,
by taking R ← X, for X a random variable over Zn×(m−n)

q , and form Λ(B⊥R) then we
obtain a sample from some random variable over the set

S = {Λ⊥q (A) : vol(Λ⊥q (A)) = qn}.

One way to sample from S is to set X = U(Zn×(m−n)
q ) and return Λ(B⊥R), another

is to sample A ← U(Zn×m
q ), reject it if Λ⊥q (A) does not have maximal volume, and

otherwise return Λ⊥q (A).
Finally we note that in the case of BA we often prefer, e.g. in Section 2.4.3, to

consider the basis which has had its columns and rows permuted such that

B′A =
qIm−n

(
A−1

1 ·A2
)t

0 In

 .
Permuting the columns of a basis does not alter the lattice generated, and permuting
the rows permutes the coordinates of lattice vectors, as before. This means that solving
a lattice problem over Λ(B′A) generally immediately solves it over Λ(BA). We add this
small complication because the basis profile (see Definition 2.4.8) of B′A seems to be
more useful in practice.

Random lattices

In Definition 2.2.18 we give a construction of lattice bases that generate random lattices
for the definition of random given below. They are referred to as Goldstein–Mayer
lattices, after [GM03] which introduced them. The accuracy of various heuristics can
be formally stated for lattices generated in this way.

Let Λd denote the class of all full rank lattices Λ ⊂ Rd. We consider the relation ∼
on lattices (as sets) such that Λ ∼ Λ′ when there exists an α ∈ R× such that Λ = α ·Λ′,
i.e. we forget about scale. Let G = SLd(R) and H = SLd(Z), then the quotient Λd/ ∼
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can be represented as G/H, which we call Ωd. Considering G as a surface in Rd2 then
G is a (locally compact) topological group and there is a unique up to scale Haar
measure µH such that (G,B(G)) is a measure space with measure µH . Note that Ωd

has open sets defined by the quotient topology. The Haar measure µH projects to a
finite measure on Ωd, which we normalise and call µ so that µ(Ωd) = 1. Let F ⊂ 2Ωd

be the set of measurable sets under µ, then we have the probability space (Ωd, F, µ).
Finally, let Ln ⊂ Λd be the set of all full rank integer lattices Λ ⊂ Zd with volume

n. This set is finite.

Theorem 2.2.7 ([GM03, Thm. 2.1]). Let A ∈ F such that its boundary has µ(∂A) = 0
and let XA : Ωd → {0, 1} denote the indicator random variable for A, so XA(Λ) = 1 if
and only if Λ ∈ A, then

lim
n→∞

 1
|Ln|

·
∑

Λ∈Ln

XA(Λ)
 = µ(A).

A point Λ is in the boundary ∂A if for all open sets O containing Λ we have
µ(A ∩O) > 0 and µ((Ωd \ A) ∩O) > 0. The above theorem should be interpreted as
allowing us to estimate the probability measure of A by taking a particular weighted
average over the finite set of full rank integer lattices with a given volume. Compare
this with a more visual example – consider the unit square S = [0, 1]× [0, 1] ⊂ R2 and
the two dimensional Lebesgue measure L2. Since L2(S) = 1 we have that (S,B(S), L2)
is a probability space. Imagine we have some process that selects a point p of S. If
this process has the property that, for any measurable set A ∈ B(S), the probability
that p ∈ A equals L2(A), then we might call this process ‘uniform sampling’. In our
lattice case we have a sequence of processes (Mn)n, realised by sampling Λ← U(Ln),
such that for any measurable A with µ(∂A) = 0 the probability that Mn outputs some
Λ ∈ A tends to µ(A) as n→∞. Hence to sample a ‘random’ lattice, we should pick a
large n and sample Λ← U(Ln).

If n is prime and each xi ∈ [n− 1]0 then Ln consists of lattices generated by the
following (nd − 1)/(n− 1) bases


n

1
. . .

1

 ,


1
x1 n

. . .
1

 , . . . ,


1
. . .

1
x1 · · · xd−1 n

 .
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Of these the rightmost basis type represents nd−1 lattices, and a (nd − nd−1)/(nd − 1)
fraction of them all, which tends to 1 as n→∞.

Definition 2.2.18 (Random lattice). For a large prime p we call a random lattice one
with a basis sampled uniformly from the set


1

. . .
1

x1 · · · xd−1 p

 : x1, . . . , xd−1 ← U([p− 1]0) are i.i.d.


.

2.2.3 Orthogonal projections and Gram–Schmidt bases

Orthogonality, and how far from it a given lattice basis is, is an important idea
in lattice based cryptography. One of the main tools we use is the Gram–Schmidt
orthogonalisaton process. First we give definitions of orthogonality and orthogonal
projections.

Definition 2.2.19 (Orthogonality). Vectors x,y ∈ Rd are said to be orthogonal if
⟨x,y⟩ = 0.

Definition 2.2.20 (Orthogonal Projection). For vector x and some non empty set
of vectors S ⊆ Rd, the orthogonal projection of x against spanR (S) is the unique
vector y ∈ Rd such that y = x − v for some v ∈ spanR (S) and ⟨y,w⟩ = 0 for all
w ∈ spanR (S).

We write π⊥S : Rd → Rd for the orthogonal projection against the set spanR (S). If
T ⊂ Rd is a set, we define π⊥S (T ) = {π⊥S (t) : t ∈ T}. In cases where we wish to project
against a singleton {w}, or against a basis B, we abuse notation and write π⊥w and
π⊥B for these projections, rather than π⊥{w} and π⊥{bi}i

. We assert the convention that
projecting against the empty set results in the identity; π⊥∅ = idRd . Given two vectors
x,y ∈ Rd one can form the orthogonal projection of y with respect to x by subtraction

π⊥x (y) = y−
⟨x,y⟩
⟨x,x⟩

· x.

One then has 〈
x, π⊥x (y)

〉
= ⟨x,y⟩ −

⟨x,y⟩
⟨x,x⟩

· ⟨x,x⟩ = 0,

and hence x and y are orthogonal.
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A basis of some spanR (S) ⊂ Rd is any linearly independent set of vectors B ⊂ Rd

such that spanR (B) = spanR (S). To project x against spanR (S) one can use an
orthogonal basis (in which all basis vectors are pairwise orthogonal) for this span.
Indeed, suppose B∗ = (b∗1 · · ·b∗n) ∈ Rd×n is such a basis, then for i ̸= j we have

〈
b∗i ,

(
π⊥b∗

j
◦ π⊥b∗

i

)
(x)

〉
= 0,

since
〈
b∗i ,b∗j

〉
= 0, and so one may just perform each orthogonal projection π⊥b∗

i
in

turn. That is, (
π⊥b∗

n
◦ · · · ◦ π⊥b∗

1

)
(x) = π⊥S (x).

We may assume we have a basis B for spanR (S) which is not necessarily orthogonal.
This is where the Gram–Schmidt orthogonalisation process comes in, it produces an
orthogonal basis B∗ = (b∗1 · · ·b∗n) such that spanR (B) = spanR (B∗). The basis B∗ is
called the Gram–Schmidt basis of B.

Definition 2.2.21 (Gram–Schmidt Orthogonalisation). Given basis B ∈ Rd×n form
b∗i as

b∗i = bi −
∑
j<i

µi,j · b∗j , with Gram–Schmidt coefficients µi,j =

〈
bi,b∗j

〉
〈
b∗j ,b∗j

〉.
Note that since computing b∗i requires all b∗j with j < i, this process is sensitive to the
order of basis vectors in B.

In the case of a lattice Λ with basis B only the first basis vector of the Gram–
Schmidt basis B∗ will necessarily be a lattice vector, due to the empty sum in the
definition above. The main use of the Gram–Schmidt basis in our context is its use in
lattice algorithms (see Section 2.3 and Section 2.4) and that it is formed of orthogonal
vectors; the distance of a lattice basis from its associated Gram–Schmidt basis can tell
us something about its quality, a notion to be defined later.
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The relationship between B and B∗ can be described in several ways,

B =

b∗1 · · · b∗n

 ·


1 µ2,1 · · · µn,1

0 1 · · · µn,2
... . . . . . . ...
0 · · · 0 1

 = B∗ ·M (2.3)

=

b◦1 · · · b◦n

 ·

∥b∗1∥ 0 · · · 0

0 ∥b∗2∥
...

... . . . ...
0 · · · 0 ∥b∗n∥

 ·


1 µ2,1 · · · µn,1

0 1 · · · µn,2
... . . . . . . ...
0 · · · 0 1

 (2.4)

=

b◦1 · · · b◦n

 ·

⟨b1,b◦1⟩ ⟨b2,b◦1⟩ · · · ⟨bn,b◦1⟩

0 ⟨b2,b◦2⟩ · · · ⟨bn,b◦2⟩
... . . . . . . ...
0 · · · 0 ⟨bn,b◦n⟩

 = B◦ ·R, (2.5)

with b◦i = b∗i / ∥b∗i ∥ being orthonormal vectors that form an orthonormal basis denoted
by B◦. For the diagonal entries of (2.5) we use

⟨bi,b◦i ⟩ =
∑
j<i

〈
µi,jb∗j ,b◦i

〉
+ ⟨b∗i ,b◦i ⟩ = ∥b∗i ∥ , and for j < i

〈
bi,b◦j

〉
=

〈
bi,b∗j

〉
∥∥∥b∗j∥∥∥

= 1∥∥∥b∗j∥∥∥ ·
〈b∗i ,b∗j〉+

〈
µi,jb∗j ,b∗j

〉
+

∑
k<i,k ̸=j

〈
µi,kb∗k,b∗j

〉
= µi,j

∥∥∥b∗j∥∥∥ .
It will often be useful to project vectors against the span of some number of the

first basis vectors of a basis B.

Definition 2.2.22 (Projection against B). For basis B we define πB,ℓ, 1 ≤ ℓ ≤ n+ 1,
as the orthogonal projection π⊥S for S = {b1, . . . ,bℓ−1}. If B is clear from context we
write πℓ.

Note that we are neglecting the ⊥ in this particular orthogonal projection notation,
and that πB,1 = π1 = idRd for all B. If B is full rank then the projection πn+1 is always
the function x 7→ 0, but this is not the case if n < d. Using (2.5) above and given a
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vector w ∈ spanR (B), i.e. w = B · v for some v ∈ Rn, we have

w = B◦ ·R · v =
n∑

j=1

vj

n∑
i=j

〈
bi,b◦j

〉 · b◦j ,
and so

πℓ(w) = πℓ

 n∑
j=1

vj

n∑
i=j

〈
bi,b◦j

〉 · b◦j
 =

n∑
j=ℓ

vj

n∑
i=j

〈
bi,b◦j

〉 · b◦j (2.6)

=

b◦ℓ · · · b◦n

 ·

⟨bℓ,b◦ℓ⟩ ⟨bℓ+1,b◦ℓ⟩ · · · ⟨bn,b◦ℓ⟩

0
〈
bℓ+1,b◦ℓ+1

〉
· · ·

〈
bn,b◦ℓ+1

〉
... . . . . . . ...
0 · · · 0 ⟨bn,b◦n⟩

 ·

vℓ

...
vn

 . (2.7)

Therefore one simply drops the first ℓ − 1 columns of B◦, takes the appropriate
bottomright minor of R and drops the topmost ℓ − 1 entries of v. One can do
the same for general w ∈ Rd by first splitting w as w = wB + w⊥, its component
in spanR (B) and its component orthogonal to it, respectively, and then returning
πℓ(wB + w⊥) = πℓ(wB) + w⊥.

The Gram–Schmidt vectors also allow us to compute or bound some of the lattice
invariants from Section 2.2.1. For example, using (2.3) we have

det(BtB) = det((B∗ ·M)t(B∗ ·M))
= det(Mt) · det((B∗)t) · det(B∗) · det(M) = det((B∗)tB∗),

so we have

vol(Λ) =
√

det(BtB) =
√

det((B∗)tB∗) =
n∏

i=1
∥b∗i ∥. (2.8)

We also get lower bounds on the first lattice minimum from the lengths of the Gram–
Schmidt vectors

λ1(Λ) ≥ min
{∥∥∥b∗j∥∥∥ : j ≥ 1

}
. (2.9)
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Indeed, let w = B · v = B∗ ·M · v such that ∥w∥ = λ1(Λ). Also let k be the maximal
index such that vk ̸= 0, which must exist since w ̸= 0. Then |vk| ≥ 1 is an integer and

∥w∥ =
∥∥∥∥∥vkb∗k +

k−1∑
l=1

αlb∗l

∥∥∥∥∥ ≥ vk ∥b∗k∥ ≥ min
{∥∥∥b∗j∥∥∥ : j ≥ 1

}
,

for some αl ∈ R. We now have, by also appealing to Corollary 2.2.3, that

min
{∥∥∥b∗j∥∥∥ : j ≥ 1

}
≤ λ1(Λ) ≤ 2 · v−1/n

n · vol(Λ)1/n.

We also introduce projected sublattices, which are objects important during lattice
reduction procedures, see Section 2.4.

Definition 2.2.23 (Projected sublattices). Let Λ = Λ(B) ⊂ Rd be a rank n lattice
and 1 ≤ ℓ < r ≤ n+ 1. Define B[ℓ : r] = (πℓ(bℓ) · · · πℓ(br−1)) as the projected subbasis,
and Λ[ℓ : r] = Λ(B[ℓ : r]) as the projected sublattice. If r = n+ 1 then we denote B[ℓ:r]

by B[ℓ] and Λ[ℓ:r] by Λ[ℓ].

Note that this definition is dependent on the basis used to define Λ, and also the
order of its basis vectors. Recall Definition 2.2.7, then this intuitively makes sense,
since in practice the projection πℓ can be realised by forming a Gram–Schmidt basis for
Bℓ−1. In fact, Λ[ℓ : r] is exactly {πℓ(w) : w ∈ Λ(Br−1)}, or equivalently the projection of
Λ(Br−1) against the real span of Λ(Bℓ−1). We can be certain Λ[ℓ : r] is a lattice because
Λ(Bℓ−1) is a primitive sublattice of Λ(Br−1).

Lemma 2.2.8. Let Λ′ be a rank ℓ− 1 primitive sublattice of the rank n lattice Λ, and
Λ′ = Λ(B′) for B′ ∈ Rd×(ℓ−1). The set π⊥B′(Λ) is a rank n− ℓ+ 1 lattice.

Proof. Call B′ = (b1 · · ·bℓ−1). As Λ′ is a primitive sublattice there exists a basis of Λ
given by B = (b1 · · ·bℓ−1 bℓ · · ·bn). The projection operator π⊥B′ is then equivalent to
πB,ℓ which we shorten to πℓ. It is enough to show that πℓ(bℓ), . . . , πℓ(bn) are n− ℓ+ 1
linearly independent vectors. We have

n∑
i=ℓ

αi · πℓ(bi) = 0⇔ πℓ

(
n∑

i=ℓ

αi · bi

)
= 0

⇔
n∑

i=ℓ

αi · bi ∈ spanR ({b1, . . . ,bℓ−1}) .

Since spanR ({b1, . . . ,bℓ−1}) and spanR ({bℓ, . . . ,bn}) intersect only at 0 we have

n∑
i=ℓ

αi · bi = 0.
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Since bℓ, . . . ,bn are linearly independent as vectors of B we have αi = 0 for all i.

To calculate vol
(
Λ[ℓ : r]

)
we note that B∗[ℓ : r] = (b∗ℓ · · ·b∗r−1) and so

vol
(
Λ[ℓ : r]

)
=

r−1∏
i=ℓ

∥b∗i ∥.

Finally we note that the Gram–Schmidt basis can be used to give a fundamental
domain for a lattice.

Lemma 2.2.9. Let B ∈ Rd×n be a basis for the lattice Λ = Λ(B), then P(B∗) is a
fundamental domain for Λ.

Proof. We show a bijection between P(B) and P(B∗) that preserves cosets of Λ.
Let w = B · v ∈ P(B) with v ∈ [0, 1)n. Recall the relation of (2.3). We want to
subtract integer multiples of the basis vectors, some x = (x1 · · ·xn)t ∈ Zn, such that
w−B · x = B · (v− x) = B∗ ·M · (v− x) has M · (v− x) ∈ [0, 1)n. Let v̄ = M · v,
then

v̄i = vi +
n∑

j=i+1
µj,ivj.

Note that v̄n = vn ∈ [0, 1) already by assumption, and that replacing vi with vi − xi

does not alter v̄j for j > i. This suggests an iterative approach; always let xn = 0 since
v̄n ∈ [0, 1), then let xn−1 = ⌊v̄n−1⌋ and update vn−1 ← vn−1 − xn−1, then recalculate
v̄j for j ∈ {1, . . . , n − 2}. Continue until updating v1 ← v1 − x1, for x1 = ⌊v̄1⌋. We
ultimately arrive at a point in P(B∗) since if we consider the step vi ← vi − xi, with
xi constructed as above, then the ith entry of M · (v− xiei) is

vi +
n∑

j=i+1
µj,ivj −

vi +
n∑

j=i+1
µj,ivj

 = v̄i − ⌊v̄i⌋ ∈ [0, 1).

Further steps do not alter this entry. This procedure gives us a map ϕ : P(B)→ P(B∗)
that preserves lattice cosets, as only lattice vectors are subtracted. If y1,y2 ∈ P(B)
and ϕ(y1) = ϕ(y2) = z ∈ P(B∗) then y1 ≡ z mod Λ and y2 ≡ z mod Λ, so the two
elements of P(B) differ by a lattice vector; y1 ≡ y2 mod Λ. In a fundamental domain
this can only happen if y1 = y2, hence ϕ is injective. To prove surjectivity we show
that a vector not in the image of ϕ cannot be in P(B∗). This is equivalent to the
statement all vectors of P(B∗) are in Imϕ, therefore ϕ is surjective. We know ϕ is an
injective map and is therefore bijective to Imϕ, and that it also preserves lattice cosets.
Therefore, since P(B) is a fundamental domain, every lattice coset has a representative
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in Imϕ. For any y2 ̸∈ Imϕ we must therefore be able to pick a y1 ∈ Imϕ such that
y1 ≡ y2 mod Λ. Let z = B · v be the element of P(B) such that ϕ(z) = y1. We
therefore know y1 = B · (v − x) for some x ∈ Zn by the above procedure, and that
y2 = B · (v − x′) for some x′ ∈ Zn distinct from x. Let k be the maximal index for
which xk ̸= x′k, then the kth entries of M · (v− x) and M · (v− x′) are

(vk − xk) +
n∑

j=k+1
µj,k(vj − xj) and (vk − x′k) +

n∑
j=k+1

µj,k(vj − x′j)

respectively. Since k was chosen maximally the above two summations over j do
not differ, that is xj = x′j for j > k. The left expression is in the range [0, 1) by
construction, and the right expression differs by xk − x′k ∈ Z \ {0}. Therefore the kth

entry of M · (v− x′) is not in [0, 1) and y2 ̸∈ P(B∗).

2.2.4 The Gaussian heuristic

Here we introduce a useful heuristic that estimates the number of lattice points in
a given measurable body, alongside some comparison with provable statements, and
conditions upon which it relies to be accurate. The heuristic is called the Gaussian
heuristic, and the intuition is that if each vector w ∈ Λ occupies vol(Λ) volume, say in
the centre of some P1/2(B), then the number of lattice vectors in some measurable set
C can be approximated by the number of P1/2(B) that can fit within. As we want a
heuristic that is agnostic both to the exact geometry of C and the choice of basis B,
this latter choice because the number of lattice vectors in C is agnostic to the choice of
B, we appeal solely to the volumes of these objects. We are assuming full rank lattices
by Lemma 2.2.1. In particular, if Λ ⊂ Rd has rank n and C ⊂ Rd, we apply P to
obtain a full rank Λ′ ⊂ Rn and consider C ′ = P (C).

Definition 2.2.24 (Gaussian heuristic on a set C). Given a measurable set C ∈ Rd

the Gaussian heuristic estimates the number of lattice vectors in this set as

gh(C) = vol(C)
vol(Λ) .

First we note that this heuristic can be arbitrarily violated by convex sets. Given
Λ = Z2 the set C = (0, 1)× (0, i) ⊂ R2 for i > 0 is convex and has volume i, and yet
never contains a vector of Λ. However, this example is purposefully unhelpful. One
can imagine symmetric, convex sets centred on the origin, like open balls. These are
used to give an estimate for λ1(Λ) by solving for the r that gives Vd(r) = vol(Λ), as in
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this instance gh(Bd (r)) = 1.

vol(Bd (r)) = vol(Λ) ⇐⇒ πd/2 · Γ(1 + d/2)−1 · rd = vol(Λ) (2.10)

⇐⇒ r =
Γ(1 + d/2)1/d

√
π

· vol(Λ)1/d (2.11)

⇐⇒ r = v
−1/d
d · vol(Λ)1/d (2.12)

Definition 2.2.25 (Gaussian heuristic for Λ). Given a lattice Λ the Gaussian heuristic
estimates the first minimum λ1(Λ) as

gh(Λ) = v
−1/d
d · vol(Λ)1/d ≈

√
d/2πe · (πd)1/2d · vol(Λ)1/d ≈

√
d/2πe · vol(Λ)1/d.

We reuse the gh(·) notation, but Λ has measure 0 and therefore will not be used
as C in the gh(C) case. The first approximate equality comes the from the classical
approximation to Γ(z) due to Stirling. If we let r = gh(Λ) and take C = Bd (α · r),
then gh(C) = αd · gh(Bd (r)) = αd, so as the radius increases beyond gh(Λ) we expect
exponentially many lattice vectors in the dimension.

As a first comparison, note that Corollary 2.2.3 gives λ1(Λ) ≤ 2 · v−1/d
d · vol(Λ)1/d,

which is only twice as large as the Gaussian heuristic estimate. This style of estimate
can be significantly improved upon using Theorem 2.2.6.

Lemma 2.2.10. For a full rank Λ ⊂ Rd we have

λ1(Λ) ≤
√

2 · (1 + d/2)1/d · v−1/d
d · vol(Λ)1/d =

√
2 · (1 + d/2)1/d · gh(Λ).

The factor
√

2 · (1 + d/2)1/d improves upon 2 for d ≥ 3.

Proof. By using the identity Γ(n+ 1/2) = (2n)!
4nn!
√
π for n ∈ N we find

Γ(2 + d/2)
Γ(1 + d/2)

1/d

= (1 + d/2)1/d.

By definition λ1(Λ) ≤ √γd · vol(Λ)1/d, and from Theorem 2.2.6 √γd · vol(Λ)1/d ≤√
2 · Γ(2 + d/2)1/d · vol(Λ)1/d/

√
π. Together we have

λ1(Λ) ≤
√

2 ·
Γ(2 + d/2)

Γ(1 + d/2)

1/d

· Γ(1 + d/2)1/d · vol(Λ)1/d/
√
π

=
√

2 · (1 + d/2)1/d · gh(Λ).
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As a second comparison, for a random lattice of Definition 2.2.18 it is proven [Che13,
Thm. 2.1.12] that as d→∞

E [λ1(Λ)] = (1− γ/d) · (2 · vol(Λ)/vd)1/d,

which differs from the Gaussian heuristic estimate by a factor of (1− γ/d) · 21/d. This
factor is essentially 1 even for small d. Here γ ≈ 0.577 is the Euler–Mascheroni constant.
We also recall the experimental evidence of [Che13, Fig. 3.3].

For the modular lattices introduced in Section 2.2.2, if q is prime and a full rank
A ∈ Zn×m

q is sampled uniformly then the first minima of Λ⊥q (A) and Λq(A) are no
more than a constant factor smaller than the upper bound given by Corollary 2.2.3
with overwhelming probability in m [Mic11, Sec. 3.1]. This is equivalent to saying that
they differ by no more than a constant factor from the estimate the Gaussian heuristic
gives.

2.2.5 Computational problems on lattices

Given a description of a lattice, one can ask many questions. What are the lengths
of the minima, or more concretely, can lattice vectors of, or close to, these lengths,
be found? How about if given a point in the ambient space Rd, can the closest, or
an unusually close, lattice vector be found? Computational problems relevant to this
thesis are given below, in all cases we will assume we have an arbitrary basis for the
lattice, and that the lattice is full rank. We note that, while not necessary for this
work, when making formal complexity theory statements, any approximation factors
are functions of d.

Definition 2.2.26 (Shortest vector problem, SVP). Given a lattice Λ ⊂ Rd return
w ∈ Λ with ∥w∥ = λ1(Λ).

Definition 2.2.27 (Approximate shortest vector problem, α-SVP). Given a lattice
Λ ⊂ Rd and a factor α ∈ [1,∞) return w ∈ Λ \ {0} with ∥w∥ ≤ α · λ1(Λ).

Definition 2.2.28 (Hermite shortest vector problem, α-HSVP). Given a lattice Λ ⊂ Rd

and a factor α ∈ [1,∞) return w ∈ Λ \ {0} with ∥w∥ ≤ α · vol(Λ)1/d.

Definition 2.2.29 (Unique shortest vector problem, α-uSVP). Given a lattice Λ ⊂ Rd

and a factor α ∈ [1,∞) such that λ2(Λ) > α · λ1(Λ), return w ∈ Λ with ∥w∥ = λ1(Λ).
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Clearly setting α = 1 makes α-SVP and SVP equivalent problems. Often SVP is
referred to as exact SVP. We have α · λ1(Λ) ≤ α · √γd · vol(Λ)1/d by definition, so
solving α-SVP solves (α · √γd)-HSVP. More concretely, from Corollary 2.2.3 and the
discussion below, one also has the relationship

α · λ1(Λ) ≤ 2α · v−1/d
d · vol(Λ)1/d < α

√
d · vol(Λ)1/d

so that solving α-SVP solves α
√
d-HSVP. More interestingly [Lov86, p. 25] an oracle

solving α-HSVP solves α2-SVP, if called linearly many times.
In a sense α-HSVP is the most practical problem, in that the validity of a solution

can be checked for any lattice using only a basis. We know from Lemma 2.2.10 that
a solution to α-HSVP must exist for α(d) =

√
2 · (1 + d/2)1/d · v−1/d

d , but for random
lattices as d→∞ we expect α(d) = (1 + ε) · v−1/d

d to be sufficient, as this asks for a
lattice vector w such that ∥w∥ ≤ (1+ε)·gh(Λ). The Darmstadt SVP Challenges [GS10]
ask for an α-HSVP solution on a random lattice with α(d) = (1 + 0.05) · v−1/d

d .
The uSVP problem is slightly different from the others which also have some factor

α. It always asks for an exact solution, but instead as α grows the first minimum
becomes more and more short compared to the second minimum. This gap can be
exploited, indeed if it is exponential then there exist polynomial time algorithms that
will find an exact SVP solution, see Section 2.4.1 on LLL. More generally solving
α-SVP automatically solves α-uSVP, and so an oracle solving α-HSVP called linearly
many times solves α2-uSVP.

We know that α-SVP is NP hard under randomised reductions for slightly sublinear
factors α(d) = d1/ log log d [HR07] and that it can be solved in polynomial time for
the slightly subexponential factor α(d) = 2n log log d/ log d by realising the SVP oracle
of [Sch87] with a lattice sieve (see Section 2.5). Cryptography is built on approximation
factors between these two extremes, in the polynomial approximation world. For an
introduction to complexity theory results in this realm see [Reg10].

The computational problems introduced thus far regard vectors in the lattice.
If instead we are given a vector in the ambient space, subject perhaps to various
conditions, we can ask for lattice vectors close to it. These are the closest vector type
problems.

Definition 2.2.30 (Closest vector problem, CVP). Given a lattice Λ ⊂ Rd and a
target t ∈ Rd, return w ∈ Λ such that ∥w− t∥ = min{∥v− t∥ : v ∈ Λ}.
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Definition 2.2.31 (Approximate closest vector problem, α-CVP). Given a lattice
Λ ⊂ Rd, a factor α ∈ [1,∞), and a target t ∈ Rd, return w ∈ Λ such that ∥w− t∥ ≤
α ·min{∥v− t∥ : v ∈ Λ}.

Definition 2.2.32 (Bounded distance decoding, γ-BDD). Given a lattice Λ ⊂ Rd, a
factor γ ∈ (0,∞), and a target t such that min{∥v− t∥ : v ∈ Λ} < γ · λ1(Λ), return
w ∈ Λ such that ∥w− t∥ = min{∥v− t∥ : v ∈ Λ}.

Again approximate CVP with α = 1 is CVP, which is often called exact CVP. Note
that γ-BDD is unusual in that it is the only problem that gets harder as γ grows – one
must always return a closest lattice vector to t, but the promised closeness of t to the
lattice decreases as γ increases. If γ ≤ 1/2 then there is a unique vector w in the ball
of radius γ · λ1(Λ) around t, and this is the γ-BDD solution. Once γ · λ1(Λ) is above
the covering radius of the lattice, that is, the maximum distance a point of Rd can be
from a lattice point, γ-BDD is equivalent to CVP.

We note that α-CVP is not easier than α-SVP [GMSS99] and so certainly the
hardness results for α-SVP are applicable to α-CVP. However, in the CVP case the
reductions are deterministic. There is also a close relationship between the uSVP and
BDD problems [LM09, BSW16].

Finally we introduce the learning with errors, or LWE, problem [Reg05, Reg09b],
and two further related lattice problems. The first, GapSVP, is the decision variant of
approximate SVP, and the second, SIVP, asks for a set of linearly independent lattice
vectors with lengths below a certain bound.

Definition 2.2.33 (Gap shortest vector problem, GapSVPα). Given a lattice Λ ⊂ Rd,
some r ∈ R+, and an approximation factor α output YES if λ1(Λ) ≤ r and NO if
λ1(Λ) > α(d) · r. If λ1(Λ) ∈ (r, α(d) · r] then any output is correct.

Definition 2.2.34 (Shortest independent vectors problem, SIVPα). Given a lattice
Λ ⊂ Rd and some approximation factor α output d linearly independent vectors
w1, . . . ,wd ∈ Λ such that ∥wi∥ ≤ α(d) · λd(Λ) for all i.

Definition 2.2.35 (Learning with errors, LWE (search)). Let n ≥ 1 be an integer
representing the secret dimension, and q = q(n) ≥ 2 an integer denoting the modulus.
Let s ∈ Zn

q be the secret. Let χ be a discrete random variable that gives pmf
fχ : Z → [0, 1]. Let As,χ describe the distribution on Zn

q × Zq formed by sampling
a← U(Zn

q ), e← χ and then returning the pair (a, ⟨a, s⟩+ e mod q). Given the ability
to sample from As,χ, return s.
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Intuitively this problem says ‘find a secret vector when given many noisy inner
products of it with other known vectors’. If χ taken mod q is either the uniform
distribution or the zero error distribution, then the problem is either information
theoretically hard or trivial, respectively. It is for errors between these extremes where
the problem is interesting. There is also a decision variant of this problem thats asks
one to distinguish samples from As,χ and U(Zn

q ×Zq). These problems are polynomially
equivalent for prime q [Reg09b, Sec. 4], and also when q is the product of distinct small
primes [Pei09, Sec. 3.2] or a prime power [ACPS09, Lem. 1], subject to some extra
restrictions on χ. Further reductions between the search and decision variant that allow
the width of the error to grow slightly in the decision case are found in [MP12, BLP+13].
We note that though in the definition s is arbitrary, for prime power q one may instead
sample s← χn without altering the hardness of the problem [ACPS09, MR09].

The relationship between LWE and lattices may not be immediately obvious, but
stems from worst case to average case hardness results, and how one may reinterpret
the LWE problem as a lattice problem. The LWE problem enjoys worst to average
case quantum reductions from a number of lattice problems conjectured to be post
quantum [Reg05, Reg09b], i.e. resistant to quantum polynomial time attacks. In
particular, although we do not provide details here, a machine solving a properly
parametrised average case instance of LWE implies a quantum machine that can
solve worst case instances of the SIVP and GapSVP problems to small polynomial
approximation factors. A classical reduction was first given in [Pei09], i.e. one in
which a machine solving average case instances of LWE implies a classical machine
that can solve an approximate worst case lattice problem. The downsides of this
classical reduction are that the correct parametrisations of the LWE problem require
an exponential modulus q, see the final row of [Pei09, Fig. 1], and it is based only on
the GapSVP problem. However, this was partially remedied in [BLP+13] where the
same style of classical reduction was proven for polynomial q.

We reinterpret LWE as a lattice problem by numbering m samples from As,χ as
(ai, ⟨ai, s⟩+ ei mod q)i≤m and letting A ∈ Zn×m

q be the matrix with ai as its ith column.
By considering the lattice Λq(A) we may view solving LWE as an instance of the γ-BDD
problem. Indeed, by considering A and s over Z via the balanced representatives we
have that At · s + q · x is a point of this lattice for any x ∈ Zm, and we may define
the target t as At · s + e where e is the concatenation of e1, . . . , em. Both the lattice
Λq(A) and the target t can be constructed from the LWE samples from As,χ. If too
few samples are chosen (m is too small), or the errors are too large, then At · s may
not be the closest lattice point to t. However, it is typically the case in cryptography
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that χ is such that by taking a sufficiently large m not only is At · s a solution to the
γ-BDD problem given target t as constructed above, but also that γ ≤ 1/2.

The LWE problem has been incredibly versatile when building cryptographic
primitives, a non exhaustive list of constructions include public key encryption [Reg09b,
LP11, NAB+20], oblivious transfer [PVW08], identity based encryption [GPV08],
hierarchical identity based encryption [CHKP12], fully homomorphic encryption [BV11,
GSW13], attributed based encryption [GVW13], and digital signatures [BG14a]. There
are also variants of LWE which use an increase in algebraic structure to create more
efficient (both in terms of time and memory) constructions. In ring learning with
errors (RLWE) [SSTX09, LPR10] the unstructured matrices and vectors above are
replaced with ring elements. Module learning with errors (MLWE) [LS15] is a further
generalisation that interpolates between LWE and RLWE. Here the unstructured
matrices and vectors above are replaced with elements from a ring module of a given
rank. The definitions, efficiency, and security of these more general variants of LWE
will not be discussed further in this thesis.

How LWE, short vector type problems, and close vector type problems are solved
will be dealt with throughout the next two chapters of these preliminaries.

2.3 Size reduction and nearest plane

In this section we will look at an algorithmic way to control the sizes of the µi,j that
determine the relationship between some basis B and its Gram–Schmidt basis B∗.
This algorithm is called size reduction. As input it receives a basis vector bi, an
index j < i, and subtracts from bi specific multiples of b1, . . . ,bj in a particular order.
These subtractions do not alter the lattice generated by the basis, and ensure that
µi,1, . . . , µi,j each have absolute value no more than one half. Running this process on
all basis vectors of some B, also in a particular order, is an important component of
lattice reduction algorithms.

Size reduction can also be applied to arbitrary vectors t ∈ Rd, where it becomes
an approximate CVP solver; this procedure was analysed by Babai [Bab86] on bases
preprocessed, or ‘reduced’, by an algorithm called LLL [LLL82], and is often referred
to as the Nearest Plane algorithm.
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2.3.1 Size reduction on a basis

Let B ∈ Rd×n be the basis of a lattice, and consider (2.3). Algorithm 1 takes a single
basis vector of B, say bi = B · ei = B∗ ·M · ei, which looks like

bi =

b∗1 · · · b∗n

 ·



µi,1
...

µi,i−1

1
0
...
0


,

and iteratively ensures µi,j, . . . , µi,1 are small, for some j < i. We consider, in order,
the Gram–Schmidt coefficients µi,k for k decrementing from j to 1. As shown below
going ‘bottom up’ like this requires the µi,ℓ with ℓ < k to be recomputed after ensuring
µi,k is small, but guarantees that previous work is not undone. That is, once we have
e.g. |µi,j| ≤ 1/2, it is not altered by subsequent steps of the algorithm. Going ‘top
down’ would not require us to recompute the lower Gram–Schmidt coefficients, but
would not guarantee that previous work remains unaltered.

Definition 2.3.1 (Size reduction of bi). Given a basis vector bi of some basis B and
an index j < i, we call bi size reduced (to index j) if |µi,k| ≤ 1/2 for all k ∈ {1, . . . , j}.
Typically we consider j = i− 1.

Algorithm 1 Size reduction for bi of a basis B.
Require: Basis vector bi, basis B and implied µi,j, and index j < i

1: procedure SizeReduceB,j(bi)
2: for k ← j, . . . , 1 do
3: bi ← bi − ⌈µi,k⌋bk

4: for ℓ← 1, . . . , k do
5: Recompute µi,ℓ ← µi,ℓ − ⌈µi,k⌋µk,ℓ

return bi

We show that Algorithm 1 both achieves the desired notion, that |µi,k| ≤ 1/2 for
all 1 ≤ k ≤ j < i, and that it does not alter the lattice generated by B when this new
bi replaces the original.

Lemma 2.3.1. Let b′i = bi − ⌈µi,k⌋bk for some k < i, and let µ′i,k be the implied new
Gram–Schmidt coefficient. Then

∣∣∣µ′i,k∣∣∣ ≤ 1/2.
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Proof. Decomposing bk as bk = b∗k +∑
ℓ<k µk,ℓb∗ℓ for the final equality, we see that

µ′i,k =
⟨bi − ⌈µi,k⌋bk,b∗k⟩

⟨b∗k,b∗k⟩
= µi,k − ⌈µi,k⌋

⟨bk,b∗k⟩
⟨b∗k,b∗k⟩

= µi,k − ⌈µi,k⌋,

and hence
∣∣∣µ′i,k∣∣∣ ≤ 1/2.

We note that by fixing a rounding convention, in our case ⌈n+ 1/2⌋ = n+ 1 for all
n ∈ Z, we have that the new Gram–Schmidt coefficient is in [−1/2, 1/2).

Lemma 2.3.2. Let 1 ≤ k < i ≤ n, b′i ← bi − ⌈µi,k⌋bk, and let µ′i,ℓ be the implied new
Gram–Schmidt coefficients. This allows µ′i,ℓ ̸= µi,ℓ for 1 ≤ ℓ ≤ k, but fixes µ′i,ℓ = µi,ℓ

for k < ℓ < i.

Proof. Again, decompose bk as bk = b∗k +∑
ℓ<k µk,ℓb∗ℓ and note that

⟨bk,b∗ℓ⟩ =


µk,ℓ ∥b∗ℓ∥

2 if ℓ < k,

∥b∗ℓ∥
2 if ℓ = k,

0 if ℓ > k.

We therefore have the following cases

µ′i,ℓ =
⟨bi − ⌈µi,k⌋bk,b∗ℓ⟩

⟨b∗ℓ ,b∗ℓ⟩
= µi,ℓ − ⌈µi,k⌋ ·


µk,ℓ if ℓ < k,

1 if ℓ = k,

0 if ℓ > k.

This also shows how one should recompute the µi,ℓ for ℓ < k. The ℓ = k case collapses
into the statement of Lemma 2.3.1.

Lemma 2.3.3. Let b′i ← SizeReduceB,j(bi) for any j < i, and let B′ be defined as
B with bi replaced by b′i. Then Λ(B) = Λ(B′).

Proof. Performing b′i ← bi− ⌈µi,k⌋bk for k ≤ j is equivalent to transforming B by the
matrix Uk, where Uk = In + Mk and Mk ∈ Zn×n is all zeros except M[k, i] = −⌈µi,k⌋.
The matrix Uk is unimodular, and so is any product of such matrices. We have
B′ = B ·Uj · · ·U1, hence the statement follows.

Definition 2.3.2 (Size reduction for basis B). We say a basis B = (b1 · · ·bn) is size
reduced if |µi,j| ≤ 1/2 for all i ∈ {2, . . . , n} and j ∈ {1, . . . , i− 1}.
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Algorithm 2 Size reduction for a basis B.
Require: A basis B = (b1 · · ·bn)

1: procedure SizeReduce(B)
2: for i← 2, . . . , n do
3: Update bi ← SizeReduceB,i−1(bi)

return B

Algorithm 2 achieves this notion by applying Algorithm 1, in order, to b1, . . . ,bn,
with j = i− 1 for bi.

We note that in Algorithm 2 we reuse notation somewhat, but here SizeRe-
duce takes as input a basis and has no subscripts, so the distinction is clear. From
repeated application of the lemmata above it is clear that Algorithm 2 does not
alter the lattice, and each individual bi is size reduced, at least immediately after
we call SizeReduceB,i−1(bi). It remains to show that as i increases this size re-
duction is maintained; this follows immediately since b1, . . . ,bi−1 are fixed during
SizeReduceB,i−1(bi), and therefore so are their Gram–Schmidt coefficients. Note
that this would not be the case if we were to decrement i. Finally note that b1 is
always trivially size reduced.

In conclusion, after performing Algorithm 2 on some basis B, we have B = B∗ ·M,
where all off diagonal entries in M are either 0 below the diagonal (as before), or no
greater than one half in absolute value above the diagonal.

2.3.2 Size reduction in general (nearest plane)

How should we interpret size reduction? We are removing integer multiples of basis
vectors from a point in space, therefore if we let Λ = Λ(B) the output remains in the
same coset of Λ as the input. Furthermore, we are doing this in such a way that the
coefficients representing this point in space in the basis B∗ are small. We can also see
size reduction very concretely, for some k ≤ j < i and B = B∗ ·M, if b′i ← bi−⌈µi,k⌋bk
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as

B = B∗ ·



1 µ2,1 · · · · · · · · · · · · · · · µi,1 · · · µn,1

0 1 µ3,2 · · · · · · · · · · · · µi,2 · · · µn,2
... . . . . . . ... ...
... . . . . . . µi,k

...
... . . . . . . µi,k+1

...
... . . . . . . ... ...
... . . . . . . µi,i−1

...
... . . . 1 ...
... . . . . . . µn,n−1

0 · · · · · · · · · · · · · · · · · · · · · 0 1


becoming, by letting B′ = (b1 · · ·b′i · · ·bn),

B′ = B∗ ·



1 µ2,1 · · · · · · · · · · · · · · · µ′i,1 · · · µn,1

0 1 µ3,2 · · · · · · · · · · · · µ′i,2 · · · µn,2
... . . . . . . ... ...
... . . . . . . µ′i,k

...
... . . . . . . µi,k+1

...
... . . . . . . ... ...
... . . . . . . µi,i−1

...
... . . . 1 ...
... . . . . . . µn,n−1

0 · · · · · · · · · · · · · · · · · · · · · 0 1



.

From here we are most interested in the output of size reduction operations, so
to remove the need for many primes in the notation, we may label inputs with a
superscript ‘pre’. This also implicitly applies to Gram–Schmidt vectors and coefficients.
Recall the notation from Definition 2.2.11 and Definition 2.2.7. If we perform bi =
SizeReduceB,i−1(bpre

i ), we know from Definition 2.3.2 and B = B∗ ·M that

bi = b∗i +
∑
j<i

µi,jb∗j ∈ b∗i + P1/2(B∗i−1).

Indeed, we always round ties upwards, therefore each µi,j ∈ [−1/2, 1/2) and so bi falls
in the i dimensional orthotope P1/2(B∗i−1) centred around b∗i .
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As proven in Lemma 2.2.9 the n dimensional orthotope P(B∗) is a fundamental
domain for Λ(B), and therefore b∗i + P1/2(B∗), as a translation of it, is also. We are
dealing with a subset of this fundamental domain, b∗i + P1/2(B∗i−1), and so any lattice
coset intersects it in either 0 or 1 places. We therefore know that bi is the unique
element in the intersection of the lattice coset bi + Λ(B) = Λ(B) and this subset.
Note that were we to perform bi ← SizeReduceB,i(bpre

i ) we would always return
bi = 0. Indeed we would first calculate bi ← bpre

i − ⌈1⌋b
pre
i and subsequently set all

Gram–Schmidt coefficients to 0. This can be interpreted as

bi ∈ P1/2(B∗i ),

the only lattice vector of which is 0.
It does beg the question, what if we tried size reducing a non basis vector, or

indeed, a non lattice vector? If we instead consider t = ν1b∗1 + · · ·+ νnb∗n with each
νi ∈ R, the syntax of Algorithm 1 does not quite allow for ‘SizeReduceB,j(t)’. By
almost identical arguments to Lemma 2.3.1 and Lemma 2.3.2 we arrive at Algorithm 3.
We note that throughout this thesis bi is reserved solely for lattice basis vectors,
so the syntax SizeReduceB,j(t) is unambiguous. This procedure no longer alters

Algorithm 3 Size reduction for t by a basis B.
Require: Vector t and implied νi, basis B and implied µi,j, and index 1 ≤ j ≤ n

1: procedure SizeReduceB,j(t)
2: t = tB + t⊥
3: for k ← j, . . . , 1 do
4: tB ← tB − ⌈νk⌋bk

5: for ℓ← 1, . . . , k do
6: Recompute νℓ ← νℓ − ⌈νk⌋µk,ℓ

return t = tB + t⊥

the basis at all, instead it only uses it to size reduce a vector. If B is not full
rank then we split an arbitrary t ∈ Rd as t = tB + t⊥, its components in and
orthogonal to spanR (B), respectively. We then have tB = ν1b∗1 + · · · + νnb∗n and
SizeReduceB,j(tB + t⊥) = SizeReduceB,j(tB) + t⊥ for all t,B and j. The output
of Algorithm 3 satisfies the following definition.

Definition 2.3.3 (Size reduction of t). Given a vector t = tB + t⊥ with tB =
ν1b∗1 + · · ·+ νnb∗n, some basis B, and an index j ≤ n, we call t size reduced (to index
j) if |νi| ≤ 1/2 for all i ∈ {1, . . . , j}. Typically we consider j = n.
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If we have tpre = νpre
1 b∗1 + · · ·+ νpre

n b∗n and perform t← SizeReduceB,j(tpre) then

t = ν1b∗1 + · · ·+ νjb∗j + νpre
j+1b∗j+1 + · · ·+ νpre

n b∗n,

since tpre is only altered by elements in the span of b∗1, . . . ,b∗j , and

t ∈ νpre
j+1b∗j+1 + · · ·+ νpre

n b∗n + P1/2(B∗j),

is the unique element of this set in the coset tpre + Λ(B). Since tpre and t lie in the
same lattice coset their difference lies in the lattice; tpre − t ∈ Λ(B). Furthermore, we
also know

tpre − t = (νpre
1 − ν1) · b∗1 + · · ·+ (νpre

j − νj) · b∗j ,

which is in the span of the first j basis vectors. Hence tpre−t ∈ Λ(Bj). We have therefore
found a lattice vector at distance ∥t∥ from tpre in the sublattice generated by the first
j basis vectors. If we let j = n then we recover Babai’s Nearest Plane algorithm. This
finds a nearby lattice vector w ∈ Λ to target t using B, see Algorithm 4. We can use this

Algorithm 4 Babai’s nearest plane for t.
Require: Vector t and basis B

1: procedure NearestPlaneB(t) return w← t− SizeReduceB,n(t)

algorithm to solve CVP type problems. Note that since SizeReduceB,n(tB + t⊥) =
SizeReduceB,n(tB) + t⊥, when t = tB + t⊥ the orthogonal components t⊥ cancel in
Line 1 of Algorithm 4. Furthermore, since the distance from some point x ∈ spanR (B)
to t is given by

∥t− x∥ =
∥∥∥tB − x + t⊥

∥∥∥ =
(
∥tB − x∥2 +

∥∥∥t⊥∥∥∥2
)1/2

, (2.13)

finding the closest lattice vector w to tB finds the closest lattice vector to t.
We summarise the above in a lemma. It says that w ← NearestPlaneB(t) is

the unique lattice vector such that w + P1/2(B∗) contains tB. Due to (2.13) we only
consider targets in spanR (B) in the lemma.

Lemma 2.3.4. Let B ∈ Rd×n be a basis for lattice Λ, tpre ∈ spanR (B) and t ←
SizeReduceB,n(tpre), and w ∈ Λ. We have w = tpre − t⇔ tpre ∈ w + P1/2(B∗).

Proof. If w = tpre − t and t ← SizeReduceB,n(tpre) then we know t ∈ P1/2(B∗)
and tpre = w + t, hence tpre ∈ w + P1/2(B∗). For the counter implication let tpre ∈
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w + P1/2(B∗) and t = tpre − B · v for some v ∈ Zd. As P1/2(B∗) is a fundamental
domain for Λ we may partition space as

spanR (B) =
⋃

w∈Λ
w + P1/2(B∗),

so for any w1,w2 ∈ Λ there exists a unique w′ ∈ Λ such that w1 + P1/2(B∗)−w′ =
w2 + P1/2(B∗), in particular w′ = w1 − w2. Furthermore, for any other lattice
vector w′′ ̸= w′ we have that w1 + P1/2(B∗) − w′′ has an empty intersection with
w2 + P1/2(B∗). Therefore tpre ∈ w + P1/2(B∗), t ∈ P1/2(B∗) and t = tpre − B · v
together imply w + P1/2(B∗) − B · v = P1/2(B∗) and therefore that w − B · v = 0.
Since t = tpre −B · v we conclude that w = tpre − t.

Given a CVP instance on Λ = Λ(B) with some target t, the success condition for
NearestPlaneB(t) to return a CVP solution w is therefore that tB ∈ w +P1/2(B∗).
Note that if B is an orthogonal basis, i.e. B = B∗, then P1/2(B) = P1/2(B∗) is a
so called Voronoi cell for Λ, see [MV10b] for an introduction to their uses in lattice
cryptography. This means that w is a CVP solution for all tB ∈ w + P1/2(B∗).
Therefore, NearestPlaneB(t) always solves CVP exactly if B is orthogonal. Outside
of this orthogonal case, we give below a sufficient condition and a necessary condition
for tB ∈ w + P1/2(B∗).

A sufficient condition

Since P1/2(B∗) is an n dimensional orthotope, a sufficient condition to ensure tB ∈
w + P1/2(B∗) is

∥tB −w∥ ≤ min
{1

2 ∥b
∗
i ∥ : i ∈ {1, . . . , n}

}
.

If we set rs = min
{

1
2 ∥b

∗
i ∥ : i ∈ {1, . . . , n}

}
then this is equivalent to tB ∈ Bd (rs; w)∩

spanR (B). This condition requires tB to lie in the largest ball centred on w that is
itself entirely contained in w + P1/2(B∗), clearly ensuring tB ∈ w + P1/2(B∗).

A necessary condition

If we define the radius

rn =

 n∑
i=1

∥b∗i ∥
2

2
1/2
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then any tB such that ∥tB −w∥ > rn cannot be such that tB ∈ w + P1/2(B∗). This
follows since rn is the distance from w to the farthest corner of w+P1/2(B∗). Therefore,
it is necessary that tB ∈ Bd (rn; w) ∩ spanR (B) for Algorithm 4 to solve CVP.

For r ∈ (rs, rn) the behaviour of NearestPlaneB(t) becomes dependent on the
geometry of B and t beyond just the lengths ∥b∗1∥ , . . . , ∥bn∗∥ and ∥tB −w∥.

An average case analysis

Since the distance of the lattice vector w output by NearestPlaneB(t) from target
t is equal to the length of the unique t′ ∈ P1/2(B∗) such that t ≡ t′ mod Λ, one can
perform an average case analysis by specifying some distribution over P1/2(B∗). In
particular, if we let ℓi = ∥b∗i ∥ and assume that targets t are chosen such that their
representative element t′ ∈ P1/2(B∗) is uniform in that fundamental domain, then we
can calculate the average squared distance ∥w− t∥2 as

(
n∏

i=1
ℓi

)−1

·
ℓ1/2∫
−ℓ1/2

· · ·
ℓn/2∫
−ℓn/2

(
x2

1 + · · ·+ x2
n

)
dx1 · · · dxn = 1

12 · (ℓ
2
1 + · · ·+ ℓ2

n). (2.14)

This quantity is exactly the average squared length of an element in P1/2(B∗).
We can now begin to think about what kind of properties a basis B might have

such that it is ‘useful’ or ‘high quality’ for this particular task. In particular we
would like to maximise min{∥b∗i ∥ : i ∈ {1, . . . , n}} for the sufficient condition, and
minimise (∥b∗1∥

2 + · · · + ∥b∗n∥
2)/12 for the average case analysis, both subject to

∥b∗1∥ · · · ∥b∗n∥ = vol(Λ). In both cases we succeed when ∥b∗1∥ = · · · = ∥b∗n∥ = vol(Λ)1/n,
so that the lengths of the Gram–Schmidt vectors are somehow balanced. This gives us
a simple measure of quality for bases of a given lattice.

2.3.3 Size reduction in ‘dimensions for free’

One particular use case of size reduction that appears in this thesis comes from [Duc18a].
Recall the notation of Definition 2.2.23. For this use case we consider some basis
B ∈ Rd×n of the lattice Λ = Λ(B) along with some projected sublattice of it, Λ[ℓ]

described by basis B[ℓ]. Given many short vectors in Λ[ℓ] it is shown how to return
a short vector in Λ. The key ideas of [Duc18a] are that an algorithm called a lattice
sieve (to be introduced in Section 2.5) can provide the required short vectors in Λ[ℓ]

and that the procedure that uses them to return a short vector in Λ adds only a small
overhead compared to the complexity of this lattice sieve. The cost of using a lattice
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sieve to output short lattice vectors grows exponentially in the rank of the lattice.
Here, instead of calling a lattice sieve on Λ of rank n we are calling it on Λ[ℓ] of rank
n− ℓ+ 1, hence we have achieved ℓ− 1 ‘dimensions for free’.3

We refer to [Duc18a] for an analysis of when the method described in more detail
below is successful and derivations of how large we may take ℓ. For completeness we
note that we may take the sublinear ℓ ∈ Θ(n/ log n), and that while this does not
lead to an exponential improvement, the experimental results given in [Duc18a, Sec. 5]
display its practical importance.

For our purposes we assume we are in the following setting. Assume s ∈ Λ is such
that ∥s∥ = λ1(Λ) and that we have some list of vectors L ⊂ Λ[ℓ] such that πℓ(s) ∈ L.
We wish to recover s ∈ Λ using L and size reduction. To start let w = B · v for
v ∈ Zn and B = (B′|B′′) with B′ ∈ Rd×(ℓ−1),B′′ ∈ Rd×(n−ℓ+1). If we similarly split
vt = (v′t|v′′t) such that w = B′ · v′ + B′′ · v′′ then

πℓ(w) = πℓ(B′ · v′) + πℓ(B′′ · v′′) = 0 + B[ℓ] · v′′.

Therefore, given any w[ℓ] ∈ Λ[ℓ] described as w[ℓ] = B[ℓ] · v[ℓ], we know that any w ∈ Λ
such that πℓ(w) = w[ℓ] is of the form w = B′ · v′ + B′′ · v[ℓ]. Put another way, to find
the shortest w ∈ Λ that projects to w[ℓ] we need to find the v′ ∈ Zℓ−1 that minimises
the length of B′ · v′ + B′′ · v[ℓ].

We relabel to frame this as a CVP problem. Let Λ′ = Λ(B′) and let t = B′′ · v[ℓ].
Finding the lattice vector w′ = B′ · v′ ∈ Λ′ closest to −t and returning w = w′ + t
then gives us exactly the shortest w ∈ Λ such that πℓ(w) = w[ℓ]. We therefore present
Algorithm 5. One subtle point to note is that the target t we construct is not in
spanR (B′) since it is given by a linear combination of vectors of B′′. However, this
is implicitly dealt with when Algorithm 3 is called during NearestPlaneB′(−t),
since it internally decomposes −t as −tB′ +−t⊥. Assuming that πℓ(s) ∈ L, whether
Algorithm 5 succeeds in returning s is entirely down to the geometry of B, or more
specifically B′. Indeed, if πℓ(s) ∈ L then one of the candidates c′ on Line 7 will be
s provided that CVP is solved exactly on Line 6. The analysis of [Duc18a, Sec. 3]
shows that under several standard heuristics choosing ℓ ∈ Θ(n/ log n) implies both
that πℓ(s) ∈ L and that applying Algorithm 4 to the above CVP instance solves it
exactly. Therefore the shortest vector is recovered. Improving the geometry of lattice
bases is the topic of the next section of these preliminaries.

3In [Duc18a] full rank lattices Λ are considered, so we avoid the awkward sounding ‘ranks for free’.
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Algorithm 5 Size reduction for dimensions for free.
Require: Basis B for Λ = Λ(B), index ℓ, and L ⊂ Λ(B[ℓ])

1: procedure DimsForFreeB(L)
2: c = B · e1
3: Let B = (B′|B′′) with B′ ∈ Rd×(ℓ−1) and B′′ ∈ Rd×(n−ℓ+1)

4: for w[ℓ] = B[ℓ] · v[ℓ] ∈ L do
5: t = B′′ · v[ℓ]
6: w′ ← NearestPlaneB′(−t)
7: c′ = w′ + t
8: if ∥c′∥ < ∥c∥ then
9: c← c′return c

2.4 Lattice reduction algorithms

Lattice reduction algorithms take as input a lattice basis and output a different basis for
the same lattice that is somehow a better basis and may be guaranteed to satisfy some
properties. We have already seen one potential definition for what better may mean in
this context. Indeed the sufficient condition for solving exact CVP and the average
case analysis of NearestPlane both suggest that balanced Gram–Schmidt lengths
are preferable, ∥b∗1∥ = · · · = ∥b∗n∥. The behaviour of the Gram–Schmidt lengths is
something lattice reduction algorithms allow us some control over.

Being in the balanced Gram–Schmidt lengths case is related to the basis being
close to orthogonal, though they are not the same. Indeed, if

B =
4 0

0 1

 , C =
2 10

0 2


then B is an orthogonal basis for some lattice that does not have balanced Gram–
Schmidt lengths, and C is a non orthogonal basis for some lattice that does. However,
if we have some method to control the µi,j, e.g. Algorithm 2, then we can show that
having balanced Gram–Schmidt lengths gives us some guarantees about how far from
orthogonal the lattice basis is.

Definition 2.4.1 (Orthogonality Defect). Given a basis B ∈ Rd×n its orthogonality
defect is

od(B) =
n∏

i=1
∥bi∥ · vol(Λ)−1 =

n∏
i=1

∥bi∥
∥b∗i ∥

.

Since bi = b∗i + ∑
j<i µi,jb∗j and B∗ is orthogonal we have ∥b∗i ∥ ≤ ∥bi∥ for all i.

Therefore od(B) ≥ 1. It is clear that a basis B with bi = b∗i for all i is orthogonal,
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and that in this case ∥b∗i ∥ = ∥bi∥. Conversely, if ∥b∗i ∥ = ∥bi∥ then µi,j = 0 for all j,
since B∗ is orthogonal, therefore b∗i = bi and a basis with ∥b∗i ∥ = ∥bi∥ for all i is also
orthogonal. The above tells us that od(B) = 1⇔ ∥b∗i ∥ = ∥bi∥ ⇔ b∗i = bi ⇔ B is an
orthogonal basis. We may then say that the closer in length each ∥b∗i ∥ is to ∥bi∥, the
closer to orthogonal B is. If we have ∥b∗1∥ = · · · = ∥b∗n∥ = C = vol(Λ)1/n then for a
size reduced basis B

∥bi∥2 = ∥b∗i ∥
2 +

∑
j<i

µ2
i,j ·

∥∥∥b∗j∥∥∥2
≤ ∥b∗i ∥

2 + C2 ·

i− 1
4

 = ∥b∗i ∥
2 ·
(
i+ 3

4

)
.

We therefore have
∥b∗i ∥

2 ≤ ∥bi∥2 ≤ ∥b∗i ∥
2 ·
(
i+ 3

4

)
,

so that for the worst index we have ∥bn∥2 ≤ (n+ 3) · ∥b∗n∥
2 /4.

Another way in which we may discuss the quality of the output basis is via the
lengths of basis vectors, in particular the first. Finding short lattice vectors is clearly a
necessary component of solving SVP type problems over lattices, but is also a key part
of solving instances of the LWE problem via lattice reduction, see Section 2.4.3.

2.4.1 The LLL and BKZ algorithms

The two lattice reduction algorithms we will focus on in this thesis are the LLL and
BKZ algorithms.

The LLL algorithm

The first lattice reduction algorithm we will introduce is the LLL algorithm [LLL82].
It has applications across number theory and computer science, for example in finding
integer relations and minimal polynomials of algebraic numbers, and it has also been
used to disprove a conjecture of Mertens [OtR85]. For our purposes it provides a certain
notion of quality for an output lattice basis. We will first describe the properties of an
LLL reduced basis for a lattice, and then give a terminating algorithm that outputs
such a basis, proving existence the gentle way.

Definition 2.4.2 (LLL reduced basis). A basis B ∈ Rd×n is LLL reduced with
parameter δ ∈ (1/4, 1), or δ-LLL reduced, when

• B is size reduced by Definition 2.3.2, and

• for all i ∈ {2, . . . , n} we have ∥b∗i ∥
2 ≥ (δ − µ2

i,i−1) ·
∥∥∥b∗i−1

∥∥∥2
.
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Notice that the second condition, called the Lovász condition, controls the maximum
rate at which the Gram–Schmidt lengths can decrease. Indeed, as the first condition
guarantees that B is size reduced, the term δ − µ2

i,i−1 ≥ δ − 1/4 is bounded away from
0. Clearly the guarantee given by an LLL reduced basis gets stronger as δ gets closer
to 1. We have from [Gal12, Thm. 17.2.12] that

Lemma 2.4.1. If B ∈ Rd×n is a 3/4-LLL reduced basis and Λ = Λ(B) then

• ∥b1∥ ≤ 2(n−1)/2 · λ1(Λ), and

• ∥b1∥ ≤ 2(n−1)/4 · vol(Λ)1/n.

The choice of δ = 3/4 is mostly historical, and indeed as δ → 1 the 2 in the above
lemma becomes 4/3. Interestingly, an LLL reduced basis is not necessarily one such
that b1 is the shortest basis vector. Indeed, for any δ ∈ (1/4, 1) if

B =
1 1/2

0
√
δ − 1/4


then ∥b2∥ < ∥b1∥ and the conditions of Definition 2.4.2 are satisfied. One cannot
simply reorder the basis vectors as then the size reduction requirement will be violated.

Algorithm 6 The LLL algorithm.
Require: Basis B ∈ Rd×n for Λ = Λ(B) and implied B∗, parameter δ ∈ (1/4, 1)

1: procedure LLL(B, δ)
2: k = 2
3: while k ≤ n do
4: Update bk ← SizeReduceB,k−1(bk) in B
5: Recompute B∗

6: if ∥b∗k∥
2 ≥ (δ − µ2

k,k−1)
∥∥∥b∗k−1

∥∥∥2
then

7: k ← k + 1
8: else
9: Swap the order of bk and bk−1 in B

10: Recompute B∗
11: k = max{2, k − 1}

return B

We introduce LLL basis reduction in Algorithm 6. We note that the one can be
far more efficient than simply recalculating the entirety of B∗ after SizeReduce and
swapping, but it is not important for our purposes.
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The output of Algorithm 6 is a δ-LLL reduced basis. Indeed, the Lovász condition
with parameter δ is immediate; the while loop does not exit otherwise. Whenever
a swap occurs the indices below k − 1 are unaffected, so b1, . . . ,bk−2 remain size
reduced, and the while loop restarts by size reducing bk−1. Recalling Lemma 2.3.2
for the properties of SizeReduceB,k−2(bk−1), and noting in particular that the Gram–
Schmidt coefficients for bk, . . . ,bn are also unchanged, we see that any call to Line 4
does not affect whether other basis vectors are size reduced. Therefore, as Algorithm 6
returns only after k > n, the returned basis is size reduced in the sense of Definition 2.3.2,
and therefore is δ-LLL reduced.

The complexity of Algorithm 6 is usually considered on input an integer basis,
B ∈ Zd×n. For any real basis, an arbitrarily close approximation of its entries can be
made by a rational basis, which can then by scaled by the lowest common multiple
of the denominators of its entries. We therefore consider integer bases. If we let
X = max{∥bi∥2 : i ∈ {1, . . . , n}} then the above description of the LLL algorithm4

has complexity O(n5d(logX)3) bit operations using naïve rational arithmetic [Gal12,
Cor. 17.5.4]. However, significant theoretical and practical improvements have been
made by considering floating point arithmetic and variants of Algorithm 6 that provably
output δ-LLL reduced bases [Ste10]. In any case, Algorithm 6 requires a finite amount
of bit operations, and therefore terminates. The case of δ = 1 is interesting in that a
proof for polynomial complexity is not known, and given this parameterisation LLL is
exactly the BKZ algorithm with block size 2, see the BKZ paragraph below.

What tasks can one perform using LLL? Using Lemma 2.4.1 and below, we
can clearly solve α-SVP and α-HSVP for any α ≥ (4/3)(n−1)/2 and α ≥ (4/3)(n−1)/4

respectively. Also, if we are considering a uSVP instance with an exponentially large
gap, specifically α-uSVP with α ≥ (4/3)(n−1)/2, then we must find λ1(Λ) by calling
LLL, and therefore solve the α-uSVP instance. In the case of CVP from [Bab86,
Thm. 3.1] we know that NearestPlane solves α-CVP on a 3/4-LLL reduced basis B
for any α ≥ 2n/2. By letting δ → 1, as soon as δ ≥ 1/4 + 1/

√
2 then this is improved to

α ≥ 1.6 · 2n/4 [Gal12, Thm. 18.1.7]. There are also some practical improvements due to
Coppersmith to be found in [GGH97]. Something we will discuss more in Section 2.4.2
is the difference between the above worst case guarantees, and the ‘average case’
performance of LLL.

4At least when displaying slightly more nuance than simply ‘Recompute B∗’.
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The BKZ algorithm

The second lattice reduction algorithm we will consider is known as the Block Korkine–
Zolotarev, or BKZ, algorithm. The LLL algorithm makes local changes to the basis by
considering whether swapping two neighbouring basis vectors will improve (under the
Lovász condition) the current state of the basis. One can imagine instead choosing to
reorder three neighbouring basis vectors. Of course, reordering basis vectors is just
a special case of a unimodular matrix given by a permutation of the columns of the
identity matrix. One need not be limited to two neighbouring basis vectors, or to
these special cases of unimodular matrices. In the LLL case the proof that the number
of swaps is polynomial relies on considering only this restricted class of unimodular
matrices on pairs of neighbours, as the effect such swaps have on a potential function
of the basis can be explicitly understood.

In [Sch87] generalisations of other notions of reduction for lattice bases are considered
that ultimately provide a smooth trade off between the LLL and BKZ algorithms.

Definition 2.4.3 (Minkowski reduction). Let B ∈ Rd×n define Λ = Λ(B). We say B
is a Minkowski reduced basis of Λ if for all i ∈ {1, . . . , n} we have

∥bi∥ = min{∥b∥ : b ∈ Λ and (b1 · · ·bi−1 b) can be extended to a lattice basis}.

This notion is considered in [Min91], and is strong as it requires b1 to be an SVP
solution for Λ. Indeed, Lemma 2.4.2 and Corollary 2.4.3 below show that a basis does
exist with the first vector achieving the first minimum. Note that one cannot demand
that ∥bi∥ = λi(Λ) for all i since

B =



2 0 0 0 1
0 2 0 0 1
0 0 2 0 1
0 0 0 2 1
0 0 0 0 1


defines Λ = Λ(B) where no basis can include vectors of length λ1(Λ) = · · · = λ5(Λ) = 2.
Ultimately the notion that was generalised is the following.5

5In [Sch87] this reduction notion is referred to as Korkine–Zolotarev reduction, sans Hermite.
However, Hermite’s use of the size reduction property led to the current naming convention.
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Definition 2.4.4 (Hermite–Korkine–Zolotarev (HKZ) reduction). Let B ∈ Rd×n define
Λ = Λ(B). We say B is a Hermite–Korkine–Zolotarev (HKZ) reduced basis of Λ if we
have

• B is size reduced by Definition 2.3.2, and

• for all i ∈ {1, . . . , n}, recalling Definition 2.2.23, ∥b∗i ∥ = λ1(Λ[i]).

How might one, given as much computing power as necessary, go about finding an
HKZ reduced basis? Indeed, given that there exist lattices for which one cannot have
basis vectors matching the lengths of the minima, does a HKZ basis always exist for a
lattice? In fact yes, using an elementary lemma found in e.g. [Kan83, Prop. 1].

Lemma 2.4.2. Let w ∈ Λ such that there does not exist an α ∈ (0, 1) for which
α ·w ∈ Λ. Then there exists a basis B for Λ containing w.

Corollary 2.4.3. For any lattice Λ there exists a basis B = (b1 · · ·bn) such that
Λ = Λ(B) and b1 = w for ∥w∥ = λ1(Λ).

Proof. Let w ∈ Λ be such that ∥w∥ = λ1(Λ), then by definition there does not exist
an α ∈ (0, 1) such that α · w ∈ Λ. Hence a basis exists that contains the vector w.
The appropriate permutation U ∈ GLn(Z) of In ensures it is the first basis vector.

Lemma 2.4.4. For any Λ there exists a basis B ∈ Rd×n such that Λ = Λ(B) and B
is HKZ reduced.

Proof. We prove the statement by induction on index i ∈ {1, . . . , n} such that we
assume we have a size reduced basis B of Λ satisfying

∥∥∥b∗j∥∥∥ = λ1(Λ[j]) for all j ∈
{1, . . . , i}. The i = 1 base case is immediate from Corollary 2.4.3 and Algorithm 2.
We now construct a size reduced basis B̂ from B such that

∥∥∥b∗j∥∥∥ = λ1(Λ[j]) for all
j ∈ {1, . . . , i + 1}. Our current basis for Λ[i+1] is B[i+1], and by Corollary 2.4.3
there exists a basis B′[i+1] of Λ[i+1] such that B′[i+1] = (w · · · ) = B[i+1] ·U′ for some
U′ ∈ GLn−i(Z) and has ∥w∥ = λ1(Λ[i+1]). If we construct Û as

Û =
Ii 0

0 U′

 ∈ GLn(Z),

and let B̂ = B · Û = (b̂1 · · · b̂n), then b̂j = bj for j ∈ {1, . . . , i} and Λ[1], . . . ,Λ[i+1] are
unchanged. We therefore have

∥∥∥b∗j∥∥∥ = λ1(Λ[j]) for j ∈ {1, . . . , i} by assumption and
b̂∗i+1 = πi+1(b̂i+1) = w so that

∥∥∥b̂∗i+1

∥∥∥ = λ1(Λ[i+1]) as required. Applying Algorithm 2
to B̂ alters neither Λ[i] or b∗i for any i, so we conclude.
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The proof of [Kan83, Prop. 1] is constructive; it returns a basis B with w as its
shortest vector. Therefore, the ability to find shortest vectors in lattices of rank n and
below is sufficient to find an HKZ reduced basis. In particular one must solve SVP
on Λ[1], . . . ,Λ[n] exactly once each. For the purposes of this thesis, HKZ reduction is
too powerful a notion to always achieve. For an example of its strength constrast the
guarantees it gives vs. δ-LLL reduction.

Theorem 2.4.5 ([SE94, Thm. 1]). If δ ∈ (1/4, 1) and B ∈ Rd×n is a δ-LLL reduced
basis for Λ = Λ(B), let α = (δ − 1/4)−1, then for all i we have

α1−i ≤ ∥bi∥2 · λi(Λ)−2 ≤ αn−1.

Theorem 2.4.6 ([LLS90, Thm. 2.1]). If B ∈ Rd×n is an HKZ reduced basis for
Λ = Λ(B), then for all i we have

4
i+ 3 ≤ ∥bi∥2 · λi(Λ)−2 ≤ i+ 3

4 .

The generalisation of HKZ given in [Sch87] is to ‘block’ Korkine–Zolotarev reduction.
For this notion one considers blocks, or projected sublattices of a certain size, rather
than necessarily always continuing them to the end of the basis. This allows one a
parameter, throughout this thesis β, to parametrise the strength of the reduction.

Definition 2.4.5. Let B ∈ Rd×n define Λ = Λ(B) and let β ∈ {2, . . . , n}. We say B
is a β Block Korkine–Zolotarev (BKZ-β) reduced basis of Λ if we have

• B is size reduced by Definition 2.3.2, and

• for all i ∈ {1, . . . , n}, recalling Definition 2.2.23, ∥b∗i ∥ ≤ λ1(Λ[i:min{i+β,n+1}]).

This definition says that each block, i.e. each Λ[i,min{i+β:n+1}], is HKZ reduced,
even if Λ is not. We have given the definition of [SE94, Sec. 5] except we allow
β = n and require the trivially satisfied i = n case, so that it may coincide with the
original HKZ definition. An HKZ reduced basis is a BKZ-β reduced basis for any β
since ∥b∗i ∥ = λ1(Λ[i]) ≤ λ1(Λ[i:min{i+β,n+1}]) and hence BKZ-β reduced bases exist by
Lemma 2.4.4. Note that although one is now only required to solve SVP on a rank β
or smaller lattice, at least to satisfy the second condition of Definition 2.4.5 for a given
i, it is not enough to do this once per block, as altering overlapping blocks may violate
previously satisfied conditions.

At the other end of the spectrum from BKZ-n reduction being equivalent to
HKZ reduction we have BKZ-2 reduction. This is equivalent to the δ = 1 case of LLL
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reduction by [SE94, Thm. 5]. However, as previously mentioned, no proof of polynomial
complexity is known for 1-LLL reduction. In [Sch87, Thm. 3.2], by considering BKZ
reduction only on disjoint blocks in the lattice basis, an algorithm that improves upon
the guarantees of LLL reduction is shown to run in polynomial time provided we take
the slightly sublogarithmic β ∈ O(log n/ log log n). If the SVP oracle is replaced with
a lattice sieve (see Section 2.5) then we may take β ∈ O(log n).

The algorithm [SE91, SE94] we are interested in instead foregoes a polynomial time
running proof (for any β) and instead achieves BKZ-β reduction and performs well
in practice. We introduce the BKZ algorithm as Algorithm 7. It makes use of LLL
as a subroutine, and an oracle OSVP that solves SVP on an input lattice. There is a

Algorithm 7 The BKZ algorithm.
Require: Basis B ∈ Rd×n, block size β ∈ {2, . . . , n}, parameter δ ∈ (1/2, 1)

1: procedure BKZ(B, β, δ)
2: B← LLL(B, δ)
3: clean = True
4: i = 1
5: while i < n do
6: j ← min{i+ β, n+ 1}
7: w[i:j] = viπi(bi) + · · ·+ vj−1πi(bj−1)← OSVP(Λ[i:j])
8: if ∥w[i:j]∥ < ∥b∗i ∥ then
9: clean = False

10: w = vibi + · · ·+ vj−1bj−1
11: Bg = (b1 · · ·w bi · · ·bn)
12: B← LLL(Bg, δ) and remove the 0 column
13: i← i+ 1
14: if clean = False and i = n then
15: i = 1return B

slight restriction on the range of δ not present before which is an artefact of [SE94]
using a floating point version of LLL. In any case the implementations we consider
in this work [dt21a, dt21b] set δ = 0.99, and if δ is omitted we assume this value.
We also implicitly assume that the changes to B∗ are known from the calls to LLL.
Finally, we note that the size reduction requirement of LLL reduced bases means that
running LLL on a non full rank lattice will produce a full rank output basis and some
0 columns. This is used on Line 12 to transform the generating set Bg for the lattice
Λ = Λ(B) back into a basis, and is discussed in more detail in [SE94, Sec. 4].

We call the variable i taking values 1, . . . , n− 1 a tour of BKZ. We can see that
Algorithm 7 continues solving SVP in the necessary blocks until some tour completes
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such that no insertions, the name given to operations on Line 11, are made. The basis
returned will therefore be BKZ-β reduced. We note that often the w[i:j] of Line 7 is
said to be inserted, which implicitly describes the insertion of Line 11.

In its original form Algorithm 7 is not known to terminate in a polynomial number
of tours in n. By examining a slight variant of Algorithm 7 called BKZ’, in [HPS11,
Thm. 1] it is proven that BKZ’ can be terminated after a polynomial number of tours in
n while still ensuring a short first basis vector. This notion of early termination, often
called ‘early abort’, was one of many practical improvements given in [CN11] which
proposes a variant of Algorithm 7. The variant of [CN11], along with its subsequent
improvements, is implemented in e.g. [dt21a, dt21b]. A common value for the number
of tours used in practice before aborting is 16, given in [Alb17, Sec. 2.5] following an
analysis of [Che13, Fig. 4.6]. More recently [LN20] gave a slightly smaller polynomial
for the number of required tours, along with slightly better bounds on the lengths of
the returned basis vectors. The following specialised version of the theorem statement
can be achieved by applying the proper preprocessing to a basis and applying the
methods of [HPS11].

Theorem 2.4.7 ([LN20, Thm. 2] specialised). For γβ the Hermite constant in dimen-
sion β and B ∈ Rd×n a basis that has had

Θ
n2

β2 · log n


tours of BKZ-β reduction applied to it, we have that

∥b1∥ ≤ γ
f(n,β)
β · vol(Λ)1/n, where f(n, β) =

n− 1
2(β − 1) +

β(β − 2)
2n(β − 1).

Given that an α-HSVP oracle called linearly many times can solve α2-SVP [Lov86,
p. 25], we have the following lemma.

Lemma 2.4.8. Let γβ denote the Hermite factor in dimension β and Cβ the complexity
of solving SVP on a rank β lattice, then for a lattice Λ described by input basis B′, one
can output another basis B = (b1 · · ·bn) in complexity poly(n) · Cβ such that

• ∥b1∥ ≤ γ
2·f(n,β)
β · λ1(Λ), and

• ∥b1∥ ≤ γ
f(n,β)
β · vol(Λ)1/n,

for f(n, β) =
n− 1

2(β − 1) +
β(β − 2)
2n(β − 1).
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Although the closed form is complex, if we use Minkowski’s γn ≤ n/4 + 1 for
n ≥ 1 [Ngu10], we have γβ < β for β ≥ 2 and can show that βf(n,β) is decreasing until
β ≈ n. We may also compare this to Lemma 2.4.1 and below by setting β = 2 and
letting δ → 1. Indeed, recalling γ2 = 2/

√
3 the bounds are identical in this case, which

we expect since BKZ-2 reduction is 1-LLL reduction. Note that Lemma 2.4.8 does not
give a polynomial time running proof for full BKZ-2 reduction, it merely says that
one can terminate after a polynomial number of tours (and so potentially not be fully
BKZ-2 reduced) and achieve the same upper bound on ∥b1∥.

The variant of BKZ we will be most concerned with in this thesis is called Progressive
BKZ. This variant was introduced in [AWHT16] and allows the block size β to alter
during its execution. It is often used as a form of preprocessing, where a certain number
of tours are run for growing block sizes, e.g. one tour of BKZ-β for β ∈ {2, . . . , β′}
for some upper bound β′. If one requires a b1 shorter than a known bound, such as
when solving α-HSVP, one can also not set an upper bound and run tours of BKZ with
larger and larger block sizes, until a solution is returned or some termination condition
reached.

2.4.2 Lattice reduction heuristics

We have seen two lemmas, Lemma 2.4.1 and Lemma 2.4.8, that describe the guarantees
we are given by LLL after termination and BKZ after a polynomial number of tours.
To show the usefulness of these worst case results it is enough to exhibit a basis of
some lattice that, after reduction, has b1 of the maximum length allowed by them.
In cryptography average case results are often more useful. For example, imagine a
finite class of rank n lattices. If n > 1 then they each have infinitely many bases, but
imagine a canonical basis Bc for each exists and can be efficiently calculated, and that
we apply lattice reduction to this canonical basis. Assume for exactly one lattice in our
finite class we have B = (b1 · · ·bn)← LLL(Bc, 3/4) where ∥b1∥ = 2(n−1)/2 · λ1(Λ(B)),
but for all other lattices B← LLL(Bc, 3/4) is such that b1 is an SVP solution. We
would hope no cryptosystem is built from the hardness of solving SVP for a uniform
lattice in this class solely because of the worst case bounds. This is what we aim to
capture by studying the average case performance of lattice reduction algorithms. For
some sampling distribution over some class of lattices (and possibly also over their
bases, though this is trickier), what is the expected performance of a given lattice
reduction algorithm in terms of e.g. the length of the first basis vector?

We note that since the introduction of the LLL algorithm it has been experimentally
observed that on many classes of lattices the first basis of vector of the output basis is
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much smaller than predicted by e.g. Lemma 2.4.1 [NS06], and similarly for BKZ [GN08b].
To discuss their findings, we introduce the following quantity of a basis.

Definition 2.4.6 (Root Hermite Factor). Given a basis B ∈ Rd×n for lattice Λ = Λ(B)
the Hermite factor of this lattice basis is

h(B) = ∥b1∥
vol(Λ)1/n

,

so that if b1 is an SVP solution, h(B) = h(Λ). We define the root Hermite factor of
the basis as

δ(B) =
(
∥b1∥

vol(Λ)1/n

)1/(n−1)

= h(B)1/(n−1).

If the root Hermite factor of some basis is δ(B) we have ∥b1∥ = δ(B)n−1 · vol(Λ)1/n.
We note that in some works the nth root is considered, but we follow [Vir21, Sec. 1.4.1.2]
and arguments therein for why the n− 1th root is more natural.6 From Lemma 2.4.1
and below we know in the worst case that a δ-LLL reduced basis B will have h(B) ≤
(4/3)(n−1)/4 as δ → 1, and therefore root Hermite factor δ(B) ≤ (4/3)1/4 ≈ 1.07.
In [NS06] it is instead shown that for various classes of lattices the root Hermite factor
for such LLL reduction is δ(B) ≈ 1.02. We therefore expect ∥b1∥ ≈ 1.02(n−1) ·vol(Λ)1/n

after e.g. 0.999-LLL reduction. While the two constants 1.02 and 1.07 are similar, since
we take their (n−1)th power, the difference is important in practice. Similarly [GN08b]
show an experimental root Hermite factor of 1.013 for BKZ-20 where one would expect
1.034. When we say ‘for BKZ-20’ we implicitly mean ‘for a basis of a lattice from a
particular class reduced by BKZ-20’. Following [NS06, GN08b] we note that, although
solving α-HSVP provides a solution to α2-SVP, if the lattice in question follows the
Gaussian heuristic then we expect λ1(Λ) =

√
n/2πe · vol(Λ)1/n and therefore

∥b1∥ = δ(B)n−1 · vol(Λ)1/n =
√

2πe/n · δ(B)n−1 · λ1(Λ).

That is, we solve α-HSVP where α = δ(B)n−1 and also α′-SVP, where α and α′ are
equal up to sublinear factors. More generally, whenever vol(Λ)1/n ≤ λ1(Λ) we have
α′ ≤ α.

In [Che13] the asymptotic expression

lim
n→∞

δ(B) =
 β

2πe · (πβ)1/β

1/2(β−1)

(2.15)

6In Chapter 3 this leads to a slight rederivation of some formulas compared to the original.
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is given for BKZ-β reduction on random lattice bases B of rank n in the sense of [GM03].
This formula is frequently used in the following way, first let β ≥ 50 and n ≥ C · β
for some constant C bigger than say 2. Then for an ‘ordinary’ lattice basis B that
we encounter in cryptography, say a basis of a modular lattice of the form introduced
in (2.2), if we perform B← BKZ(B, β) then we assume δ(B) is given by the righthand
side of (2.15).

Definition 2.4.7. For β ≥ 50, let δβ denote the estimate given by (2.15) for the root
Hermite factor after BKZ-β reduction.

Note that for a lattice following the Gaussian heuristic we can therefore expect
to solve α-SVP and α-HSVP for α ≈ δn−1

β . The β ≥ 50 requirement is both a sanity
check, as δβ is increasing for β ≤ 36, against intuition (weaker lattice reduction giving
better approximations – I wish) and also to try and ensure the projected sublattices
that BKZ operates on have a distribution similar to random lattices. It has been
experimentally observed that this randomness criterion is not the case for block sizes
below 30 [GN08b], see e.g. [CN11, Fig. 2].

Another way to measure the quality of a basis after reduction is by its Gram-
Schmidt norms, and how quickly they decrease. Here there exists a heuristic called the
Geometric Series Assumption [Sch03], we define the basis profile of some basis B and
then introduce this heuristic.

Definition 2.4.8 (Basis profile). For a basis B ∈ Rd×n of lattice Λ = Λ(B) we define
its basis profile as the list of norms of the Gram–Schmidt vectors of B∗, (∥b∗i ∥)

n
i=1.

Definition 2.4.9 (Geometric Series Assumption (GSA)). The Geometric series as-
sumption states that after lattice reduction the profile of B is such that

∥b∗i ∥ = γi−1 · ∥b1∥

for some constant γ ∈ (0, 1).

There is the implicit notion that after ‘stronger’ lattice reduction, for example
using larger β, the constant factor γ gets closer to 1. The GSA is known to be
accurate [CN11, YD17] when β ≥ 50, β is sufficiently smaller than n, and we are not
considering the so called head or tail of the basis. The head is some number of the first
indices, i ∈ {1, . . . , h}, and the tail some number of the final indices, i ∈ {t, . . . , n}.

We note that given Definition 2.4.6 we have the following two lemmata.

Lemma 2.4.9 ([Vir21, Lem. 7], slightly adapted). If B ∈ Rd×n is a basis that follows
the GSA, we have the relationship δ(B) = 1/γ1/2.
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Lemma 2.4.10 ([Vir21, Lem. 9]). If B ∈ Rd×n is given by B← BKZ(B, β), and B
follows the GSA and the Gaussian heuristic, we have the relationship

γ(β) =
(

(πβ)1/β · β

2πe

)1/(1−β)

.

It is therefore shown that by assuming the GSA and the Gaussian heuristic one
can rederive the righthand side of (2.15).

2.4.3 Solving LWE using lattice reduction

As introduced in Definition 2.2.35 and below, the LWE problem is closely related
to the lattice Λq(A) when the columns of A are formed from the first part of some
LWE samples. In this section we will discuss how the lattice reduction algorithms of
Section 2.4.1, in particular BKZ, may be used in combination with the lattice reduction
heuristics of Section 2.4.2 to mount the primal attack [Kan87, BG14b] against LWE
instances. There are other lattice reduction based attacks against LWE instances,
such as the decoding attack [LP11], and the dual attack [MR09, Alb17]. The first
of these alternatives generalises [Bab86], and the second works in the (scaled) dual
lattice of Λq(A), namely Λ⊥q (A). There are also purely algebraic [AG11, ACF+15] and
combinatorial [BKW03, GJMS17] style attacks.

The idea of the primal attack is to embed a concatenation of the errors of some
LWE samples as a short vector into a lattice, and then find said short vector using
lattice reduction. It can be thought of as converting a BDD instance into a uSVP
instance. Concretely we number m LWE samples as (ai, ⟨ai, s⟩+ ei mod q)i≤m for fixed
s ∈ Zn

q and i.i.d. ai ← U(Zn
q ) and ei ← χ. We form A ∈ Zn×m

q such that the ith column
of A is ai and assume we can permute the columns of A such that A = (A1|A2) has
A1 ∈ GLn(Zq). After permuting the indices so that we have an invertible A1 we let
b = (⟨a1, s⟩+ e1 mod q, . . . , ⟨am, s⟩+ em mod q)t ∈ Zm

q and e = (e1, . . . , em)t ∈ Zm.
We recall from (2.2) that Λq(A) then has volume qm−n and an m ×m integer basis
BA. Implicitly considering A and s over the integers, it also has At · s + q · x for any
x ∈ Zm as lattice vectors. Let b′ ∈ Zm be any vector in the class of b ∈ Zm

q and set
the target t = b′ for a BDD instance over Λq(A). If ∥e∥ ≤ λ1(Λq(A))/2, then we have
a γ-BDD instance with γ ≤ 1/2. Indeed, for any choice of b′ there exists an x ∈ Zm

such that we have b′ −At · s + q · x = e over the integers. In practice we choose b′

with balanced representatives. Solving this BBD instance returns At · s + q · x from
which s ∈ Zn

q can be recovered, since At has full column rank over Zq.
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The Kannan embedding7 primal attack [Kan87] creates a basis from BA and b′ in
which e is expected to be a uSVP solution, which is then found. Finding e allows one
to solve b− e = At · s over Zq for s and therefore also solve the LWE instance. The
primal basis Bp ∈ Z(m+1)×(m+1) is full rank and constructed as

Bp =
BA b′

0t t

 . (2.16)

The parameter t ∈ N \ {0} is called the embedding parameter, and we have vol(Bp) =
qm−n · t. So long as we have an invertible A1 we may use any number of samples m ≥ n

by removing columns of A2 before forming BA and removing entries of b′ from Bp as
appropriate. While using fewer samples reduces the dimension of Bp to a minimum
of n+ 1, it also decreases the volume, so we cannot simply take m = n in the primal
attack. The vector we are looking for ise

t

 =
−At · s + q · x

0

+
b′

t

 = Bp ·

v
1



for some v ∈ Zm. The expected length of
∥∥∥(e|t)t

∥∥∥2
is t2 + E [∑m

i=1 χ
2] = t2 +mE [χ2].

Given a known χ we can calculate this quantity.
Until 2016 one would now calculate (possibly an approximation of) the length of

the shortest non zero vector that is linearly independent to (e|t)t and hopefully have
an α-uSVP instance over Λ(Bp) with a large α, see e.g. [GN08b].

However, a new success condition was introduced in [ADPS16] and experimentally
verified in [AGVW17, BMW19, DDGR20, PV21]. It assumes that Bp behaves under
lattice reduction like a BA for uniform A ∈ Zn×m

q , i.e. that the final column introduced
in Bp has no effect in this regard. It can then determine, using the heuristics of
Section 2.4.2, the basis profile of Bp after e.g. BKZ-β reduction. For the rest of this
section we let e = (e|t)t ∈ Zm+1, B = Bp, and d = m+ 1.

If in a tour of BKZ-β we consider the final full block Λ[d−β+1] then, prior to any
information about e or its projections being ‘visible’ to the BKZ algorithm, we have
w[d−β+1] ← OSVP(Λ[d−β+1]) being inserted in this final full block. After this insertion
we have that w[d−β+1] = b∗d−β+1 is an SVP solution in this block. If subsequently, as
more tours of BKZ-β are run, the length of b∗d−β+1 increases – recall that stronger
lattice reduction means the basis profile lengths decrease less quickly – then it may
become the case that πd−β+1(e) becomes an SVP solution in the final full block. If

7In this thesis we deal with uniform secrets, and therefore do not use other embeddings [BG14b].
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so it will be inserted into the basis in the next BKZ tour. After this insertion it is
argued [AGVW17] that Algorithm 1 on bd−β+1 is sufficient to recover e, so we consider
ensuring ∥πd−β+1(e)∥ <

∥∥∥b∗d−β+1

∥∥∥ a win condition.
We therefore require two ingredients, estimates for ∥πi(e)∥ and for ∥b∗i ∥ after

BKZ-β reduction. The latter comes from the root Hermite factor and the GSA. For
the projections of e one first writes e in terms of the orthonormal basis B◦ using (2.5),
and can therefore represent its square length as follows

e = B · v = B◦ ·R · v = B◦ · v◦ ⇒ ∥e∥2 =
d∑

i=1
(v◦i )2.

If we consider πi(e) then we immediately see ∥πi(e)∥2 = ∑d
j=i (v◦j )2. Note that since we

fix t we always know that vd = 1 and therefore that v◦d = ⟨bd,b◦d⟩. It is therefore enough
to know a distribution for the (v◦i )2 with i ∈ [m]. The assumption used in [ADPS16] is
given in the following definition.

Definition 2.4.10 (Projection Heuristic). If χ is a centred random variable over Z with
variance σ2, x← χm, and B is a lattice basis e.g. one encountered during Algorithm 7,
then writing x = B◦ · v◦ we assume each (v◦i )2 is i.i.d. sampled as (v◦i )2 ← N(0, σ2). In
particular the expected value of ∥πi(x)∥2 is (m− i+ 1) · σ2.

For centred χ we have

V [χ] = E
[
χ2
]
− 0⇒ t2 +m · V [χ] = t2 +m · E

[
χ2
]
,

so that the expected value of ∥e∥2 is always given by t2 +m ·σ2. The assumption above
says furthermore that the expected value of ∥πi(e)∥2 is given by t2 + (m− i+ 1) · σ2.
For χ representing the discrete Gaussian distribution over Z and t = 1 the accuracy of
this assumption after LLL reduction is experimentally shown in [AGVW17, Fig. 2].

To concretise, t is usually set as 1 in practice and it is assumed that (d− i+ 1) · σ2

is a good approximation to 12 + (m − i + 1) · σ2. This is often the case since for
successful i = d−β+ 1 the ratio (m− i+ 1)/(d− i+ 1) will be close to 1, and practical
schemes often take small constant σ so that 1 ≈ σ2. The expected value of ∥πi(e)∥
is approximated as the square root of the above approximation,

√
d− i+ 1 · σ. This

introduces a small error that disappears as d− i+1→∞ [PV21, App. B]. We therefore
approximate ∥πd−β+1(e)∥ as

√
β · σ.

To calculate
∥∥∥b∗d−β+1

∥∥∥ after BKZ-β reduction, using the GSA and δβ, we have

∥∥∥b∗d−β+1

∥∥∥ = ∥b1∥ · γd−β = δd−1
β · vol(Λ)1/d ·

(
δ−2

β

)d−β
= δ2β−d−1

β · vol(Λ)1/d.
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We therefore conclude with the condition,
√
β · σ < δ2β−d−1

β · vol(Λ)1/d (2.17)
= δ2β−m−2

β · q(m−n)/(m+1).

We can control the number of samples m ≥ n, and the block size β, so given a cost
model for BKZ-β reduction on a dimension m+ 1 lattice we can attempt to minimise
the cost of the primal attack while satisfying (2.17).

2.5 Lattice sieves

Lattice sieves (often in this thesis just ‘sieves’ or ‘a sieve’) are algorithms that form
large lists of lattice vectors and then combine elements of these lists to obtain new
and shorter lattice vectors. Lattice sieves fall into two broad categories, provable and
heuristic. In this thesis we focus on the heuristic category and their analysis, and
assume full rank lattices. Lattice sieves are often used to solve SVP type problems,
for example within lattice reduction algorithms like BKZ, where they realise the OSVP

oracle (or an approximate variant). As well as outputting (approximate) SVP solutions,
more generally they terminate with a list containing many short lattice vectors which
is important in applications such as Section 2.3.3.

2.5.1 Basic ideas

A sieve combines lattice vectors by making use of the group operation, i.e. addition or
subtraction. Since α ·u for α ∈ Z and u ∈ Λ can only give a shorter lattice vector than
u in the trivial α = 0 case, we focus on combining k ≥ 2 lattice vectors at once. For
now we focus on k = 2. The fundamental question is whether for two vectors u,v ∈ Λ
we have that min{∥u + v∥ , ∥u− v∥} < max{∥u∥ , ∥v∥}. If so we can replace e.g. the
longer of u and v with the shorter of u + v and u− v.

Definition 2.5.1. Given u,v ∈ Λ we say (u,v) is a reduced pair if

min{∥u + v∥ , ∥u− v∥} ≥ max{∥u∥ , ∥v∥},

else they are a reducible pair.

We will write ∥u± v∥ to denote min{∥u + v∥ , ∥u− v∥}. Replacing the longest
element in a reducible pair with the shorter of the sum and difference of the pair
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is called reducing the pair. We note that in practice one uses inner products and
calculates e.g. ∥u∥2 = ⟨u,u⟩ to perform these styles of comparison.

If one continues to reduce pairs, then the lengths of the vectors in the list held by
the lattice sieve continue to decrease. Some natural questions arise. How does one
populate the list to begin with? How large does the list have to be to ensure there are
reducible pairs within it? When can we stop reducing pairs and expect to have found
unusually short vectors? Here the definition of ‘unusually’ is somewhat application
specific, but one should certainly think of vectors shorter than those that can be found
in polynomial time and often we aim to solve SVP almost exactly.

To answer the first question we require an efficient sampling routine, the output
of which satisfies some notion of ‘well distributed’ over the lattice. For example a
particularly degenerate sampling procedure that only outputs u ∈ spanZ ({b1,b2}) in
some Λ = Λ(B) with B ∈ Rn×n and n > 2 is clearly of little use. A notion of ‘well
distributed’ can be achieved by using a randomised variant of Babai’s Nearest Plane
algorithm due to Klein [Kle00] which has complexity polynomial in n and the size of
its input. This outputs a lattice vector sampled from a distribution close to a spherical
Gaussian of a sufficiently large variance restricted to the lattice, a detailed analysis is
given in [GPV08, Thm. 4.1]. Sampling a list L ⊂ Λ of lattice vectors in this manner
has complexity |L|1+o(1).

To answer how large the list must be to ensure that reducible pairs exist, we must
first determine the conditions that determine whether a pair is reducible. This is
displayed in Figure 2.1. For any u,v ∈ Rn, provided they are linearly independent, we
can consider the plane that they span. If they are not linearly independent then if u
and v are elements of some lattice it is efficient to find the shortest non trivial lattice
vector one can form by adding or subtracting multiples of them from each other. We
may rotate this plane so that u lies on the first axis, as in Figure 2.1. If v lies in the
interior of the shaded region then ∥u± v∥ < max{∥u∥ , ∥v∥}. In particular, if v lies
in one of the two circles then ∥u± v∥ < ∥u∥ and if v lies outside of the two vertical
lines then ∥u± v∥ < ∥v∥. We note that if θ(u,v) < π/3 then (u,v) is a reducible pair.
If further ∥u∥ = ∥v∥ then θ(u,v) < π/3 is an equivalent condition to (u,v) being
a reducible pair. For some u ∈ R2 let R(u) = {x ∈ R2 : (u,x) is a reducible pair}.
While it is not quite true that R(u) ⊂ R(α · u) for α ∈ (0, 1) because the circular
regions of R(u) are larger, in practice shorter lattice vectors in the list of a sieve will
cause far more reductions. Indeed, one can calculate that regardless of the circular
regions, narrowing the vertical band of unshaded space as in the α · u case increases
the fraction of Figure 2.1 that is shaded, and also captures more v that are close to
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orthogonal with u. As we shall see in Section 2.5.2, most vectors we encounter in
lattice sieves will be almost orthogonal to one another.

From the above discussion we have that θ(u,v) < π/3 is always a sufficient condition
for (u,v) to be a reducible pair. Therefore the amount of lattice vectors required in
our list is upper bounded by the maximum number of points in Rn one can choose
such that the angle between any pair of points is at least π/3. This value is called the
kissing number.

Definition 2.5.2 (Kissing Number, τn). The kissing number τn of Rn is

τn = max{|L| : L ⊂ Rn, θ(x,y) ≥ π/3 for all x,y ∈ L}.

This quantity is known exactly for only a few small dimensions [CS99, Mus08] but
has asymptotic upper and lower bounds.

Theorem 2.5.1 (Bounds on τn). We have, using the lower bound of [JJP18, Thm. 2]
and the upper bound of [KL78], that

(1 + o(1))
√

3π
8 log

(
3

2
√

2

)
· n3/2

√4
3

n

≤ τn ≤ 20.401n+o(n)

which can be written as √4
3

n+o(n)

≤ τn ≤ 20.401n+o(n).

We note here that 20.2075 ≈ (4/3)1/2.

We therefore know something about the list size we require to ensure it contains
reducible pairs. As we will see, in practice |L| ∈ 20.2075n+o(n), i.e. the lower end of our
asymptotic bounds, seems sufficient. Indeed, finding lattices for which significantly
more vectors are required could imply progress in the research of sphere packings.

The final question, when we can stop reducing pairs, is both sieve and application
specific. But in a model where sieving occurs in iterations, which is the case in the
first heuristic lattice sieve [NV08], if in each iteration the maximum length of vectors
in the sieve decreases by some geometric factor γ < 1 then we at least know that the
total number of iterations is polynomial. Indeed, let Λ = Λ(B) with B ∈ Rd×n and
recall that ∥A∥ represents the length of the longest column vector in A. Then one
can use [Kle00] to sample lattice vectors such that their lengths will be shorter than
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u

π/3

Figure 2.1 Visual depiction of R(u) ⊂ R2, the subset of the plane such that v ∈ R(u)
implies (u,v) is a reducible pair. The vertical dashed lines have x coordinates u/2 and
−u/2, and the two circles have radius ∥u∥ and centres u and −u.
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∥B∗∥ · poly(n) with overwhelming probability in n by [GPV08, Lem 2.5, Thm. 4.1].
Using LLL as preprocessing we can ensure ∥B∗∥ ∈ 2O(n) · λ1(Λ) as the following lemma
shows.

Lemma 2.5.2. Let B ∈ Rd×n be a (3/4)-LLL reduced basis defining Λ = Λ(B). If
there exists an i ∈ {2, . . . , n} such that ∥b∗i ∥ > 2n−i · ∥b1∥ then any w ∈ Λ such that
∥w∥ = λ1(Λ) does not require bi, . . . ,bn. That is w ∈ Λ(B′) for B′ = (b1 · · ·bi−1).

Proof. Assume such an index i exists. For a (3/4)-LLL reduced basis and any index
i ∈ [n] we have

∥∥∥b∗i+1

∥∥∥ ≥ ∥b∗i ∥ /2, therefore ∥b∗i ∥ > 2n−i · ∥b1∥ ⇒ ∥b∗i ∥ , . . . , ∥b∗n∥ >
∥b1∥. If w is such that ∥w∥ = λ1(Λ) then ∥w∥2 ≤ ∥b1∥2 < ∥b∗i ∥

2 , . . . , ∥b∗n∥
2. Let

w =
n∑

j=1
vjbj =

n∑
j=1

xjb∗j

with each vj ∈ Z and xj ∈ R. We have xj = vj + vj+1µj+1,j + · · ·+ vnµn,j for all j ∈ [n],
and in particular xn = vn ∈ Z.

Given the orthogonality of the Gram–Schmidt basis we have

∥w∥2 =
n∑

j=1
x2

j

∥∥∥b∗j∥∥∥2

In particular x2
n ∥b∗n∥

2 ≤ ∥w∥2 and therefore, since xn = vn is an integer and ∥b∗n∥ >
∥w∥, xn = vn = 0. We therefore have xn−1 = vn−1 + vnµn,n−1 = vn−1, and by the same
argument, xn−1 = vn−1 = 0. This process continues until we find xi = vi = 0, and
therefore have that w = v1b1 + · · ·+ vi−1bi−1 as required.

If any b∗i is ‘too much’ longer than b1 we may remove bi, . . . ,bn from the basis
and still find a shortest vector as an integer combination of the remaining basis vectors.
The maximal allowable length of a Gram–Schmidt vector that does not cause this
removal occurs at i = 2, and

∥b∗2∥ ≤ 2n−2 · ∥b1∥ ≤ 2n−2 · 2(n−1)/2 · λ1(Λ) ∈ 2O(n) · λ1(Λ),

with the final inequality from Lemma 2.4.1. Therefore, polynomially many iterations
of the sieve are sufficient, i.e. γp(n) · 2O(n) ≈ 1 for some polynomial p(n).

Heuristics

Here we introduce four heuristic ideas that are found within the analysis of heuristic
lattice sieves. The first deals with the lengths and distribution of the lattice vectors
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we are considering, the second with the angles between reducible pairs, and the third
with the average case size of L ⊂ Λ required to find reducing pairs. Finally, the fourth
heuristic regards the contents of the list upon termination of a lattice sieve. The first
heuristic is somehow fundamental, as the others follow from applying mathematical
results while assuming it holds.

One of the main theoretical difficulties when analysing provable lattice sieves is
determining and controlling the distribution that the lattice vectors in the list L
follow. In the original lattice sieve [AKS01] this is accounted for by adding small
Gaussian perturbations to make the sieve ‘forget’ the discrete structure of the lattice,
and in subsequent works by ensuring the lattice vectors fall into particular equivalence
classes [ASD18, ALSD21]. In heuristic lattice sieving, a line of works that began
with [NV08, Sec. 4], instead the vectors considered by the sieve are assumed to be
uniformly distributed in some thin annulus.

Definition 2.5.3 (Uniform heuristic). Let L ⊂ Λ ⊂ Rn be a list of lattice vectors
encountered after some iteration of a heuristic lattice sieve. We assume, after the
appropriate scaling, that the elements of L are i.i.d. uniformly distributed in

annγ = {x ∈ Rn : γ ≤ ∥x∥ ≤ 1},

for some fixed γ < 1.

Like a heuristic version of the perturbation method of [AKS01], the above assumes
that we can forget the discrete structure of the lattice, at least until we have found
many short vectors, see below. We typically consider this heuristic as γ → 1, as this
will lead to the smallest required size for L, as well as allow us to argue about uniformly
distributed points on Sn−1. What an iteration means is sieve specific, but it can be
thought of for example as performing one double loop over L to look for reducible
pairs, and reducing any found in this particular search.

In Section 2.5.2 we discuss geometric figures on the sphere which, in conjunction with
Definition 2.5.3 of the uniform heuristic as γ → 1, will give us the following heuristic.
The intuition is that i.i.d. u,v← U(Sn−1) are such that θ(u,v) is concentrated around
π/2. If we restrict to (u,v) such that θ(u,v) < π/3 then θ(u,v) will be concentrated
just below π/3.

Definition 2.5.4 (π/3 Heuristic). A reducible pair (u,v) discovered during a lattice
sieve will be such that θ(u,v) ∈ (π/3− ε, π/3) for some small ε > 0.

In Theorem 2.5.1 we give asymptotic bounds on the list size required to find reducing
pairs. Let C ⊂ L be a set of uniformly distributed vectors in annγ as in Definition 2.5.3,
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then it is shown [NV08, Lem. 4.1] that for many further uniformly distributed points
v ∈ annγ to be able to form reducible pairs (u,v) for some u ∈ C with overwhelming
probability, C need only take the lower bound given in Theorem 2.5.1.

Lemma 2.5.3 (Average case size of C, [NV08, Lem. 4.1]). Let n ∈ Z+, γ ∈ (2/3, 1)
and cγ = 1/(γ ·

√
1− γ2/4). Also let Nγ ∈ cn+o(n)

γ and N ∈ (Nγ, 2n). Finally let
L ⊂ annγ be a list of size N of uniformly distributed vectors. Then for any C ⊂ L

of size at least Nγ, for all v ∈ L there exists a u ∈ C such that ∥u± v∥ ≤ γ with
overwhelming probability in n.

Note that cγ →
√

4/3 as γ → 1, so Nγ becomes the lower bound of Theorem 2.5.1.

When L ⊂ annγ the condition ∥u± v∥ ≤ γ is equivalent to the maximum allowable
length of vectors in L reducing by a factor of γ. As γ → 1 the condition ∥u± v∥ ≤ γ

becomes almost identical to the reduction criterion of Definition 2.5.1; ∥u± v∥ <
max{∥u∥ , ∥v∥}.

This heuristic tells us that for a list of the correct size, almost all elements will
be part of a non trivial reducible pair. It is given in terms of the set C of centres
because [NV08] form one element, say u, of each reducible pair from such a set, and
then remove C from the list L after each iteration of their sieve. The sieves we consider
in this work do not delete vectors in this way, and instead perform nested loops over the
list L to find reducible pairs. Such an approach certainly finds the reducible pairs (u,v)
such that u is from a subset C ⊂ L. We therefore arrive at the following heuristic.

Definition 2.5.5 (Average case size of L). Let Λ ⊂ Rn, L ⊂ Λ be uniformly distributed
in annγ, and γ → 1. To ensure a 1 − o(1) fraction of elements u ∈ L are part of
a reducible pair (u,v) for v ∈ L \ {u} with overwhelming probability, we may take
|L| ∈ (4/3 + ε)n/2+o(n) for any ε > 0.

The final heuristic concerns the properties of the entire list L after a sieve has
terminated. The beginning list size of [NV08, Alg. 4] is poly(n) · cn+o(n)

γ because in each
iteration approximately cn+o(n)

γ elements of L are deleted and the maximum allowable
length of the remaining elements of L is decreased by a factor of γ. The sieve is iterated
until the list is empty, and the shortest vector in the previous list is returned.

As the vectors remaining in the list become particularly short, the list size can
decrease either (as before) by centres being removed, or through collisions. A collision
is when a pair reduces to 0 and may occur when a repeated element of L becomes
a centre. By [NV08, Lem. 4.4] and the experimental evidence of [NV08, Fig. 1], we
expect collisions to become numerous only after we have many good approximations
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to the shortest vector in our list, specifically lattice vectors of length approximately
4/3 · λ1(Λ). This is effectively a birthday paradox argument as γ → 1 – we expect
about (4/3)n lattice vectors below this length, mostly having length approximately
4/3 · λ1(Λ), from which we have a uniform sample of size (4/3)n/2.

By the Gaussian heuristic we expect a ball of radius roughly
√

4/3 ·gh(Λ) to contain
(4/3)n/2 vectors. For sieves that maintain a database of size (4/3)n/2 throughout their
operation, e.g. those that follow the blueprint of [MV10c] and do not discard centres,
and instead terminate when they see many collisions or make little progress, we have
the following heuristic.

Definition 2.5.6 (Composition of terminal L). Let r =
√

4/3 ·gh(Λ) for some Λ ⊂ Rn,
and L ⊂ Λ. After a lattice sieve has terminated, the final list L is expected to be of
size approximately (4/3)n/2 and such that

|L ∩Bd (r)|
(4/3)n/2 = c ∈ (0, 1).

This heuristic may serve a dual purpose as a termination condition, one can define
this notion of saturation for the final list as the termination condition, as suggested
in [Duc18a]. That is, one can continue sampling and sieving until the list contains a
specified fraction c of the number of lattice vectors expected by the Gaussian heuristic
to be below a certain length. Having a large number of short lattice vectors in the
terminal list of a sieve is crucial for the dimensions for free techniques of Algorithm 5.

2.5.2 Geometric figures on the sphere

Our analyses throughout this thesis will require several facts about the size of some
geometric figures on the sphere. We measure the volume of subsets of Sn−1 using the
standard (n− 1) dimensional spherical probability measure µn−1. This can be defined
by considering the n dimensional Lebesgue measure Ln, some X ⊂ Sn−1, and defining
cone(X) = {y : y = t · x, t ∈ [0, 1], x ∈ X} ⊂ Rn. We say X is measurable under µn−1

if and only if cone(X) is measurable under Ln, and in such a case set

µn−1(X) = v−1
n · Ln(cone(X)).

We have µn−1(Sn−1) = 1, and for measurable X ⊂ Sn−1 intuitively µn−1(X) is the
fraction of the surface of Sn−1 that X covers. The spherical cap of angle θ about
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u ∈ Sn−1 is Cn−1(u, θ) = {v ∈ Sn−1 : θ(u,v) ≤ θ}. The measure of a spherical cap is

Cn(u, θ) = µn−1(Cn−1(u, θ)) = 1√
π

Γ(n
2 )

Γ(n−1
2 )

∫ θ

0
sinn−2(t) dt.

We will often interpret Cn(u, θ) as the probability that v drawn uniformly from Sn−1

satisfies θ(u,v) ≤ θ. We denote the density of the event θ(u,v) = θ by

An(u, θ) = ∂

∂θ
Cn(u, θ) = 1√

π

Γ(n
2 )

Γ(n−1
2 ) sinn−2(θ). (2.18)

Note that Cn(u, θ) does not depend on u, so we may write Cn(θ) and An(θ) without
ambiguity. The wedge formed by the intersection of two caps is W n−1(u, θu,v, θv) =
Cn−1(u, θu) ∩ Cn−1(v, θv). The measure of a wedge only depends on θ = θ(u,v), θu,
and θv, so we denote it

Wn(θ, θu, θv) = µn−1(W n−1(u, θu,v, θv)).

We will often interpret Wn(θ, θu, θv) as the probability that w drawn uniformly from
Sn−1 satisfies θ(u,w) ≤ θu and θ(v,w) ≤ θv. Note θ ≥ θu + θv ⇒ Wn(θ, θu, θv) = 0.

We see that the density (2.18) becomes a point function at π/2 as n→∞. Since
the density is symmetric around π/2 on the interval [0, π] we need only understand
the interval [0, π/2]. By [BDGL16, Lem. 2.1] we have Cn(θ) ∈ 1/2 · (sin θ)n+o(n) for
θ ∈ [0, π/2]. We note that the spherical caps Cn(α) of [BDGL16] with α ∈ [0, 1] are
equivalent to Cn(θ) above for cos θ = α and θ ∈ [0, π/2]. The factor of a half is present
because we know Cn(π/2) = 1/2. The asymptotic relation Cn(θ) ∈ 1/2 · (sin θ)n+o(n)

gives us the π/3 heuristic of Definition 2.5.4. Indeed, given a u ∈ Sn−1 and any θ < π/2
imagine we sample many i.i.d. vi ← U(Sn−1). For any ε > 0, any vi ∈ Cn(u, θ) will
be such that θ(u,vi) ∈ (θ − ε, θ] with overwhelming probability in n. An integral
representation of Wn(θ, θu, θv) is given in [AGPS19, App. A].

2.5.3 Various sieves

In this section a brief introduction to the sieves considered in this thesis is given,
though more details can be found in the relevant papers. All the sieves introduced
below make some use of the heuristics introduced in Section 2.5.1. While only 2-sieves
are introduced above, in Chapter 3 we will also make use of a 3-sieve, and in Chapter 4
consider k-sieves for any constant k. For a more thorough introduction see [Laa16],
which provides a comprehensive analysis of many of the sieves described below.
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Nguyen–Vidick

The sieve of [NV08, Sec. 4] is the first heuristic lattice sieve. It introduced many of
the heuristics above and provided the first experimental evidence for their accuracy.
In its original formulation a sieving iteration strictly ensured the maximum allowable
length of vectors in the list decreased by a geometric factor γ < 1. It achieved this via
Lines 3–13 of [NV08, Alg. 5]; a set of centres is initialised as empty, any lattice vector
that is already short enough immediately passes to the next list, any that is not is
checked against the current contents of the set of centres to see if a satisfying reducible
pair can be found, and if not is added to the set of centres. This set of centres is
discarded at the end of the sieving iteration, and a new sieving iteration begins. The
sieve concludes when the list output from a sieving iteration is empty, and the shortest
vector from the previous list is returned. By the analysis of [NV08, Lem. 4.1], under
the heuristic of Definition 2.5.3 they expect a space complexity of (4/3 + ε)n/2+o(n) for
any ε > 0. Since each of the polynomial number of iterations performs a number of
operations quadratic in the list size, the time complexity is (4/3 + ε)n+o(n).

The phrase ‘a Nguyen–Vidick (or NV) style sieve’ has come to mean something
more general than the original description given above, and instead means a heuristic
sieve that first samples a list of lattice vectors, of a size assumed to be sufficient, and
then performs some form of search for reducible pairs (or k tuples in the case of k-sieves)
without concerning itself with the distribution of the returned lattice vectors. That is,
it is the initial sampling, the length reduction factor γ, and the uniform distribution
heuristic of Definition 2.5.3, and not the use of centres, that describe an ‘NV style
sieve’. We note that when considering u,v ∈ Sn−1 requiring that θ(u,v) ≤ θ < π/3 is
equivalent to requiring ∥u± v∥ ≤ γ < 1 for some γ = γ(θ).

We make precise the versions of an NV sieve used in this thesis in Section 3.6.1 and
as Algorithm 10.

Gauss

The Gauss sieve [MV10c] introduced several practical improvements to heuristic sieves,
in particular the idea that the required list size need not be determined a priori, that
the list itself need not be sampled in advance, and that no lattice vectors need be
deleted from the list. To achieve this, two data structures are used, a list and a
stack, which are both initially empty. Lattice vectors are sampled as required and
pairs are considered in a particular manner, specifically GaussReduce of [MV10c,
Alg. 2], such that any pair of vectors in the list is always ‘Gauss reduced’, hence the
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name. A pair being Gauss reduced is another expression for a pair being reduced,
as in Definition 2.5.1. Since θ(u,v) ≥ π/3 is a necessary condition for a pair (u,v)
to be reduced, this upper bounds the size of the list in the Gauss sieve on some full
rank lattice Λ ⊂ Rn by τn. We have therefore gone from an average case argument on
the list size under a heuristic [NV08, Lem. 4.1] to knowing that the list size is upper
bounded by τn, a quantity for which the best known upper and lower bounds differ by
an exponential factor, recall Theorem 2.5.1. However, in both cases we arrive at the
same expected list size, since lattices that would give a kissing number above the lower
bound of Theorem 2.5.1 seem hard to find.

Now that there is no natural termination condition, as opposed to [NV08] where the
output list is eventually empty, the question of when to terminate the Gauss sieve needs
to be addressed. The original work [MV10c] counts collisions, where reducing pairs
return 0, and termiates after a certain number are observed. For example, terminating
after 500 collisions is suggested in prose, and the implementation [Vou11] terminates
after a linear function of the maximum list size of collisions are observed. In Chapter 3
we will replace this termination condition with one that ensures the saturation heuristic
of Definition 2.5.6 is achieved by simply continuing to sample and reduce lattice vectors
until satisfaction.

A ‘Gauss style sieve’ is one that does not sample all lattice vectors in advance,
but rather one that samples them as required and attempts to maintain a list where
each pair is reduced. Since there are no known non heuristic termination conditions
for the Gauss sieve, a strict time complexity cannot be given. However in practice
it appears more efficient than NV style sieves, while maintaining the same expected
space complexity.

We make precise the version of a Gauss sieve used in this thesis in Section 3.6.1.

Locality Sensitive Sieves

Most pairs of vectors considered in the above sieving procedures will be almost orthog-
onal to each other, and therefore already reduced. In particular, for a list of size N
we check whether approximately N2 pairs are reduced and hope to find N that are
not so the procedure can be repeated. These checks use inner products to calculate
lengths, and since sampling N vectors costs N1+o(1), these inner products represent
the dominant term when calculating time complexity.

The idea of locality sensitive sieves is to perform some preprocessing on the list.
This preprocessing allows us to consider pairs of vectors that have a higher probability
to be reducible than pairs sampled uniformly from the list. Locality sensitive procedures
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come in two flavours. In locality sensitive hashing the list is preprocessed and its
elements are stored in hash tables. The hashing procedure is designed so that vectors
that share a hash value in one or more of the tables are likely to form reducible pairs.
In locality sensitive filtering, rather than all vectors being given hash values, they either
survive a series of filters, or they do not. These filters are designed such that vectors
that survive the same filters are likely to form reducible pairs. Provided the process of
creating the hash tables or of filtering is not too costly, and that vectors that share a
hash value or survive the same filters are sufficiently likely to form reducible pairs, then
by foregoing testing all possible pairs the sieve procedure can become more efficient.

For lattice sieving this line of work was initiated by [Laa15] and followed by a series
of works [Laa17, LdW15, BL16, BGJ15, BDGL16] which provide many time memory
tradeoffs. These works take the angle between a pair of vectors as their notion of
locality due to its close relationship to a pair being reducible, recall Section 2.5.1.

The two works we study in this thesis are the Becker–Gama–Joux sieve [BGJ15],
which decreases the time complexity without increasing the space complexity, and
the Becker–Ducas–Gama–Laarhoven sieve [BDGL16], which is the asymptotically
fastest known heuristic sieve. Both of the above sieves use of locality sensitive fil-
tering techniques. In particular these filters are defined using spherical caps, recall
Section 2.5.2.

The original Becker–Gama–Joux sieve on a lattice Λ ⊂ Rn recursively applies K
filters from a set F(m, δ),8 with m ∈ Z+ and δ ∈ (0, 1), to a list L ⊂ Λ. A filter f is
defined by x1, . . . ,xm ← U(Sn−1) and

f(u) =

0 if |{xi : ⟨xi,u⟩ ≥ 0}| ≤ (1− δ) ·m/2,
1 otherwise.

We say u passes the filter f if f(u) = 0. The above filtering procedure is iterated
K times using filters f1, . . . , fK defined as f is above, where each acts on the output
filtered list of the prior filter. We examine a simplified variant of this sieve in Chapter 3
and Chapter 5. In this simplified variant we set K = m = 1 and replace the parameter
δ with θ defining a spherical cap around x = x1. Namely, a vector u in the list L
passes the filter if u ∈ Cn−1(x, θ), and we search within L ∩ Cn−1(x, θ) for reducible
pairs. This simplified filter is then repeated t times. Repeated here does not mean
iterated, i.e. we do not filter again within the same spherical cap, but instead sample
another x ← U(Sn−1) to act as a spherical cap centre, t times. The parameters are

8In their notation m is dimension and n the filter parameter, but we transpose them here.
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therefore θ and the number of spherical caps centres t. See Algorithm 12 of Chapter 5
for more details.

The Becker–Ducas–Gama–Laarhoven sieve uses spherical caps around a list vector
to determine which of many filters to consider. Given a list L ⊂ Λ it defines t uniformly
sampled spherical cap centres X = {x1, . . . ,xt} ⊂ Sn−1 which will be used to describe
filters. It determines Li = L ∩ Cn−1(xi, θ2) for some θ2 and all xi ∈ X. Here Li

represents the list vectors that pass the filter defined by xi. Then, given a vector u ∈ L
with which one wants to form reducible pairs, it determines which spherical cap centres
are close to u. This is achieved by forming the set Xu = X ∩ Cn−1(u, θ1) for some
θ1. For all xi ∈ Xu, the spherical cap centres near to u, it checks for reducible pairs
(u,v) with v ∈ Li. The parameters are therefore θ1, θ2 and the number of spherical
cap centres t. See Algorithm 13 of Chapter 5 for more details.

k-Sieves

So far we have considered sieves that, perhaps after some preprocessing, check whether
a pair of list vectors is reducible. These sieves have space complexity of (4/3)n/2+o(n)

which is exponential in the dimension of the lattice in which we wish to find short
vectors. For high dimensions this space complexity may become prohibitive. The
idea of a k-sieve [BLS16] is to trade increased time complexity for decreased space
complexity by considering k tuples of list vectors at once. A k tuple that satisfies the
length constraints discussed below is said to be reducible, similar to the definition for a
pair being reducible. In the k = 3 case we may therefore consider u,v,w ∈ L and check
whether ∥u± v±w∥ < max{∥u∥ , ∥v∥ , ∥w∥}, where ∥u± v±w∥ is a shorthand for
all four possibilities. To think of this in terms of Figure 2.1 fix u and form four planes,
one from each of ±v ± w. From every triple, one then has four possibilities to fall
into the shaded region. On the other hand, to consider each triple naïvely one has to
perform three nested loops over L rather than two in the 2-sieve case, increasing the
time complexity by an exponential factor. We note that we can also still search for
reducible pairs from L, but that since the aim is to reduce the memory complexity as
far as possible, and in particular exponentially below (4/3)n/2+o(n), we do not expect to
find many and discount them from the rest of this section. In Chapter 3 the 3-sieve we
implement is also able to perform this search for reducible pairs with minimal overhead.

A k-sieve can be performed in both the style of an NV sieve and of a Gauss
sieve, though the latter case contains a little subtlety [BLS16]. In a Gauss style
2-sieve we ensure that there exist no reducible pairs in the list by checking ∥u± v∥ ≥
max{∥u∥ , ∥v∥} for all distinct u,v ∈ L. Let ∥u± v∥ ≥ max{∥u∥ , ∥v∥}, ∥u∥ ≤ ∥v∥
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and Λ be generated by u and v. Then we have ∥u∥ = λ1(Λ) and ∥v∥ = λ2(Λ), see
e.g. [Gal12, Sec. 17.1]. We say that (u v) is a Gauss–Lagrange reduced basis for
Λ, which is the two dimensional specialisation of a Minkowski reduced basis, recall
Definition 2.4.3. For n > 4 we cannot in general achieve Λ = Λ(B) with B = (b1 · · ·bn)
and ∥bi∥ = λi(Λ). Instead the correct notion for a Gauss style k-sieve, which attempts
to keep a list L such that no combination of k vectors in L can form something shorter,
is for each k tuple of vectors in L to be Minkowski reduced. More precisely, we require
that for any pairwise distinct u1, . . . ,uk ∈ L there exists some permutation σ ∈ Sk

such that B = (uσ(1) · · ·uσ(k)) is a Minkowski reduced basis for Λ = Λ(B). The results
of [Tam76] tell us that for k ≤ 4 this is possible by only considering scalars of absolute
value one, i.e. that if u1, . . . ,u4 are such that ∥u1∥ ≤ · · · ≤ ∥u4∥ and

∥u1 ± · · · ± u4∥ ≥ max{∥u1∥ , . . . , ∥u4∥},
∥ui ± uj ± uk∥ ≥ max{∥u1∥ , . . . , ∥u4∥} for i, j, k pairwise distinct,

∥ui ± uj∥ ≥ max{∥u1∥ , . . . , ∥u4∥} for i ̸= j,

then (u1 · · ·u4) is a Minkowski reduced basis. One can ensure this condition, and
hence a Minkowski reduced basis, for k ≤ 4 using the algorithms of [Sem01, NS09].

In practice 3-sieves appear most useful, and works such as [HK17, HKL18] and
Chapter 4 which consider arbitrary k focus on asymptotic performance. Here the
distinction between NV and Gauss style sieves is unimportant, and as such we do
not attempt the Minkowski reduced criterion given above. Instead we consider only
u1 ± · · · ± uk regardless of k. In [HK17] a k-sieve is shown to be a particular case
of a more general problem called the k configuration problem. The configuration
problem framework both allows a smooth time memory trade off for k-sieves and also
gives a lower time complexity when considering the same space complexity as [BLS16].
The work of [HKL18] explores these tradeoffs more completely and also applies the
locality sensitive filters of [BDGL16] described above. In Chapter 4 we introduce the
configuration framework and examine the ideas of [HK17, HKL18] using quantum
search routines.



82 Preliminaries

2.5.4 The SimHash prefilter

Charikar’s locality sensitive hashing (LSH) scheme [Cha02] is a family of hash functions
H defined on Rd for which, given u,v ∈ Rd

Pr
h←U(H)

[h(u) = h(v)] = 1− θ(u,v)
π

. (2.19)

It is used in the implementation of Chapter 3 and considered extensively in Chapter 5,
where quantum circuits are designed for it and a new heuristic analysis of it is given
in the lattice sieving setting. It is used as a form of prefiltering, orthogonal to the
techniques used by the various sieves introduced in Section 2.5.3. The hash function
family is defined by

H =
{
hr : Rd → {0, 1}, u 7→ sgn(⟨r,u⟩) : r ∈ Sd−1

}
,

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0. We have (2.19) since θ(u,v)/π is
the probability that the plane defined by h← U(H) separates u and v. Note that for
all h ∈ H, all u ∈ Rd, and all α ∈ R+ we have h(u) = h(α · u). This invariance allows
us to view H as defined over Sd−1 rather than Rd, a fact we make use of in Chapter 5.

The original analysis [Cha02, Sec. 3] of this hash family shows how it relates to the
similarity of two subsets A,B of some set C. By considering the characteristic vectors
xA, xB, where e.g. xA = (xc)c∈C with xc = 1 if c ∈ A and xc = 0 otherwise, it is shown
that

Pr
h←U(H)

[h(xA) = h(xB)] = 1− 1
π
· arccos

 |A ∩B|√
|A| · |B|

 .
Charikar also observed that one can estimate θ(u,v)/π by choosing a random hash
function h = (h1, . . . , hn) ∈ Hn and measuring the Hamming distance between h(u) =
(h1(u), . . . , hn(u)) and h(v) = (h1(v), . . . , hn(v)). Each bit hi(u)⊕ hi(v) is Bernoulli
distributed with parameter p = θ(u,v)/π. In the limit of large n, the normalised
Hamming weight wt(h(u)⊕ h(v))/n converges to a normal distribution with mean p

and standard deviation
√
p(1− p)/n ≤ 1/2

√
n.

In the sieving literature, the process of approximating θ(·, ·) using a threshold on the
value of wt(h(u)⊕h(v)) is known as the ‘XOR and population count trick’ [ADH+19a,
Duc18a, FBB+15]. Functions in Hn are also used in Laarhoven’s HashSieve [Laa15].
We write popcountk,n(u,v;h) for a search filter of this type, and say that u and v
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pass the filter if the output is 0

popcountk,n(u,v;h) =

0 if ∑n
i=1 hi(u)⊕ hi(v) ≤ k,

1 otherwise.

When popcount is used in sieves, a heuristic assumption is made that one can fix
the function h and vary the pairs (i.e. sample u,v ← U(Sd−1)) and expect the
same behaviour as described above. When the n hash functions are fixed we write
popcountk,n(u,v). The threshold, k, is chosen based on the desired false positive and
false negative rates. Heuristically, if one’s goal is to detect points at angle at most θ,
one should take k/n ≈ θ/π. If k/n ≪ θ/π then the false negative rate will be large,
and many neighbouring pairs will be missed. An important consequence of missing
potential reductions is that the list size required to iterate various sieves increases. If
k/n≫ θ/π then the false positive rate will be large. We ultimately check the angle
between two vectors that pass a popcount filter using inner products, and so a large
false positive rate will lead to (relatively) expensive inner products being calculated
often.

2.6 Quantum search routines

In Chapters 4 and 5 we make use of a number of quantum search routines. These use
quantum memories and quantum circuits to search a list of elements for an element that
satisfies a certain predicate. The two algorithms we will introduce here are Grover’s
algorithm [Gro96] and amplitude amplification [BHMT02]. Both will be applied in the
quantum circuit model, and require quantum access to classical memory.

2.6.1 Qubits, measurement, quantum circuits, and qRAM

A quantum circuit is a system made of wires and quantum gates that carry and
manipulate quantum information. For a general introduction to the topics of this
section see [NC11, Sec. 1, Sec. 2]. A qubit is a unit vector in C2 and is the object
that encodes (on the logical layer) the quantum information present in one wire of a
quantum circuit. It can be represented by

|ψ⟩ = α0 |0⟩+ α1 |1⟩
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where each αj ∈ C is an amplitude such that ∑j |αj|2 = 1 and |0⟩ and |1⟩ represent an
orthonormal basis for C2. A combination of orthonormal basis vectors is often called a
quantum state or superposition. The quantum information of a quantum circuit with
n wires is encoded into n qubits, or a unit vector in (C2)⊗n. It can be represented as

|ψ⟩ =
2n−1∑
j=0

αj |jn⟩ ⊗ · · · ⊗ |j1⟩

where each αj ∈ C is an amplitude such that ∑j |αj|2 = 1 and jn · · · j1 is j represented
in binary. We can equivalently write |j⟩, |jn⟩ · · · |j1⟩, or |jn · · · j1⟩ for |jn⟩ ⊗ · · · ⊗ |j1⟩.
These form an orthonormal basis for (C2)⊗n. This particular orthonormal basis is
called the computational basis. Letting N = 2n and j ∈ [N − 1]0 we have |j⟩ = ej+1.

Initialisation of an n qubit state is the process of creating some |ψ⟩ = ∑
j αj |j⟩,

e.g. |0⟩ or (1/
√

2) · (|0⟩ − |1⟩). Usually it is assumed that initialised states will be a
computational basis state, e.g. |j⟩ for some j.

A measurement is an operation applied to a quantum state that collapses (perhaps
part of it) to a classical state. The classical state obtained via this process is probabilistic,
depending on the amplitudes of the quantum state. We will only concern ourselves with
measurement in the computational basis. Given some quantum state |ψ⟩ = ∑

j αj |j⟩
we define the measurement operators {Mj}2n−1

j=0 as Mj = |j⟩ ⟨j|. Note that Mj is the
all zero matrix with a one in the (j + 1)× (j + 1)th position. The measurement of |ψ⟩
with respect to Mj is

⟨ψ|M †
jMj |ψ⟩ = ⟨ψ|M2

j |ψ⟩ = ⟨ψ|Mj |ψ⟩ = |αj|2 ,

where one has M †
jMj = M2

j = Mj. These measurement operators tell us that the
probability of the quantum state returning j when measured is |αj|2, which also explains
why we required the sum of these values to equal one. By considering j = jn · · · j1, the
binary decomposition of j, we may measure only part of a quantum state. For example
if n = 2 and we wish to measure the first qubit only then we apply the measurement
M00 +M01 to determine the probability that it will be zero

⟨ψ| (M00 +M01)†(M00 +M01) |ψ⟩ = ⟨ψ| (M00 +M01) |ψ⟩ = |α00|2 + |α01|2 ,

and similarly M10 +M11 to determine the probability that it will be one. After this
partial measurement the remaining quantum state will need to be renormalised by a
factor of (|α00|2 + |α01|2)

−1/2.
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Ignoring the initialisation and measurement of qubits, a quantum circuit is a
sequence of unitary operations on the n qubits, one per unit time. A unitary operation
is any transformation U ∈ CN×N such that U†U = UU† = IN . In particular,
any transformation U of the information of a quantum circuit is reversible via the
application of the unitary U†. The outcome of applying a unitary U to a quantum
state |ψ⟩ is given by the multiplication U |ψ⟩.

To realise the unitary operations above we use quantum gates. These are themselves
unitary operations that may act on fewer than n wires of a quantum circuit. Only one
gate may act on a given wire in a given time step, and unitaries on the full circuit are
formed by parallel and sequential compositions of quantum gates. A set of quantum
gates is called universal if every unitary on an arbitrary number of wires can be formed
(or more properly, approximated arbitrarily closely) by finite parallel and sequential
compositions of gates from the gate set. When combined with the appropriate qubit
initialisation and measurement such a gate set allows one to describe any quantum
computation. In Chapter 4 we will make use of an unspecified universal gate set,
whereas in Chapter 5 we will specifically use the Clifford+T gate set. The Clifford+T
gate set is formed of the following one and two qubit unitaries

H = 1√
2

1 1
1 −1

 , S =
1 0

0 i

 , CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , T =
1 0

0 eiπ/4

 .

This is a universal gate set that is closely related to quantum error correcting codes, a
topic of interest for that chapter. In particular, in Chapter 4 we assume a noiseless
model of quantum computation, that is we assume quantum computation does not
suffer from errors. In Chapter 5 we specifically attempt to cost the extra computation
required to overcome errors in quantum computation. The gate H may also be called
a Hadamard gate.

Alongside the Clifford+T gate set, we will make use of a unit cost quantum table
look up operation. We call this operation qRAM [GLM08] for quantum (access to
classical) random access memory. Given some classical registers (R0, . . . , R2n−1) each
encoding an ℓ bit binary string, a classical RAM is a circuit that takes as input an
index j and returns the ℓ bits stored in Rj. The qRAM operation is described by a
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gate that can return arbitrary superpositions over the registers as follows

2n−1∑
j=0

αj |j⟩ |x⟩
qRAM−−−→

2n−1∑
j=0

αj |j⟩ |x⊕Rj⟩.

Here x is an arbitary ℓ bit string. Therefore qRAM is an n+ ℓ qubit gate that uses n
qubits to index the registers, and ℓ for the contents of a register. Note that even though
the classical memory may be large, e.g. our 2n registers, the width of the quantum
circuit enacting the qRAM gate is polynomial in n (provided also that ℓ is).

A quantum circuit is depicted as a series of horizontal lines to be read from left to
right, with each line representing a wire carrying a qubit. A quantum circuit, when
thought of as a graph, is directed (from left to right) and acyclic, i.e. no feedback
loops are allowed, unlike a classical circuit. Similarly, there can be no fan in or fan out
operations, as the first of these is not unitary and the latter violates the no cloning
theorem [Die82, WZ82]. In a time step either no gate is applied to a wire (depicted by
the identity wire), or a gate is applied to a wire (depicted by some box with a label,
or reserved symbol). A gate that acts on several qubits will span several wires. The
width of a circuit is the maximum number of wires over all time steps. The depth of
circuit is the longest path from an input to an output.

Any classical circuit can be efficiently simulated by a quantum circuit using a Toffoli
gate and ancilla qubits, see [NC11, Sec. 3.2.5]. Thus we have a quantum circuit with
the same number of gates and a similar width. A Toffoli gate can be formed from some
small constant number of Clifford+T gates [AMMR13].

2.6.2 Grover’s algorithm and amplitude amplification

Here we introduce a quantum mechanical search algorithm for unstructured search
called Grover’s algorithm, and a generalisation of it called amplitude amplification.
However first we define the style of search problem we will consider, and give a brief
analysis of classical exhaustive search.

Predicates and exhaustive search

A predicate on {0, 1, . . . , N − 1} is a function f : {0, 1, . . . , N − 1} → {0, 1}. The
kernel, or set of roots, of f is Ker (f) = {x : f(x) = 0}. We write |f | for |Ker (f)|. A
black box search algorithm finds a root of a predicate without exploiting any structure
present in the description of the predicate itself.



2.6 Quantum search routines 87

Exhaustive search is an example of a classical black box search algorithm. Here one
simply queries f in any order (providing no queries are repeated), e.g. f(0), f(1), . . .,
until a root is returned or the entire domain has been queried. Let f be a function
sampled uniformly from all functions mapping [N − 1]0 to {0, 1} that have M roots.
Exhaustive search on such an f will succeed with probability 1 −

(
N−j

M

)
/
(

N
M

)
≥

1− (1−M/N)j by the jth query. This is independent of knowledge of M . Using the
negative hypergeometric distribution, the expected number of queries is (N+1)/(M+1).

Grover’s algorithm

Grover’s algorithm [Gro96] is a quantum black box search algorithm. It provides a
quadratic improvement in terms of query complexity compared to exhaustive search.
Here a query means the application of a unitary that encodes f , rather than classical
query to f on a given value. Let 2n−1 < N ≤ 2n and consider a predicate f : [N − 1]0 →
{0, 1}. We define the following unitaries

• a unitary that puts the domain of f into equal superposition D |0⟩ = 1√
N

∑
j |j⟩,

• a unitary that negates the phase of a non root Rf |j⟩ = (−1)f(j) |j⟩,

• a unitary R0 = IN − 2 |0⟩ ⟨0|, the identity matrix except its top left entry is −1,9

• a unitary G(f) = DR0D†Rf called a Grover iteration, or a query.

Note that to define these unitaries we need only define them on an orthonormal basis.
Therefore in the case of Rf we have e.g. RfD |0⟩ = 1√

N

∑
j (−1)f(j) |j⟩.

Grover’s algorithm measures the superposition G(f)kD |0⟩ for some well chosen
k. The analysis of [BBHT98] shows that for a predicate f with M roots, if we define
sin2 θ = M/N and take k = ⌊π/4θ⌋ then measuring G(f)kD |0⟩ returns a root of f
with probability greater than 1 −M/N . This k is less than (π/4) ·

√
N/M , and so

Grover’s algorithm finds a root with probability at least 1−M/N using at most
√
N/M

queries to G(f). We summarise in the following theorem.

Theorem 2.6.1. If f is a predicate on a domain of size N with M roots, D and G(f)
are defined as above, and sin2 θ = M/N then measuring the state G(f)kD |0⟩ with
k = ⌊π/4θ⌋ ≤ (π/4) ·

√
N/M returns a root of f with probability at least 1−M/N .

9The unitaries we have defined here are the same as defining Rf to negate the phase of a root and
taking R0 = 2 |0⟩ ⟨0| − IN .
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Note the following important fact about Grover’s algorithm. The state after
applying j Grover iterations to a uniform superposition over N elements is

G(f)jD |0⟩ =
∑

ℓ∈Ker (f)
α(j,N) |ℓ⟩+

∑
ℓ̸∈Ker (f)

β(j,N) |ℓ⟩.

That is, the amplitudes of the roots are equal, and similarly the amplitudes of the non
roots are equal. This means, given that the measured state is e.g. a root, it will be a
uniformly selected root, and similarly for non roots. The exact values for α(j,N) and
β(j,N) are given in [BBHT98, Sec. 3].

Amplitude amplification

In [BHMT02] the authors note that the D unitary can be replaced by any unitary
that makes no measurements, and, if it were measured, would return a root of f with
positive probability. Call such a unitary A, i.e. measuring A |0⟩ returns a root of
f with probability a > 0. Let G(A, f) = AR0A†Rf so that G(D, f) = G(f), the
Grover iteration. The analysis of [BBHT98, Thm. 2] shows that if θa is such that
sin2 θa = a then measuring G(A, f)kA |0⟩ with k = ⌊π/4θa⌋ returns a root of f with
probability at least max{a, 1− a}. We summarise in the following theorem.

Theorem 2.6.2. Let f be a predicate on a domain of size N with M roots, A and
G(A, f) be defined as above, and sin2 θa = a where a > 0 is the probability of measuring
A |0⟩ and receiving a root of f . If G(A, f)kD |0⟩ for k = ⌊π/4θa⌋ ≤ π/(4

√
a) is

measured then a root of f is returned with probability at least max{a, 1− a}.

An unknown number of solutions

In Theorem 2.6.1 and Theorem 2.6.2 we assumed knowledge that may not be available
in a general search operation. Namely, in Theorem 2.6.1 we assumed we knew the
number M of roots the predicate f had, and this allowed us to determine the correct
number of Grover iterations to apply. Similarly, in Theorem 2.6.2 we assumed we
knew the probability with which we would receive a root of f if we measured some
superposition A |0⟩. This probability itself will depend on the number of roots, as well
as the particular unitary A. It is possible to retain the same asymptotic complexity
for both Grover’s algorithm and amplitude amplification when M or a are not known.

The idea is to choose k uniformly from intervals of growing size until success. In
the case of Grover’s algorithm the strategy is made explicit in [BBHT98, Sec. 4], and
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ultimately as [BBHT98, Thm. 3]. For amplitude amplification the strategy is outlined
as the algorithm QSearch [BHMT02, Sec. 2], and ultimately as [BHMT02, Thm. 3].





Chapter 3

The General Sieve Kernel,
/Ze.si.ka/

The General Sieve Kernel was born out of a confluence of kindred desires: to consider
a lattice sieve as more than an object that spits out a short vector, and instead as
a machine with state that shuffles around a basis; to see how far the ‘dimensions for
free’ techniques of [Duc18a] could be pushed, especially within this stateful machine
framework; to experiment on various suggestions [LM18, Duc18a] regarding amortising
the cost of SVP oracles within tours of lattice reduction; and to restore a little sanity
to the world (emphasis, implications, and childish humour my own) by showing that
there exist practical instances where an asymptotically exponential time lattice sieve
runs faster than asymptotically superexponential time lattice point enumeration.

Happily, we were successful in all of these goals, though we did not achieve the
levels of amortisation for the SVP oracles that we had initially hoped.

The crux of the idea is that a lattice sieve, as an unavoidable, as far as we know,
facet of its design, maintains an exponentially sized database of lattice vectors. As
the sieve iterates its search for tuples, specifically pairs and triples in this work, of
vectors that can be combined to form new and shorter vectors, the lengths of all the
vectors in the database become progressively shorter, on average. That is, by the
time the sieve terminates, the database does not include a single, useful, short vector
and exponentially many long and useless vectors, but instead a great many ‘shortish’
vectors, the utility of which extends beyond the usefulness of only the shortest.

How should one use, when performing lattice reduction or more generally when
attempting to solve SVP type problems, these extra resources?

In the case of SVP type problems, this is exactly one of the contributions of [Duc18a].
For any lattice, and a shortest vector of that lattice, in each projected sublattice there
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exists a projection of this shortest vector. The game becomes determining in which
‘natural’ projected sublattices the projection of this shortest vector is likely to be short
in, and in particular, short enough to appear in the database of a completed sieve.
Given such a database we will not necessarily know which entry is the projection of
this shortest vector, so instead we must apply some pseudoinverse projection operation
to this database, or a well chosen subset of candidates. This operation, ‘lifting’, must
maintain the shortness of the candidates, and the extent to which this can be achieved
is closely tied to the geometry of the basis being used to lift. We described this
procedure as Algorithm 5. The conclusion is that one can achieve a sublinear number
of dimensions for free, that is, one can sieve in a projected sublattice a sublinear number
of dimensions smaller than the lattice, and lift vectors from the database of this sieve.
If the basis vectors being lifted over, i.e. the sublinear number that are being taken for
free, are sufficiently well reduced, then one expects to find a short vector in the lattice.
This analysis relies on several heuristics introduced in Section 2.4.2.

Another technique for SVP type problems was introduced in [LM18], and is called
‘progressive sieving’. The idea is that a sieve which has a database already seeded with
somewhat short vectors will terminate more quickly than one starting from scratch.
This is not only because the sieve will not have to sample as many vectors, but also
because shorter lattice vectors are more useful in a sieve database than longer ones
(recall Figure 2.1 and the discussion surrounding it). The question is then how to find
somewhat short vectors cheaply, and the answer given is to sieve in progressively higher
dimensional sublattices. Specifically one takes a sequence of sublattices where each
sublattice strictly contains the previous sublattice, e.g. Λ1 ⊊ Λ2 ⊊ · · · ⊊ Λn = Λ, and
sieves in order within these sublattices. Crucially, the database of lattice vectors is
kept between these sieving operations, and since each subsequent sublattice contains
the previous one, we begin the new sieving operation with a large number of shortish
vectors. By the time the full dimension of the lattice is reached, the database will have
many short vectors from a sublattice as little as one rank smaller, and while many
more sieves are performed and the asymptotic complexity is unchanged, in practice
this procedure is significantly more efficient in terms of time.

In the lattice reduction case the literature also already contained some suggestions.
Indeed, continuing with the work of [LM18], the same idea – that preseeded sieve
databases are good – can be applied in the context of BKZ reduction. Consecutive
blocks in BKZ are represented by projected sublattices with a lot of overlap, in
particular the second in a pair of consecutive blocks introduces one new basis vector
and projects against one extra basis vector compared to the first in the pair. If one
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can sieve in one block, insert the short vector found, and then move the vectors in the
sieve database into this new, but similar, projected sublattice, all while keeping them
relatively short, then a tour of BKZ may become more efficient. Still riffing on the
idea that subsequent blocks in BKZ reduction overlap, the idea of taking some larger
blocksize within BKZ, say by some additive factor k, and then skipping k blocks, is
suggested in [Duc18a]. This strategy is justified by the sieving procedures described
therein achieving a stronger notion of reduction than is strictly given by BKZ. This
stronger notion of reduction also leads to the suggestion that one can perform less
work in blocks following the first to achieve the same number of dimensions for free. A
final idea, with rough pedigree [Sch03, BL06, FK15, TKH18], is to exhaustively check
the global effect on the basis of many different possible insertions within a lattice
reduction routine, and to use some scoring function to determine which is best for the
particular task at hand. This may lead to a shortest vector not always being chosen
for insertion, and the indices for insertions not following a strict pattern. One can
imagine a situation where the shortest insert for some index has worse projections, for
some definition of worse, than an ever so slightly longer insert at the same index, and
therefore wanting to choose this latter insert.

A lattice sieve is, to some greater or lesser extent, naturally well equipped to
be used in all of the above ideas. Indeed sieves are used to enact all of the ideas
in [Duc18a, LM18], and they produce a large number of potential insertion candidates,
some of which will not be a shortest vector in a given lattice, and therefore work well
with the ideas of [TKH18]. The design of the General Sieve Kernel was focussed on
the easy development and prototyping of such ideas, and similar cousins.

After introducing the stateful machine approach to lattice sieves, the work that
follows describes our implementation efforts, along with several lattice reduction and
SVP type problem solver procedures, and provides a large body of experimental results
regarding their efficacy and performance. Often the line between SVP type problem
solver and lattice reduction is blurred; before finding a short vector many, non terminal,
insertions may well be made in an opportunistic manner, and without any reference to
standard notions of e.g. BKZ reduction. Similarly, one requires lattice reduction to
find short vectors, and short vectors to apply lattice reduction. It really is turtles all
the way down! To test the introduced procedures against what has become somewhat
of a standard benchmark, the work also breaks (what were then unbroken) records in
the Darmstadt SVP [GS10] and LWE [GY15] challenges.
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3.1 The General Sieve Kernel and new records in
lattice reduction

The work presented here is an amended and annotated version of what is published as

Albrecht M.R., Ducas L., Herold G., Kirshanova E., Postlethwaite E.W., Stevens
M. (2019) The General Sieve Kernel and New Records in Lattice Reduction.

In: Ishai Y., Rijmen V. (eds) Advances in Cryptology – EUROCRYPT 2019. Lecture
Notes in Computer Science, vol 11477. Springer, Cham.
https://doi.org/10.1007/978-3-030-17656-3_25

The appendices are available at https://eprint.iacr.org/2019/089.

The maintained implementation is available at https://github.com/fplll/g6k.

3.2 Introduction

Sieving algorithms have seen remarkable progress over the last few years. Briefly, these
algorithms find a shortest vector in a lattice by considering exponentially many lattice
vectors and searching for sums and differences that produce shorter vectors. Since the
introduction of sieving algorithms in 2001 [AKS01], a long series of works, e.g. [MV10c,
BGJ15, HK17], have proposed asymptotically faster variants; the asymptotically fastest
of which has a heuristic time complexity of 20.292d+o(d), with d the dimension of the
lattice [BDGL16].

Such algorithms for finding short vectors are used in lattice reduction algorithms.
These improve the ‘quality’ of a lattice basis (see Section 2.4) and are used in the
cryptanalysis of lattice based cryptography.

On the other hand, lattice reduction libraries such as [dt21a, AWHT16] implement
enumeration algorithms, which also find a shortest vector in a lattice. These algorithms
perform an exhaustive search over all lattice points within a given target radius by
exploiting the properties of projected sublattices. Enumeration has a worst case time
complexity of d 1

2e
d+o(d) [Kan83, HS07] but requires only polynomial memory.

https://doi.org/10.1007/978-3-030-17656-3_25
https://eprint.iacr.org/2019/089
https://github.com/fplll/g6k


96 The General Sieve Kernel, /Ze.si.ka/

While, with respect to running time, sieving already compares favourably in
relatively low dimensions to simple enumeration1 (Fincke–Pohst enumeration [FP85]
without pruning), the Darmstadt Lattice Challenge ‘halls of fame’ for both approximate
SVP [GS10] and LWE [GY15] challenges have been traditionally dominated by results
obtained using enumeration. Sieving has therefore not, so far, been competitive
in practical dimensions when compared to state of the art enumeration with heavy
preprocessing [Kan83, MW15] and (extreme) pruning [GNR10] as implemented in
e.g. FPLLL/FPyLLL [dt21a, dt21b]. Here, ‘pruning’ means to forego exploring the
full search space in favour of focussing on likely candidates. The extreme pruning
variant proceeds by further shrinking the search space, and rerandomising the input and
restarting the search on failure. In this context ‘heavy preprocessing’ means running
strong lattice reduction, such as the BKZ algorithm [SE94, CN11], which in turn runs
enumeration in smaller dimensions, before performing the full enumeration. In short,
enumeration currently beats sieving ‘in practice’ despite having an asymptotically
worse running time. Thus [MW15], relying on the then state of the art, estimated
the crossover point between sieving and enumeration for solving the Shortest Vector
Problem (SVP) as dimension d = 146 (or in the thousands, assuming that extreme
pruning can be combined with heavy preprocessing without a loss of performance).

Contribution

In this work, we report performance records for achieving various lattice reduction
tasks using sieving. For exact SVP, we are able to outperform the pruned enumeration
of FPLLL/FPyLLL by dimension 70. For the Darmstadt SVP Challenges we solve
previously unsolved challenges in dimensions {151, 153, 155} (see Figure 3.1 and Ta-
ble 3.2), and our running times are at least 400 times smaller than the previous records
for comparable instances.

We also solved new instances (n, α) ∈ {(40, 0.005), (50, 0.015), (55, 0.015), (60, 0.01),
(65, 0.01), (75, 0.005)} of the Darmstadt LWE challenge (see Table 3.3). For this, we
adapted the strategy of [LN13], which consists of running one large enumeration after
a BKZ tour of small enumerations, to G6K. This slightly generalises the prediction
of [ADPS16, AGVW17].

1For example, the Gauss sieve implemented in FPLLL (latsieve) beats FPLLL’s unpruned SVP
oracle (fplll -a svp) in dimension 50.

2Their latest record (SVP-152) from Oct. 2018 is only reported in the HoF. It reports a computation
time of 800K CPU hours. According to personal communications with the authors, this translates to
36 · 800K= 28.8M core hours.
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Figure 3.1 New Darmstadt SVP Challenge records.


d,CN,AN,FK15,KT17,G6K
123,     ,     ,     ,       ,    4
124, 7200,     ,     ,       ,   23
125,19200,     ,     ,       ,   47
126,     , 2280, 1440,       ,   19
127,     ,     ,     ,       ,   85
128,     ,     , 1920,       ,   94
129,     ,     ,     ,       ,   33
130,     , 3900, 5952,       ,
131,     ,     ,     ,       ,   41
132,     ,     ,43200,       ,
133,     ,     ,     ,       ,   71
134,     ,     ,     , 158016,
135,     ,     ,     ,       ,  277
136,     ,     ,     ,       ,  354
137,     ,     ,     ,       ,  362
138,     ,     ,     ,1680000,
139,     ,     ,     ,       ,  380
140,     ,     ,     , 600000,
141,     ,     ,     ,       ,  190
142,     ,     ,     , 840000,
143,     ,     ,     ,       ,  669
144,     ,     ,     , 840000,
145,     ,     ,     ,       , 1496
146,     ,     ,     ,1536000,
147,     ,     ,     ,       , 4790
148,     ,     ,     ,5388000,
149,     ,     ,     ,       , 4660
150,     ,     ,     ,4350912,
151,     ,     ,     ,       ,10980
152,     ,     ,     ,28800000,
153,     ,     ,     ,       ,21864
154,     ,     ,     ,       ,
155,     ,     ,     ,       ,25344
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Our sieving performance is enabled by building on, generalising and extending
previous works. In particular, the landscape of enumeration and sieving started to
change recently with [Duc18a, LM18]. For example, [Duc18a] speculated that the
crossover point, for solving SVP, between the SubSieve proposed therein and pruned
enumeration would be around d = 90 if combined with faster sieving than [MV10c].
A key ingredient for this performance gain was the realisation of several ‘dimensions
for free’ by utilising heavy preprocessing and ‘Babai lifting’ (given in this thesis as
Algorithm 5) over said free dimensions. This may be viewed as a hybrid of pruned
enumeration with sieving, and is enabled by strong lattice reduction preprocessing.
In other words, we may consider these improvements as applying lessons learnt from
enumeration to sieving algorithms. It is worth recalling here that the fastest enu-
meration algorithm relies on the input basis being quasi HKZ reduced [Kan83], but
prior to [Duc18a, LM18] sieving was largely oblivious to the quality of the input basis.
Furthermore, both [Duc18a, LM18] suggest to exploit the fact that sieving algorithms
hold a database of many short vectors, for example by recycling them in future sieving
steps. Thus, instead of treating sieving as an SVP oracle outputting a single vector,
they implicitly treat it as a stateful machine where the state comprises the current
basis and a database of many relatively short vectors.

G6K, an abstract stateful machine

In this work, we embrace and push forward in this direction. After recalling some prelim-
inaries in Section 3.3, we propose the General Sieve Kernel (G6K, pronounced /Ze.si.ka/)
in Section 3.4, an abstract machine for running sieving algorithms, and driving lattice
reduction. We define several basic instructions on this stateful machine that not only
allow new sieving strategies to be simply expressed and easily prototyped, but also
lend themselves to the easy inclusion and extension of previous works. For example,
the progressive sieves from [Duc18a, LM18] can be concisely written as

Reset0,0,0, (ER, S)d, I0

where S means to sieve, I0 means to insert the shortest vector found into the basis, ER
means to increase the sieving dimension and Reset initialises the machine.

Beyond formalising previous techniques, our machine provides new instructions,
namely EL, which allows one to increase the sieving dimension ‘towards the left’ (of
the basis), and an insertion instruction I which is no longer terminal: it is possible
to resieve after an insertion, contrary to [Duc18a]. These instructions increase the
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range of implementable strategies and we make heavy use of them to achieve the above
results.

The General Sieve Kernel also introduces new tricks to further improve efficiency.
First, all vectors encountered during the sieve can be lifted ‘on-the-fly’ (as opposed to
only the final set of vectors in [Duc18a]) offering a few extra dimensions for free and
thus improved performance. Additionally, G6K keeps insertion candidates for many
positions so as to allow a posteriori choices of the most reducing insertion, akin to Deep
LLL [SE94] and the latest variants of Random Sampling Reduction (RSR) [TKH18],
enabling stronger preprocessing.

Lattice reduction with G6K

Using these instructions, in Section 3.5 we then create reduction strategies for various
tasks (SVP, BKZ like reduction). These strategies encapsulate and extend the contri-
butions and the suggestions made in [Duc18a, LM18], further exploiting the features
of G6K. Using the instructions of our abstract stateful machine, our fundamental
operation, named the Pump, may be written as

Resetκ,κ+β,κ+β, (EL, S)β−f , (I, Ss)β−f .

While previous works mostly focus on recursive lattice reduction within sieving, we also
explicitly treat and test utilising sieving within the BKZ algorithm. Here, we report
both negative and positive results. On the one hand, we report that, at least in our
implementation, the elegant idea of a sliding window sieve for BKZ [LM18] performs
poorly and offer a discussion as to why. We also find that the strategy from [Duc18a],
consisting of ‘overshooting’ the block size β of BKZ by a small additive factor combined
with ‘jumping’ over the same number of indices in a BKZ tour, does not provide
a beneficial quality vs. time trade off. On the other hand, we find that from the
second block of a BKZ tour onwards, or always in the progressive BKZ case, cheaper
sieving calls (involving less preprocessing) suffice. We also find that opportunistically
increasing the number of dimensions for free beyond the optimal values for solving
SVP improves the quality vs. time trade off. Thus, we vindicate the suggestion to
move beyond treating sieving merely as an SVP oracle in BKZ.

Implementation

In Section 3.6, we then propose and describe an open source, tweakable, multithreaded,
low level optimised implementation of G6K, featuring several sieve variants [MV10c,
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BGJ15, HK17]. Our implementation is carefully optimised to support multiple cores
in all time consuming operations, is highly parameterised and makes heavy use of the
SimHash test [Cha02, FBB+15, Duc18a]. It combines a C++ kernel with a Python
control module. Thus, our higher level algorithms are all implemented in Python
for easy experimentation. Our implementation is written with a view towards being
extensible and reusable and comes with documentation and tests. We consider hackable
and usable software a contribution in its own right.

Performance and records

Using and tuning our implementation of G6K then allows us to obtain the variety of
performance records for solving lattice challenges described above. We describe our
approach in Section 3.7. There, we also describe our experiments for the aforementioned
BKZ strategies.

Complementary information on the performance of our implementation is provided
in [ADH+19b]: in [ADH+19b, App. A] we give a feature by feature improvement report,
and [ADH+19b, App. B] assesses the parallelism efficiency.

Discussion

A natural question is how our results affect the security of lattice based schemes, espe-
cially the NIST PQC candidates. Most candidates have been extremely conservative,
and thus we do not expect the classical security claim of any scheme to be directly
affected by our results. We note, however, that our results on BKZ substantiate further
the prediction made in several analyses of NIST PQC candidates that the cost of the
SVP oracle can be somewhat amortised in BKZ [PAA+17, Sec 4.2.6]. Thus, our results
provide further evidence that the 8 d · CSV P cost model [ACD+18] is an overestimate,
but they nevertheless do not reach the lower bound given by the ‘core hardness’ esti-
mates. However, we stress that our work justifies the generally conservative approach
and we warn against security estimates based on a state of the art that is still in
motion.

On the other hand, the memory consumption of sieving eventually becomes a
difficult issue for implementation, and could incur slowdowns due to memory access
delays and bandwidth constraints. However, it is not so clear that these difficulties are
insurmountable, especially to an attacker with access to custom hardware. For example
Kirchner claimed [Kir16] that simple sieving algorithms such as the Nguyen–Vidick
sieve are implementable by a circuit with Area = Time = 20.2075n+o(n). Ducas further
conjectured [Duc18b] that bgj1 (a simplified version of [BGJ15]) can be implemented
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with Area = 20.2075n+o(n) and Time = 20.142n+o(n). More concretely, the algorithms that
we have implemented mostly consider contiguous streams of data, making the use of
disks instead of RAM plausibly not so penalising.

One may also argue that such an area requirement on its own is already unreasonable.
Yet, such arguments should also account for what amount of walltime is considered
reasonable. For example, the walltime of a bruteforce search costing 2128 CPU cycles
on 264 cores at 4GHz runs for 264 cycles = 232 seconds ≈ 134 years; larger walltimes
with fewer cores can arguably be considered irrelevant for practical attacks.

3.3 Preliminaries

3.3.1 Notations and basic definitions

We index from zero. The below repeats some preliminaries from this thesis, but
mostly to highlight this temporary change of first index. We write a matrix B as B =
(b0 · · ·bn−1) where bi is the ith column vector of B. We denote by B∗ = (b∗0 · · ·b∗n−1)
the Gram–Schmidt orthogonalisation of the matrix B = (b0 · · ·bn−1). By performing
bi ← bi − ⌊µi,j⌉bj type operations we can size reduce a basis vector (Algorithm 1)
and size reduce a basis (Algorithm 2). By considering a vector t ∈ Rd we can also
size reduce an arbitrary vector (Algorithm 3) which leads us to Babai’s Nearest Plane
algorithm [Bab86] for CVP type problems (Algorithm 4). Finally, these techniques are
used to ‘Babai lift’ in the dimensions for free techniques [Duc18a] used in this work
(Algorithm 5). In the above algorithms the range 1 to n is appropriately shifted to 0 to
n− 1, and most subtly in Line 3 of Algorithm 5 we have B′ ∈ Rd×ℓ and B′′ ∈ Rd×(n−ℓ).

We also define the orthonormal vectors b◦i = b∗i / ⟨b∗i ,b∗i ⟩ and extend this to the
orthonormal basis B◦ columnwise. For i ∈ {0, . . . , n− 1}, we denote the projection
orthogonally to the span of (b0 · · ·bi−1) by πi. In particular πi(bi) = b∗i and π0 is the
identity. When discussing the insertion operation in Section 3.4 we will write πB,i to
be precise about which basis we are projecting against. For 0 ≤ ℓ < r ≤ n, we denote
by B[ℓ:r] the local projected basis, (πℓ(bℓ) · · · πℓ(br−1)). When the basis is clear from
context Λ[ℓ:r] denotes Λ(B[ℓ:r]), the lattice generated by B[ℓ:r]. If r = n we refer to B[ℓ]

and Λ[ℓ]. Note that Λ[d−i] therefore represents a block of rank i that extends to the end
of the basis, rather than Λ[d−i+1] as when indexing from 1. Similarly, note that when
indexing from 0 we have ∥b∗i ∥ = γi · ∥b0∥ in Definition 2.4.9, and that the expected
squared length under the projection πi in Definition 2.4.10 is (m− i) · σ2.
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We refer to the left (resp. the right) of a context [ℓ : r] and by ‘the context [ℓ : r]’
implicitly refer also to Λ[ℓ:r] and B[ℓ:r]. More generally, we speak of the left (resp. the
right) as a direction to refer to smaller or earlier (resp. larger or later) indices and of
contexts becoming larger as r − l grows.

3.3.2 Sieving, lattice reduction and heuristics

Recall the definitions of an LLL reduced basis, an HKZ reduced basis, and a BKZ
reduced basis from Section 2.4.1, as well as the Gaussian heuristic of Definition 2.2.25,
and the contents of Section 2.4.2.

Sieving algorithms build databases of lattice vectors, exponentially sized in the
lattice dimension. In the simplest sieves, it is checked whether the sum or difference of
a pair of database vectors is shorter than one of the summands or differands. More
importantly for G6K as an abstract stateful machine is the heuristic ‘saturation’
property of sieving discussed in Definition 2.5.6 that, after sieving in some Λ, this
database contains many elements of {w ∈ Λ: ∥w∥ ≤ R · gh(Λ)}. Here R is a small
constant determined by the sieve (see Section 3.6.1). It is this information that G6K
will leverage when changing context and inserting.

In this work the termination condition of a sieve ensures that the
database of the sieve contains a constant fraction of the expected
number of lattice vectors of length no greater than R · gh(Λ). This
replaces previous conditions such as counting the number of ‘colli-
sions’ [MV10c]. The name given to this condition is the ‘saturation’
condition, and a sieve database that satisfies it is said to be ‘saturated’.

3.4 The General Sieve Kernel

3.4.1 Design principles

In this section we propose the General Sieve Kernel (Version 1.0), an abstract machine
supporting a wide variety of lattice reduction strategies based on sieving algorithms.
It minimises the sieving computation effort for a given reduction quality by

• offering a mechanism to recycle short vectors from one context to somewhat
short vectors in an overlapping context, therefore already starting the sieve
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closer to completion. This formalises and generalises some of the ideas proposed
in [Duc18a, LM18].

• being able to lift vectors to a larger context than the one currently considered.
These vectors are considered for insertion at earlier positions. But as an extension
to [Duc18a], which only lifted the final database of vectors, G6K is able to lift all
vectors encountered during the sieve. From this, we expect a few extra dimensions
for free.3

• deferring the decision of where to insert a short vector until after the search effort.
This is contrary to formal definitions of more standard reduction algorithms,
e.g. BKZ or Slide [GN08a] reduction, and inspired by Deep LLL and recent RSR
variants [TKH18].

The underlying computations per vector are reasonably cheap, typically linear or
quadratic in the dimension of the vector currently being considered. The most critical
operation, namely the SimHash test [Cha02, FBB+15, Duc18a], consists in practice of
about a dozen x86 non vectorised instructions for vectors of dimension roughly one
hundred.

3.4.2 Vectors, contexts and insertion

All vectors considered by G6K live in one of the projected lattices Λ[ℓ:r] of a lattice Λ.
More specifically, they are represented in basis B[ℓ:r] ∈ Rd×n as integral vectors v ∈ Zn

where n = r − ℓ, i.e. we have w = B[ℓ:r] · v for some w ∈ Λ[ℓ:r] ⊂ Rd. Throughout,
we may represent the (projected) lattice vector w by the vector v. It is convenient
and efficient to also keep a representation, v◦ ∈ Rn, of w in the orthonormalised basis
B◦[ℓ:r]; w = B◦ · v◦. This conversion costs O(n2).

Below we list the three operations that extend or shrink a vector to the left or to
the right. While these operations act on an element of the lattice, i.e. w, we define
them by their actions on the integer representatives. For example if w = B[ℓ:r] · v then
er(w) = B[ℓ:r+1] · (v0, . . . , vn−1, 0)t.

3Lifting is somewhat more expensive than checking the sum and difference of a pair of vectors. We
are therefore careful to only lift a fraction of all encountered vectors, namely only those with length
below, say,

√
1.8 · gh(Λ[ℓ:r]).
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• Extend Right (inclusion) er : Λ[ℓ:r] → Λ[ℓ:r+1]

(v0, . . . , vn−1) 7→ (v0, . . . , vn−1, 0)
(v◦0, . . . , v◦n−1) 7→ (v◦0, . . . , v◦n−1, 0)

• Shrink Left (projection) sl : Λ[ℓ:r] → Λ[ℓ+1:r]

(v0, . . . , vn−1) 7→ (v1, . . . , vn−1)
(v◦0, . . . , v◦n−1) 7→ (v◦1, . . . , v◦n−1)

• Extend Left (Babai lift) el : Λ[ℓ:r] → Λ[ℓ−1:r]

(v0, . . . , vn−1) 7→ (⌊−c⌉, v0, . . . , vn−1)
(v◦0, . . . , v◦n−1) 7→ ((c+ ⌊−c⌉) ·

∥∥∥b∗ℓ−1

∥∥∥ , v◦0, . . . , v◦n−1),

where c =
n−1∑
j=0

µℓ+j,ℓ−1 · vj.

This final operation, el, is Algorithm 5 where we set B = B[ℓ−1:r]

and B[1] = B[ℓ:r]. The list L ⊂ B[1] has a single element w[1] =
B[1] · v[1], and we write v[1] = (v0, . . . , vn−1). This single element
w[1] is the vector of Λ[ℓ:r] we are applying el to. Note that since we
are counting from 0, on Line 3 of Algorithm 5 we have B′ ∈ Rd×1

and B′′ ∈ Rd×(n−1) even though we are considering B[1]. We have
B′ = (πℓ−1(bℓ−1)) = (b∗ℓ−1) and B′′ = (πℓ−1(bl) · · · πℓ−1(br−1)). We
construct the target t = B′′ ·v[1] and, tracing through to Algorithm 3,
must determine −tB′ , the negation of its component in spanR (B′).
We have

t =
n−1∑
j=0

vj · πℓ−1(bℓ+j) =
n−1∑
j=0

vj

b∗ℓ+j +
ℓ+j−1∑
k=ℓ−1

µℓ+j,kb∗k

.
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The component of this in B′ is exactly the terms including b∗ℓ−1, hence
we find

−tB′ = −
n−1∑

j=0
µℓ+j,ℓ−1 · vj

b∗ℓ−1.

More concisely we write −tB′ = −c · b∗ℓ−1 for c the bracketed term
in the expression above. Tracing back up to Algorithm 5 we find
w′ = ⌈−c⌋b∗ℓ−1 on Line 6. Note that we subtract a multiple of b∗ℓ−1

because B′ = (b∗ℓ−1). Therefore w′ + t is described exactly by the
coefficients (⌊−c⌉, v0, . . . , vn−1)t in basis B[ℓ−1:r]. For the relation in
the orthonormal basis one must find the constant γ such that

γ · b◦ℓ−1 +
n−1∑
j=0

v◦j · b◦ℓ+j = ⌈−c⌋b∗ℓ−1 +
n−1∑
j=0

vj · πℓ−1(bℓ+j)

given that
n−1∑
j=0

v◦j · b◦ℓ+j =
n−1∑
j=0

vj · πℓ(bℓ+j).

A fairly tedious calculation shows that γ = c+ ⌈−c⌋. We have size
reduced, or ‘Babai lifted’, over a single dimension – to lift over more
dimensions el is iterated the desired number of times. Note that this
procedure does not require the µi,j relating B and B∗ to be updated;
we are ultimately using the basis to perform Algorithm 3, rather than
altering it.

While it would seem natural to also define a Shrink Right operation, we have not found
a geometrically meaningful way of doing so. Moreover, we have no algorithmic purpose
for it.

Insertion

Performing an insertion (the elementary lattice reduction operation) of a vector is less
straightforward. For i ≤ ℓ < r, n′ = r − i, n = r − ℓ an insertion of a vector w at
position i is a local change of basis making w = B[i:r] · v the first vector of the new
local projected basis, i.e. applying a unimodular matrix U ∈ Zn′×n′ to B[i:r] such that
(B[i:r] ·U)[0] = w. While doing so, we would like to recycle a database of vectors living
in the context [ℓ : r]. This prevents us from using the usual strategy of forming a
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generating set and LLL reducing it, as on Line 12 of Algorithm 7, as the effect this
may have on the database of vectors we wish to recycle may be complex.

In the case i = ℓ, this causes no difficulties, and one could apply any change of
basis U to the database.

In particular when i = ℓ we want a unimodular U such that w =
B[ℓ:r] ·U · (1, 0, . . . , 0)t given that w = B[ℓ:r] ·v, which implies the first
column of U must be v. Note that any basis B such that Λ(B) = Zn

is unimodular. By Lemma 2.4.2, provided there is no α ∈ (0, 1) such
that α · v ∈ Zn, we may extend v to a basis for Zn, and therefore
form the required unimodular matrix U. If such an α exists we
immediately have a shorter α ·w ∈ Λ[ℓ:r].
We can easily recycle other lattice vectors in the database; if w =
B[ℓ:r] · v is any lattice vector in our database, after this transform we
similarly transform v 7→ U−1 · v.

But to exploit dimensions for free, we will typically have i < ℓ, which is more
delicate. If we can ensure that

spanR

(
(B[i:r] ·U)[0 : ℓ− i+ 1]

)
= spanR

(
B[i:ℓ] ∪ {w}

)
(3.1)

then one can simply project all the database vectors orthogonally to w, to end up with
a database in a new smaller context [ℓ + 1 : r]. If it holds that v[j] = ±1 for some
j ∈ {ℓ− i, . . . , n′ − 1} an appropriate matrix U can be constructed as

U =


Ij×j 0j×n′−j−1

v 01×j 01×n′−j−1

0n′−j−1×j In′−j−1×n′−j−1

 . (3.2)

This U is a row permutation of an integer lower triangular matrix
with the diagonal all ones (resp. n′ − 1 ones and one minus one) if
v[j] = 1 (resp. v[j] = −1). It is therefore unimodular. Condition (3.1)
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is satisfied by computation,
(
B[i:r] ·U

)
[0] = w,(

B[i:r] ·U
)

[1] = B[i:r][0] = B[i:l][0],
...(

B[i:r] ·U
)

[ℓ− i] = B[i:r][ℓ− i− 1] = B[i:l][ℓ− i− 1],(
B[i:r] ·U

)
[ℓ− i+ 1] = B[i:r][ℓ− i],

...(
B[i:r] ·U

)
[j] = B[i:r][j − 1],(

B[i:r] ·U
)

[j + 1] = B[i:r][j + 1],
...(

B[i:r] ·U
)

[n′ − 1] = B[i:r][n′ − 1]

As we have chosen j ≥ ℓ−i,
(
B[i:r] ·U

)
[0], . . . ,

(
B[i:r] ·U

)
[j] contains

w through B[i:l][ℓ−i−1] as above, and hence the first ℓ−i+1 columns
of B[i:r] ·U satisfy (3.1).
We now wish to calculate how to represent the sieve database vectors
after w is inserted. Let y = B[i:r] · x be such that πB,ℓ(y) ∈ Λ[ℓ:r] is
a sieve database vector before w is inserted in the basis. We take

x = (
ℓ−i︷ ︸︸ ︷

0, . . . , 0, ∗, . . . , ∗) ∈ Zn′ without loss of generality. Let also Ufull

be the unimodular matrix U extended to act on the entire basis B,
rather than just the context [i : r], as follows

Ufull =


Ii 0 0
0 U 0
0 0 Id−r

 .

Finally, let the new basis be C = B · Ufull. After the insertion
we wish to calculate πC,ℓ+1(y) ∈ Λ′[ℓ+1:r] with Λ′ = Λ(C) as the
corresponding new database vector. Indeed, the first ℓ+ 1 columns
of C are b0, . . .bi−1,w,bi, . . .bℓ−1 and so πC,ℓ+1(y) is exactly the
projection of πB,ℓ(y) against w. Since B[i:r] ·U satisfies (3.1), this is
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what we require. We have

πC,ℓ+1(y) = (π⊥w ◦ πB,ℓ)(y)
= (π⊥w ◦ πB,ℓ)(B[i:r] ·U ·U−1 · x)
= (π⊥w ◦ πB,ℓ)(B[i:r] ·U) ·U−1 · x.

The first ℓ− i+ 1 columns of B[i:r] ·U are w, πB,i(bi), . . . , πB,i(bℓ−1)
which each become 0 under the projection π⊥w ◦ πB,ℓ. Hence one
calculates the bottom r − ℓ − 1 entries of U−1 · x to store the new
database vector from Λ′[ℓ+1:r] in terms of basis C[ℓ+1:r].

However, it is important that the local projected bases remain somewhat reduced. If
not, numerical stability issues may occur. Moreover, the condition that v contains a ±1
in the context [ℓ : r] is often not satisfied without sufficient reduction. While we must
be careful to not alter the vector space inside the sieving context, we can nevertheless
perform a full size reduction (upper triangular matrix T with unit diagonal) on the
whole of B[i:r], as well as two local LLL reductions UL and UR on B[i:ℓ+1] and B[ℓ+1:r].

U′ = U ·T ·

UL 0
0 UR

 . (3.3)

Note that spanR

(
(B[i:r] ·U′)[0 : ℓ− i+ 1]

)
= spanR

(
(B[i:r] ·U)[0 : ℓ− i+ 1]

)
, so that

condition (3.1) is preserved.

3.4.3 G6K: a stateful machine

The General Sieve Kernel is defined by the following internal states and instructions.

State

• A lattice basis B ∈ Zd×d, updated each time an insert is made (Section 3.4.2).
Associated with it is its Gram–Schmidt Orthonormalisation basis B◦.

• Positions 0 ≤ κ ≤ ℓ ≤ r ≤ d. We refer to the context [ℓ : r] as the sieving context,
and [κ : r] as the lifting context. We define n = r − ℓ (the sieving dimension).

• A database db of N vectors in Λ[ℓ:r] (preferably short).

• Insertion candidates cκ, . . . , cℓ where ci ∈ Λ[i:r] or ci = ⊥.
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Instructions

• Initialisation (InitB): initialise the machine with a basis B ∈ Zd×d.

• Reset (Resetκ,ℓ,r): empty database, and set (κ, ℓ, r).

• Sieve (S): run some chosen sieving algorithm. During execution of the algorithm,
well chosen visited vectors are lifted from Λ[ℓ:r] to Λ[κ:r] (by iterating el just on
these vectors). If such a lift improves (i.e. is shorter than) the best insertion
candidate ci at position i, then it replaces ci. We call this optional4 feature
on-the-fly lifting.

• Extend Right, Shrink Left, Extend Left (ER, SL, EL): increase or decrease ℓ or
r and apply er, sl or el to each vector of the database. All three operations
maintain the insertion candidates (except for EL which drops cℓ).

• Insert (I): choose the best insertion candidate ci for κ ≤ i ≤ ℓ, according to
a score function, and insert it at position i. The sieving context changes to
[ℓ + 1 : r] and the database is updated as described in Section 3.4.2. If no
insertion candidate is deemed suitable, then we simply run SL to ensure that
the sieving context will end up as expected.5 When we write Ii, we mean that
insertion is only considered at position i.

• Grow or Shrink (ResizeN): change the database to a given size N . When
shrinking, remove the longest vectors from the database. When growing, sample
new vectors (using some unspecified sampling algorithm6). Typically, we will not
explicate the calls to these operations, and assume that calling a sieve includes
resizing the database to the appropriate size, for example N = O((4/3)n/2) for
the 2-sieves of [NV08, MV10c, BGJ15].

Our implementation of this machine offers more functionality, such as the ability to
monitor its state and therefore the behaviour of the internal sieve algorithm, and to
tune the underlying algorithms.

4The alternative being to only consider the vectors of the final database for lifting.
5We can view SL as the trivial insertion of the vector w represented by v = (1, 0, . . . , 0), with i = ℓ,

j = 0, and the projection still occurring.
6When possible we prefer to sample by summing random pairs of vectors from the database.
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3.5 Reduction algorithms using G6K

Equipped with this abstract machine, we can now reformulate, improve and generalise
strategies for lattice reduction with sieving algorithms. In the following we will assume
that the underlying sieve algorithm has a time complexity proportional to Cn, for C > 1
and n the dimension of the SVP instance, and we also define C ′ = 1/(1− 1/C). This
second constant approximates the multiplicative overhead ∑n

i=1 C
i/Cn encountered on

iterating sieves in dimensions 1 to n.

Indeed we have the following, where the approximation error tends
to 0 as n→∞ so long as C > 1,

n∑
i=1

Ci/Cn = 1
Cn
· (C + . . . Cn)

= 1
Cn−1 ·

(
1 + · · ·+ Cn−1

)
= 1
Cn−1 ·

Cn − 1
C − 1

≈ 1
1− 1/C .

Note that this overhead grows when C decreases. More concretely, depending on
the sieve, C can range from 4/3 down to

√
3/2, giving C ′ = 4 up to C ′ ≈ 5.45.

3.5.1 The pump

In this section we propose a sequence of instructions called the Pump. They encompass
the progressive sieving strategy proposed in [Duc18a, LM18] as well as the dimensions
for free and multi insertion tricks of [Duc18a]. The original progressive sieving strategy
can be written as

Reset0,0,0, (ER, S)d, I0. (3.4)

Similarly, a SubSievef which attempts a partial HKZ reduction using sieving with f

dimensions for free can be written as

SubSievef : Reset0,f,f , (ER, S)d−f , I0, I1, . . . , Id−f−1.
7 (3.5)

7This sequence refers to SubSieve+(Λ, f) with Sieve being progressive [Duc18a].
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We note that due to the newly introduced EL operation, it is also possible to perform
the progressive sieving from right to left

Reset0,d,d, (EL, S)d−f , I0, I1, . . . , Id−f−1. (3.6)

Perhaps surprisingly, the left variant of progressive sieving performs substantially better
in experiments. In combination with certain sieving methods, the right variant can
even fail completely, this will be discussed in more detail in Section 3.5.5.

To arrive at Pump, note first that G6K maintains insertion candidates at many
positions. We can therefore relax the insertion positions of (3.6) and choose those that
appear to be optimal. The choice of insertion position is discussed in Section 3.5.4.

Secondly, due to on-the-fly lifting, we note that the sequence (3.6) considers
many more insertion candidates for the first insertion than for subsequent insertions.
Moreover, we noticed that after several insertions the database only contained vectors
much longer than recent inserts. By sieving also during the ‘descent phase’, i.e. when
inserting and shrinking the sieve context, we remedy this imbalance and expect to
obtain a more strongly reduced basis, ideally obtaining an HKZ reduced context.

In summary, we define the parametrised Pumpκ,f,β,s as the following sequence

Pumpκ,f,β,s : Resetκ,κ+β,κ+β,

pump-up︷ ︸︸ ︷
(EL, S)β−f ,

pump-down︷ ︸︸ ︷
(I, Ss)β−f . (3.7)

where 0 ≤ κ ≤ κ+ β ≤ d, 0 ≤ f ≤ β, and where s ∈ {0, 1} controls whether we sieve
during pump-down. One may expect the cost of these extra sieves to be close to a
multiplicative factor of 2, but experimentally the factor can reach 3 for certain sieves
(e.g. bgj1), as more collisions8 seem to occur during the descent phase. This feature is
mostly useful for weaker reduction tasks such as BKZ, see PumpNJumpBKZTour below.

3.5.2 SVP

To solve the shortest vector problem on the full lattice, starting from an LLL reduced
basis B, we proceed as in [Duc18a], that is, we iterate Pump0,f,d,s for decreasing values
of f . While only the last Pump delivers the shortest vector, the previous iterations
provide a strongly reduced basis (near HKZ reduced), which allows more dimensions for
free to be achieved. We expect to obtain further dimensions for free due to on-the-fly
lifting.

8A collision is when a new vector w to be inserted into the database equals ±w′ for some w′

already present in the database.
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Similarly, for solving SVP in context [κ : κ+ β] (e.g. as a block inside BKZ), we
instead make calls to Pumpκ,f,β,s with iteratively decreasing values of f .

Note that we can decrease f in larger increments than 1 to balance the cost of
the basis reduction effort and the search for the shortest vector itself. Indeed, with
increments of 1, the overhead factor C ′ for C =

√
3/2 is C ′ ≈ 4.45. Decreasing f by 2

gives an overhead of C ′ = 1/(1− C−2) = 3 and by 3 gives C ′ = 1/(1− C−3) ≈ 2.19.
Such speedups are worth losing 1 or 2 dimensions for free.

We therefore define WorkOut as the following sequence of Pump

WorkOutκ,β,f,f+,s : Pumpκ,β−f+,β,s, Pumpκ,β−2f+,β,s,

Pumpκ,β−3f+,β,s, . . . , Pumpκ,f,β,s,
(3.8)

where f+ ≥ 1 is the increment for f mentioned above, and f is the final amount of
dimensions for free one is attempting to attain. From experiments on the exact SVP
problem and SVP Challenges, we found it worthwhile to deactivate sieving in the
descent phase (s = 0), though activating it (s = 1) is preferable in other settings, or
to use less memory at a larger time cost. Similarly, for certain tasks (e.g. the SVP
Challenges, 1.05 · v−1/d

d -HSVP) we found the optimal increment, f+, to be 2 or 3. This
parameter also drives a time memory trade off; setting f+ to 1 saves on memory by
allowing for a larger final f , but at a noticeable cost in time.

When solving exact SVP, it is not clear when to stop this process because we are
never certain that a vector is indeed the shortest vector of a lattice (except maybe by
running a prohibitively costly non pruned enumeration). In these cases, one should
therefore guess, from experimental data, a good number f of dimensions for free. Note
that it is is rarely critical to solve exact SVP, and lattice reduction algorithms such as
BKZ tolerate approximations.

In some cases, such as the Darmstadt SVP Challenge, we do not have to solve exact
SVP, but rather find a vector of a prescribed norm, near the Gaussian heuristic. In this
case we do not need to predetermine f and simply iterate the Pump within WorkOut
until satisfaction; rather than set a final value for f one can continue to decrease the
number of attempted dimensions for free by f+ after each Pump until a short enough
vector is found. As a consequence, we also add an extra option to the Pump to allow
early aborts when it finds a satisfying candidate cκ. In practice we observe significant
savings from this feature, i.e. we observe the Pump aborting before reaching its topmost
dimension, or at the beginning of the descent phase.
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3.5.3 BKZ

Having determined the appropriate parameters f, f+, s for solving SVP-β (made
implicit in the following), a naïve implementation of BKZ9 is given by the following
program

NaiveTourβ : WorkOut0,β, WorkOut1,β+1, . . .

WorkOutd−β,d, . . . , WorkOutd−1,d.
(3.9)

Several strategies to amortise the cost of sieving inside BKZ were suggested in [Duc18a,
LM18]. These aimed to reduce the cost of a tour of BKZ-β below d− β (ignoring the
smaller final blocks) times the cost of SVP in dimension β. Again, these strategies are
implementable as a sequence of G6K instructions.

Namely, the sliding window strategy of [LM18] can be expressed as

SlidingWindowTourβ : Reset0,0,0, (ER, S)β, (Iℓ, S, ER, S)d−β, (Iℓ, S)β. (3.10)

It is also possible to combine this strategy with the dimensions for free of [Duc18a].
However, there are two caveats. First, it relies on extend right, which is currently
problematic in our implementation of G6K, see Section 3.5.5. Secondly, even if this
issue is solved, we remark that inside a BKZ tour it is preferable to run LLL on the
full basis periodically. From the sandpile point of view [MV10a, HPS11], not doing
so implies that a ‘bump’ accumulates at the right of the reduced blocks, as we try to
push the sand to the right. We see no clear strategies to recycle the vectors of a block
when calling a full LLL.

Alternatively, [Duc18a] identified two other potential amortisations. First, it is
noted that a WorkOut (or even just a Pump) in a block [κ : κ+ β] leaves the next block
[κ+ 1 : κ+ β+ 1] already quite well reduced. It may therefore not be necessary to do a
full WorkOut on this next block. Instead simply running the last Pump of this WorkOut
may be sufficient, thereby saving up to a factor of C ′ in the running time.

The second suggestion of [Duc18a] consists of overshooting the blocksize β, so that
a Pump in dimension β′ > β attempts to HKZ reduce a larger block. In particular
for parameter j ≥ 1, let β′ = β + j − 1 and after a Pumpκ,f,β′ jump by j blocks. This
decreases the number of calls to the Pump to d/j and may also slightly improve the
quality of the reduction, but increases the cost of the Pump calls by a factor of Cj−1.
It is argued that such a strategy could give a speed-up factor ranging from 2.2 to 3.6

9Though note that many more insertions will be made than in the standard definition of BKZ.
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for a fixed basis reduction quality. By combing the two suggestions of [Duc18a] we
therefore perform the following sequence

PumpNJumpTourβ′,f,j : Pump0,f,β′ , Pumpj,f,β′ , Pump2j,f,β′ , . . . (3.11)

We alter the version above to allow for more opportunism. Since choosing f to
almost certainly solve exact SVP in blocks is costly, we instead embrace the idea of
achieving the most basis reduction from a given sieving context. Extending the lift
context, i.e. taking a smaller κ, makes the lift operation more expensive, but gives
more insertion candidates, and therefore a new trade off to be optimised over. Note
that while Pumpκ′,f+κ−κ′,β+κ−κ′ for κ′ < κ takes more dimensions for free than Pumpκ,f,β,
it still provides the same insertion candidates, cκ, . . . , cκ+f . This is because the
sieving contexts do not shrink. It also provides new insertion candidates cκ′ , . . . , cκ−1.
Therefore, provided we take care in the first few blocks, the quality cannot decrease.
To achieve this one starts with a Pump taking no dimensions for free and moves the
sieving context right until the desired f ′ is attained, before continuing as before. Set
f ′ > f , β′ = β + f ′ − f (to fix the sieve context sizes), β′′ = β′ + j − 1 (to allow
jumping),10 and perform

PumpNJumpTourβ′′,f ′,j : Pump0,0,β′′−f ′ , Pump0,j,β′′−f ′+j, . . . , Pump0,f ′,β′′ ,

Pumpj,f ′,β′′ , Pump2j,f ′,β′′ , . . .
(3.12)

3.5.4 Scoring for inserts

The issue of deciding where in a basis to insert given candidates throughout reduction is
discussed in [TKH18], in the context of the SVP Challenges. Until the actual shortest
vector is found, the purpose of these insertions is to improve the basis quality. Inserting
at an early position may degrade the quality of later positions, because we do not
know a priori how inserting ci will affect B[ℓ:r] for i < ℓ < r. However, such an insert
will be improved upon rarely, as fewer sufficiently short vectors will be found for early
positions. Therefore one must find a good trade off between making long lasting yet
weak and potentially damaging improvements at early positions, and short lived yet
strong improvements at later positions.

One way to achieve this is to use the scoring proposed in [TKH18], a function over
the whole basis which measures the global effect of each potential insert, i.e. one that
at least checks how inserting ci would affect each B[ℓ:r]. We use a simplified variant of

10For Figure 3.4 we choose yet more opportunism and do not increase β′ to β′′.
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this scoring which scores the improvement of each potential insert according to the
following local condition

ςθ(i) =
 0, if ci = ⊥
θ−i · ∥b∗i ∥

2 / ∥ci∥2 , otherwise
(3.13)

for some constant θ ≥ 1, and take the maximum over i. Setting θ = 1 corresponds
to always choosing the ‘most improving’ candidate, in terms of the ratio of lengths.
Setting θ quite large (say 10) corresponds to always inserting at the earliest position.
If max{ςθ(i) : i ∈ {κ, . . . , ℓ}} = 0, perform SL.

To optimise θ, we ran WorkOut0,d,f for f = 30 and d = 110, measured γ =
gh(Λ)/gh(Λ[f ]), and chose θ = 1.04 which minimised this quantity γ. We recall [Duc18a]
that γ must be below a certain threshold to guarantee the success of exact SVP in
dimension d with f dimensions for free.

The optimal value of θ may differ depending on other parameters, e.g. dimension,
approximation factor, and use case, e.g. exact SVP, α-HSVP, BKZ, and the question
of optimising insertion strategies requires more theoretical and experimental attention.
We hope that our open source implementation will ease such future research.

3.5.5 Issue with extend right

As mentioned earlier, our current implementation does not support the ER operation
very well. In more detail, the issue is that after running a sieve in the context [ℓ : r],
and applying ER, the vectors in the database are padded with a 0 to be defined over
the context [ℓ : r + 1]; geometrically, these vectors remain in the context [ℓ : r], and so
will all their potential combinations considered by the sieve. While we do sample some
fresh vectors, i.e. from the context [ℓ : r + 1], to increase the database size after calling
ER, the fraction of these fresh vectors in the database is rather small

√
4/3

n+1
−
√

4/3
n

√
4/3

n+1 = 1−
√

3/4 ≈ 13% of database vectors.

This alone slows down the Gauss sieve when used in right progressive sieving compared
to left progressive sieving, and this percentage of fresh vectors is even smaller in sieves
that use a smaller database; e.g. approximately 12% in a 3-sieve with minimal memory(
3
√

3/4
)n/2

, see Section 3.6.1.
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The situation is even worse in the faster sieves we implement. Indeed, apart
from the reference Gauss sieve, our sieves are not guaranteed to maintain a full rank
database, that is, if {wi}i are the vectors that make up some database in Λ[ℓ:r], then
spanR ({wi}i) ∼= Rm for m < n can occur. This is because, for performance purposes,
we relax the replacement condition. In the standard Gauss sieve, w1 ±w2 may only
replace w1 or w2 if it is shorter. We relax this and allow w1±w2 to replace the current
longest vector wlong in the database. Fresh vectors are much longer than the recycled
ones, therefore they are quickly replaced by combinations of recycled vectors, effectively
meaning there is little representation of the newly introduced basis vector after an ER.

While we tried to implement countermeasures to avoid losing rank, they had a
noticeable impact on performance, and were not robust. For this work, we therefore
avoid the use of extend right, as procedures based on extend left already perform well.
We leave it as an open problem to develop appropriate variants of fast sieve algorithms
that avoid this issue.

3.6 Implementation details

3.6.1 Sieving

We implemented several variants of sieving, namely: a Gauss sieve [MV10c], a
relaxation of the Nguyen–Vidick sieve [NV08], a restriction of the Becker–Gama–
Joux sieve [BGJ15] and a 3-sieve [BLS16, HK17]. All exploit the SimHash speed
up [Cha02, FBB+15, Duc18a].

The first two were mostly implemented for reference and testing purposes, and
therefore are not multithreaded. Nevertheless, we fall back to the Gauss sieve in small
dimensions for efficiency and robustness; as discussed earlier, the Gauss sieve is immune
to loss of rank, which we sometimes experienced with other sieves in small dimensions
(say, n < 50), even when not using ER.

The termination condition for the sieves follows [Duc18a], namely, they stop when
we have obtained a given ratio of the expected number of vectors of norm less than
R · gh(Λ[ℓ:r]). The saturation radius is dictated by the asymptotics of the algorithm
at hand, namely, R is such that the sieve uses a database of N = O(Rn) vectors.
In particular R =

√
4/3 for all implemented sieves, except for the 3-sieve for which

one can choose R2 ∈
[
3
√

3/4, 4/3
]
≈ [1.299, 1.333]. Note that 20.2075 ≈

√
4/3 and

20.1887 ≈
√

3
√

3/4.
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Nguyen–Vidick Sieve (nv) and Gauss Sieve (Gauss)

The Nguyen–Vidick sieve finds pairs of vectors (w1,w2) from the database, whose sum
or difference gives a shorter vector, i.e. ∥w1 ±w2∥ < max{∥w∥ : w ∈ db}. Once such
a pair is found, the longest vector from the database gets replaced by w1 ±w2. The
size of the database is a priori fixed to the asymptotic heuristic minimum 20.2075n+o(n)

required to find enough such pairs. The running time of the Nguyen–Vidick sieve is
quadratic in the database size.

The Gauss sieve algorithm, similar to the Nguyen–Vidick sieve, searches for pairs
with a short sum, but the replacement and the order in which we process the database
vectors differ. More precisely, the database now is (implicitly) divided into two parts,
the so called ‘list’ part and the ‘queue’ part. This separation is encoded in the ordering,
with the list part being the first τ vectors. Both parts are kept separately sorted. The
list part has the property that the shortness of w1 ±w2 has been checked for all pairs
of vectors (w1,w2) in the list. We then only check pairs (w1,w2), where w1 comes
from the queue part and w2 from the list part. As opposed to Nguyen–Vidick sieve,
a reduction is found when the longest vector of the pair (w1,w2) is replaced by the
shortest of w1 ±w2, not the longest in the database. In the case where the list vector
w2 gets replaced, the result of the reduction w1 ±w2 is put into the ‘queue’ part and
the search is continued with the same ‘queue’ vector w1. Otherwise, if the queue vector
w1 was the longest and is replaced, we restart comparing this new w1 with all list
vectors. A vector is moved from the ‘queue’ to the ‘list’ part once no reduction with
the ‘list’ vectors can be found. Asymptotically, the running time and the database size
for the Gauss sieve is the same as for the Nguyen–Vidick sieve, but it performs better
in practice.

Becker–Gama–Joux Sieve (bgj1)

The sieve algorithm from [BGJ15] accelerates the Nguyen–Vidick sieve [NV08] from
20.415n+o(n) down to 20.311n+o(n) by using locality sensitive filters, while keeping the
memory consumption to the bare minimum for a 2-sieve, namely 20.2075n+o(n).

This optimal complexity is reached using recursive filtering, however we only
implemented a variant of this algorithm with a single level of filtration (hence the name
bgj1). We leave it to future work to implement the full algorithm and determine when
the second level of filtration becomes interesting.

We briefly describe our simplified version. The algorithm finds reducing pairs in
the database by successively filling buckets according to a filtering rule, and doing
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all pairwise tests inside a bucket. Concretely, it chooses a uniform direction d ∈ Rn,
∥d∥ = 1, and puts in the bucket all database vectors taking (up to sign) a small angle
with d, namely all w such that |⟨w,d⟩| > α · ∥w∥.

We choose α so that the size of the buckets is about the square root of the size of
the database (asymptotically, α2 → 1−

√
3/4 ≈ 0.3662).

Assuming w ∈ Sn−1 then w satisfying ⟨w,d⟩ > α · ∥w∥ are exactly
w ∈ Cn(θα) such that cos θα = α and θα ∈ [0, π/2]. Equivalently,
w ∈ Cn(α), the spherical caps of height α from [BDGL16]. As [BGJ15]
is a 2-sieve we assume asymptotically that the database has size
(4/3)n/2 and that these points are distributed i.i.d. uniformly over the
surface of Sn−1. Recalling Section 2.5.2 and since µn−1(Sn−1) = 1, to
have buckets of size (4/3)n/4, i.e. square root the database size, we
want µn−1(Cn(α)) = (4/3)−n/4. By appealing to [BDGL16, Lem 2.1],
we solve (ignoring polynomial factors) for α =

√
1−

√
3/4.

This choice balances the cost of populating the bucket (through testing the filtering
condition) and exploring inside the bucket (checking for pairwise reductions). Both cost
O(N) = 20.2075n+o(n); though in practice we found it faster to make the buckets slightly
larger, namely around 3.2

√
N . Also note that we can apply a SimHash prefiltering

before actually computing the inner product ⟨w,d⟩, but using a larger threshold for
the bucketing prefilter than for the reduction prefilter within a bucket.

Following the heuristic arguments from the literature, and in particular the wedge
volume formula [BDGL16, Lem 2.2], we conclude that this sieve succeeds after about
(2/
√

3− 1/3)−n/2 ≈ 20.142n+o(n) buckets, for a total complexity of 20.349n+o(n).

In particular we consider two vectors w1,w2 ∈ Sn−1 at some an-
gle less than π/3, the maximum that allows reduction. When
taking buckets defined by α2 = 1 −

√
3/4 and θα as above, the

wedge W n−1(w1, θα,w2, θα) describes the region of Sn−1 in which
a bucket centre may lie such that w1,w2 are both contained in
the bucket. Following the notation of [BDGL16] this is equivalent
to the wedge Ww1,α,w2,α. Given the heuristic of Definition 2.5.4
we assume θ(w1,w2) ≈ π/3. When calculating the measure of
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this wedge we therefore have µn−1(Ww1,α,w2,α) = Wn(α, α, π/3) ∈(
2/
√

3− 1/3
)n/2+o(n)

by [BDGL16, Lem. 2.2]. The reciprocal of this
value gives the number of bucket centres we expect to require, and
the cost of searching in a bucket is O(N).

3-sieve (triple_sieve)

In its original versions [BLS16, HK17], the 3-sieve algorithm aims to reduce memory
consumption at the cost of a potential increase in the running time. The 3-sieve
algorithm searches not for pairs, but for triples of vectors, whose sum gives a shorter
vector (hence the name 3-sieve). Clearly, for a fixed size list of vectors, there are more
possible triples than pairs and, therefore, we can perhaps start with a shorter list and
still find enough reductions. However, a (naïve) search now costs three iterations over
the list. To speed up the naïve search, we can apply filtering techniques similar to
the ones used for bgj1. In particular, the 3-sieve algorithm with filtering described
in [HK17] requires memory 20.1887n+o(n) and runs in time 20.396n+o(n).

For any vector x from the database, the 3-sieve algorithm of [HK17] filters the
database by collecting all vectors w with a large enough inner product |⟨x,w⟩|. For
all pairs of these collected vectors (w1,w2), a 3-sieve checks if ∥x±w1 ±w2∥ gives a
shorter vector. Such an inner product test, as in bgj1, helps to identify ‘promising’
vectors which are likely to result in a length reduction. The only subtlety lies in the
fact that in order for a triple to give a reduction, the vectors x,w1,w2 should be far
apart, not close to each other as in a 2-sieve. We handle this by adjusting the inner
product test and choosing the ± signs appropriately.

The version of the 3-sieve implemented in G6K splits the database into ‘list’ and
‘queue’ parts in the same way as the Gauss sieve above. Further, it combines 2-sieves
and 3-sieves. Notice that the filtering process of a 3-sieve is basically the same as
bucketing in bgj1, with a bucket centre defined by a database11 vector x. When
processing the bucket, we check not only whether a pair (w1,w2) from the bucket
gives a shorter vector, but also whether a triple (x,w1,w2) may. This additional check
has no noticeable impact on performance (we know in which case we potentially are
from the signs of the inner products alone), but has the potential to find more shorter
vectors.

11This relies on the fact that we do not use recursive filtering in bgj1 – the asymptotically optimal
choice from [BGJ15] mandates choosing the buckets centres in a structured way, which is not compatible
with choosing them as db elements.
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The x-axis is the parameter R such that the database size is set to 3.2 · Rn/2. In
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Figure 3.2 Time memory trade off for our implementation of the 3-sieve algorithm.

As a result, in this combined version of the sieve, we can find more reductions than
in a 2-sieve if we keep the same database size as for a 2-sieve. In such a memory regime,
most of the reductions will come from 2-reductions. Setting a smaller database makes
the algorithm look for more 3-reductions as 2-reductions become less likely.

As triple_sieve finds more reductions than bgj1 with the same database sizes, we
may decrease the size of the database and check how the running time degrades. The
results of these experiments are shown in Figure 3.2. The leftmost point corresponds
to the minimal memory regime for a 3-sieve, namely when the database size is set
to 20.1887n+o(n), while the rightmost point is for the bgj1 memory regime, that is the
database size is set to 20.2075n+o(n). It turns out that in moderate dimensions (i.e. 80–
110), triple_sieve performs slightly better if the database size is a bit less than
20.2075n+o(n). Furthermore, these experiments are consistent with theoretical results on
the high memory regime for 3-sieves: in [HKL18] it was proven that the running time
of a 3-sieve drops quickly if allowed slightly more memory, as Figure 3.2 shows.

3.6.2 The three layers: C++ / Cython / Python

Our implementation consists of three layers.

C++11

The lowest level routines are implemented in C++11. In particular, at this level we
define a Siever class which realises G6K for all sieves considered in this work: Gauss,


		memory		cputime		walltime		db_size

		1.2999999		112495.3161		4345.1117		20.60

		1.302999		88078.9300		3408.4785		20.77

		1.305999		68142.0333		2643.9435		20.94

		1.308999		52232.1861		2035.0366		21.10

		1.311999		42156.6482		1650.2967		21.27

		1.314999		36100.5347		1421.0798		21.43

		1.317999		32150.5338		1273.6114		21.60

		1.320999		30058.2943		1197.6460		21.76

		1.323999		29000.3869		1162.2114		21.92

		1.326999		28856.7092		1162.7529		22.09

		1.329999		28584.2077		1158.9546		22.25

		1.333333		29237.0089		1189.6695		22.43
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NV, BGJ1 and 3-sieve. The general design is similar to FPLLL where algorithms are
objects operating on matrices and Gram–Schmidt objects. In particular, different sieves
are realised as methods on the same object (and thus the same database) allowing the
caller to pick which sieve to run in a given situation. For example, in small dimensions
it is beneficial to run the Gauss sieve and this design decision allows the database to
be reused between different sieves. Our C++ layer does not depend on any third party
libraries (except pthreads). On the other hand, our C++ layer is relatively low level.

Cython

Cython is a glue language for interfacing between CPython (the C implementation
of the Python programming language) and C/C++. We use Cython for this exact
purpose. Our Cython layer is relatively thin, mainly making our C++ objects available
to the Python layer and translating to and from FPyLLL data structures [dt21b].
The most notable exception is that we implemented the basis change computation of
the insert instruction I, see (3.2) and (3.3), in Cython instead of C++. The reason
being that we call LLL on the lifting context when inserting (the Cython function
split_lll) which is realised by calling FPyLLL. That is, while our C++ layer has no
external dependencies, the Cython layer depends on FPyLLL.

Python

All our high level algorithms are implemented in (C)Python (2). Our code does not
use the functional style abstractions from Section 3.4, but a more traditional object
oriented approach where methods are called on objects which hold the state. We do
provide some syntactic sugar, though, enabling a user to construct new instructions
from basic instructions in a function composition style similar to the notation in
Section 3.4. Nevertheless, this simplified abstraction is not able to fully exploit all the
features of our implementation, and significant savings may be achieved by using the
full expressivity of our library.

3.6.3 Vector representation and data structures

The data structures of G6K have been designed for high performance sieving operations
and we have tried to minimise memory usage where possible. For high performance
we retain the following information about each vector w = B[ℓ:r] · v = B◦[ℓ : r] · v◦ as an
entry e in the sieve database db:

• e.x: the vector v as 16-bit integer coordinates for the basis B[ℓ:r];
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• e.yr: a 32-bit floating point vector to efficiently compute ⟨w,w′⟩, for some other
lattice vector w′. It is a renormalised version of v◦;

• e.cv (compressed vector): a 256-bit SimHash of w;

• e.uid (unique identifier): a 64-bit hash of v;

• e.len: the squared length ∥w∥ as a 64-bit floating point number.

The entire database db is stored contiguously in memory, although unordered. This
memory is preallocated and has size equal to the maximum database size within
each Pump, to avoid additional memory usage caused by reallocations of the database
whenever it grows.

To be able to quickly determine whether a potential new vector is already in the
database we additionally maintain a C++ unorderedset (i.e. a hash table) uiddb
containing 64-bit hashes uid of e.x for all entries in db.12 This hash uid = H(x) of
x is simply computed as the inner product of x with a global random vector in the
ring Z/264Z, which has the additional benefit that H(x1 ± x2) can be computed more
efficiently as H(x1)±H(x2). This allows us to cheaply discard collisions without even
having to compute x1 ± x2.

To maintain a sorted database we utilise a compressed database cdb that only
stores the 256-bit SimHash, 32-bit floating point length, and the 32-bit db-index of each
vector. This requires only 40 bytes per vector and everything is also stored contiguously
in memory. It is optimised for traversing the database in order of increasing length and
applying the SimHash as a prefilter, since accessing the full entry in db only occurs a
fraction of the time.

For the multithreaded bgj1-sieve, the compressed database cdb is maintained
generally sorted in order of increasing length. Initially cdb is sorted, then, during
sieving, vectors are replaced one by one starting from the back of cdb. It is only
resorted when a certain fraction of entries have been replaced. Since we only insert a
new vector if its length is below the minimum length of the range of to be replaced
vectors in cdb, this approach ensures that we always replace the largest vector in db.
In the sieve variants that split the database into queue and list ranges, we regularly
sort the individual ranges. In our multithreaded triple_sieve, the vectors removed
during a replacement are chosen iteratively from the backs of the two ranges.

Most sieving operations use buckets that are filled based on locality sensitive filters.
In bgj1, we use the same datastructure as cdb for the buckets, and thus copy those

12This unorderedset is in fact split into many parts to eliminate most blocking locks during a
multithreaded sieve.
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compressed entries in contiguous memory reserved for that bucket. For triple_sieve,
we also store information about the actual inner product ⟨x,w⟩ of the bucket elements
w with the bucket centre x inside the bucket.

3.6.4 Multithreading

G6K is able to efficiently use multithreading for nearly all operations; a detailed
efficiency report can be found in [ADH+19b, App. B]. Global per entry operations such
as EL, ER, SL and I-postprocessing are simply distributed over all available threads in
the global threadpool.

During multithreaded sieving we guarantee that all write operations to entries in
db, cdb and the best lift database are executed in a thread safe manner using atomic
operations and write locks. (The actual locking strategies differ per implementation.)
We always perform all heavy computations before locking and let each thread locally
buffer pending writes and execute these writes in batches to avoid bottlenecks in
exclusive access of these global resources.

Threads reading entries in db and cdb do not use locking and can thus potentially
read partially overwritten entries. While this may result in some wasted computation,
no faulty vectors will be inserted in the db: for every new vector we completely
recompute its full entry e from e.x including its length and verify it is actually shorter
than the length of the to be replaced vector before actually replacing it.

Safely resorting cdb during sieving is the most complicated operation, since threads
do not block on reading cdb. Our implementations in G6K resolve this as follows.
We let one thread resort cdb and use locking to prevent any insertions (or concurrent
resorting) by other threads. We keep the old cdb untouched as a shadow copy for
other threads, while computing a new sorted version that we then atomically publish.
Afterwards, other threads will then eventually switch to the newer version. Insertions
are always performed using cdb and never using a shadow copy, even if e.g. a thread is
still using a shadow copy for its main operations, e.g. when building a bucket.

3.7 New lattice reduction records

The experiments reported in this section are based on bgj1-sieving, except those on
BKZ and LWE which are based on triple_sieve in the high memory regime. Here
triple sieve uses a database of size N = Θ

(
(4/3)n/2

)
, recall Figure 3.2. The switch to

triple_sieve occurred when improvements made it faster than bgj1 (especially with
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Machine CPUs base freq. cores threads HTC∗ RAM
L 4xIntel Xeon E7-8860v4 2.2Ghz 72 72 No 512GiB
S 2xIntel Xeon Gold 6138 2.0Ghz 40 80 Yes 256GiB
C 2xIntel Xeon E5-2650v3 2.3Ghz 20 40 Yes 256GiB
A 2xIntel Xeon E5-2690v4 2.6Ghz 28 56 Yes 256GiB
∗ HTC: Hyperthreading Capable.

Table 3.1 Details of the machines used for experiments.

pump-down sieve, s = 1). While it seemed wasteful to rerun all the experiments, we
nevertheless now recommend triple_sieve over bgj1 for optimal performance within
our library. The details of the machines used for our various experiments are given in
Table 3.1.

3.7.1 Exact SVP

We first report on the efficiency of our implementation of WorkOut with s = 0, f = 0,
and f+ = 1 when solving exact SVP. The comparison with pruned enumeration is
given in Figure 3.3a. While fitted curves are provided, we highlight that they are
significantly below asymptotic predictions of 20.349d+o(d) for bgj1 and thus unreliable for
extrapolation.13 Based on these experiments, we report a crossover with enumeration
around dimension 70. Note that we significantly outperform the estimates of a crossover
at dimension 90 made in [Duc18a].

While our improved speed compared to [Duc18a] is mostly due to having imple-
mented a faster sieving algorithm, the new features of G6K also contribute to this
improved efficiency (see [ADH+19b, App. A] for a detailed comparison). In particular
the on-the-fly lifting strategy offers a few extra dimensions for free as depicted in
Figure 3.3b. That is, our new implementation is not only faster but also consumes less
memory.

3.7.2 Darmstadt SVP challenges

The detailed performance of our implementation when solving Darmstadt SVP Chal-
lenges is given in Table 3.2. For some challenges, we also continued the experiments
until no shorter vectors were found, hoping to have solved exact SVP on those instances.

13This mismatch with theory can be explained by various kinds of overheads, but mostly by the
dimensions for free trick: as f = Θ(d/ log d) is quasilinear, the slope will only very slowly converge to
the asymptotic prediction.
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(a) Average time in seconds to solve exact SVP.
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(b) Average number of dimensions for free when solving exact SVP.
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The running time was averaged over 60 trials (12 trials on random bases of 5 dif-
ferent lattices from [GS10]). Each instance was monothreaded, but ran in parallel
(20thread/20cores, not hyperthreaded) on machine C. Raw data .

Figure 3.3 Performance for exact SVP.


d,FPLLL,G6K,d4f-G6K,d4f-Ducas18
60, 0.6605,   1.4487, 14.57,12.5
62, 0.8385,   2.1722, 15.12,10.2
64, 1.6328,   3.0787, 15.23,11.2
66, 1.9728,   3.5695, 16.87,12.7
68, 4.0930,   4.5182, 17.67,12.5
70,10.6600,   7.4665, 16.75,13.5
72, 9.3025,   8.7190, 17.68,13.0
74,20.5347,  12.2922, 17.95,12.2
76,31.1943,  16.1908, 17.93,14.5
78,48.7200,  26.6795, 16.92,13.2
80,76.0895,  26.2770, 19.00,14.8
82,159.005,  42.3323, 18.62,14.0
84,267.160,  61.4098, 18.13,
86,379.643, 115.8510, 16.57,
88,556.829, 134.8823, 18.32,
90,2613.46, 167.7543, 19.08,
92,       , 311.5363, 18.05,
94,       , 374.8102, 19.62,
96,       , 814.6428, 17.13,
98,       , 994.7679, 18.75,
100,      , 1963.680, 18.08,
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New solutions to 1.05 · v−1/d
d -HSVP

SVP Hermite Sieve Total Memory
dim Norm factor max dim Wall time CPU time usage Machine
155 3165 1.00803 127 14d 16h 1056d †246 GiB L
153 3192 1.02102 123 11d 15h 911d †139 GiB S
151 3233 1.04411 124 11d 19h 457.5d †160 GiB C
149 3030 0.98506 117 60h 7m 4.66kh †59 GiB S
147 3175 1.03863 118 123h 29m 4.79kh 67.0 GiB C
145 3175 1.04267 114 39h 3m 1496h 37.7 GiB C
143 3159 1.04498 110 17h 23m 669h 21.3 GiB C
141 3138 1.04851 105 4h 59m 190h 10.6 GiB C
139 3111 1.04303 108 9h 56m 380h 16.2 GiB C
137 3093 1.04472 107 9h 26m 362h 14.1 GiB C
136 3090 1.04937 108 9h 16m 354h 16.2 GiB C
135 3076 1.04968 108 7h 21m 277.4h 16.1 GiB C
133 3031 1.04133 103 1h 59m 71.7h 8.0 GiB C
131 2959 1.02362 100 1h 11m 41.5h 5.3 GiB C
129 2988 1.03813 98 54m 33.2h 4.2 GiB C
128 3006 1.04815 102 2h 32m 94.9h 7.6 GiB C
127 2972 1.04244 101 2h 17m 85.0h 6. GiB C
126 2980 1.04976 100 31m 19.2h 5.6 GiB C
125 2948 1.04393 99 1h 18m 47.6h 5.2 GiB C
124 2937 1.04032 98 39m 23.9h 4.4 GiB C
123 2950 1.04994 93 7m 4.0h 2.2 GiB C

New candidate solutions to Exact SVP

SVP Hermite Sieve Total Memory
dim Norm factor max dim Wall time CPU time usage Machine
136 2934 0.99621 112 18h 29m∗ 704h 28.5 GiB C
135 2958 1.00920 108 6h 26m∗ 244h 16.2 GiB C
133 2909 0.99940 103 2h 59m∗ 112.4h 12.1 GiB C
131 2904 1.00465 108 7h 51m∗ 302.6h 16.1 GiB C
129 2875 0.99878 106 5.2h∗ 199.3h 12.0 GiB C

∗: Continued from previously reduced basis for the 1.05 · v−1/d
d -HSVP solution.

†: Not measured, estimate.

Table 3.2 Performance on the Darmstadt SVP Challenges.



3.7 New lattice reduction records 127

We also compare the running time of our experiments with prior works in Figure 3.1.
We warn the reader that the experiments of Table 3.2 are rather heterogeneous –
different machines, different software versions, and different parametrisations were used
– and therefore discourage extrapolations. Moreover the design decisions below and
the probabilistic nature of the algorithm explain the non monotonic time and space
requirements.

The parameters were optimised towards speed by trial and error on many smaller
instances (d ≈ 100). More specifically we ran WorkOut with parameters f = ⌈16+d/12⌋,
f+ = 3, s = 1; choosing f+ = 1 or 2 would cost more time and less memory.14 The
loop was set to exit as soon as a vector of the desired length was found, and if it
reached the minimal number of dimensions for free, f , it would repeat this largest
Pump until success (this repetition rarely happened more than three times). The sieve
max dim column reports the actual dimension d− flast of the last Pump.

3.7.3 BKZ

To test PumpNJumpTour we compare its quality vs. time performance against FPyLLL’s
implementation of BKZ 2.0 [CN11], and against NaiveTour (see Figure 3.4). We
generate lattice bases of the form15 BR from (2.2) for (n,m, q) = (90, 180, 230) and
R ← U(Z90×90

q ). We prereduce the bases using one FPyLLL BKZ tour for each blocksize
from 20 to 59 and then report the cumulative time taken by further progressive tours of
several BKZ variants. That is, we start timing and perform a tour of BKZ-60, followed
by a tour of BKZ-61, and so forth.

Contrary to exact SVP, we find it beneficial for the running time to activate
sieving during pump-down for all G6K based BKZ experiments. We further find that
triple_sieve is noticeably faster than bgj1; it seems that the former suffers fewer
collisions than the latter when sieving during the pump-down phase.

For all G6K based BKZ experiments we choose the number of dimensions for free
following the experimental fit of Figure 3.3b, that is f = 11.5 + 0.075β. We also
introduce a parameter e = f ′ − f to concretise the more opportunistic PumpNJumpTour
variant discussed at the end of Section 3.5.3.

To measure quality we use an averaged quality measurement, namely, the slope
metric of FPyLLL. This slope, ρ, is a least squares fit of the log ∥b∗i ∥

2. For comparison
this metric is preferable to the typical root Hermite factor as it displays much less

14The expression f = ⌈16 + d/12⌋ is a local approximation, as we asymptotically expect f =
Θ(d/ log d) for O(1)-SVP [Duc18a].

15Using FPyLLL’s IntegerMatrix.random(180, ‘qary’, q=2**30, k=90)
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variance. In the GSA model, the slope ρ relates to the root Hermite factor by
δβ = exp(−ρ/4).

In particular, in the GSA model after BKZ-β reduction we have

log
(∥∥∥b∗i+1

∥∥∥2
)

= log
(
δ−4

β · ∥b∗i ∥
2
)
,

and slope

ρ =
(

log
(
∥b∗i ∥

2
)
− log

(∥∥∥b∗i+1

∥∥∥2
))

/ (i− (i+ 1)) .

Together these give the relationship above.

We also provide the predictions for progressive tours given by the BKZ simulator
of [CN11, Wal14] as horizontal bars, numbered on the right.

Conclusion

These experiments confirm that it is possible to outperform a naïve application of
an SVP-β oracle to obtain a quality equivalent to BKZ-β in less time. Indeed,
PumpNJumpTourβ,f,1 is about 4 times faster than NaiveTourβ,f for the same reduction
quality. Furthermore, the opportunistic variant with e = 12 gives even better quality
per time, and also only requires a smaller β for the same quality, therefore decreasing
memory consumption. These experiments also suggest that jumps j > 1 are not
beneficial as they require similar running time per quality, but with a larger memory
consumption.

3.7.4 LWE

The Darmstadt LWE challenges [GY15] are labeled by (n, α), where n denotes the
dimension of a secret in Zq, for some q, and α is a noise rate. See [BBG+16] for
full details. Concretely the challenges are given as (A,b) where As + e ≡ b mod q
with A ∈ Zm×n

q for m = n2, s ∈ Zn
q , e ∈ Zm and b ∈ Zm

q . The value of q is set to
the smallest prime number greater than m. Each entry of e, the error, is sampled
independently from the discrete Gaussian distribution over the integers with mean
µ = 0 and standard deviation σ = α · q, that is, the distribution over Z which assigns
probability proportional to exp

(
−1

2 ·
|x|2
σ2

)
to x ∈ Z. The entries of A and s are sampled

independently and uniformly from Zq. The value m represents the number of ‘samples’



3.7 New lattice reduction records 129

60

65

70

75

80

85

90

95

60

65

70

75

80

85

90

25 26 27 28 29 210 211 212 213 214 215 216 217

3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8

·10−2

sec

−
ρ

BKZ simulator
BKZ2.0 (fplll)
G6K NaiveBKZTour
G6K PumpNJump (j = 1, e = 0)
G6K PumpNJump (j = 1, e = 12)
G6K PumpNJump (j = 3, e = 12)

60

65

70

75

80

60

65

70

75

80

60

65

70

75

80

85

90

60

65

70

75

80

85

90

The time and slope are averaged over 8 instances for each algorithm. Each instance was
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Figure 3.4 Performance of BKZ like algorithms.


		FPLLLt		FPLLLq		NaiveBKZt		NaiveBKZq		PnJj1e0t		PnJj1e0q		PnJj1e12t		PnJj1e12q		PnJj3e12t		PnJj3e12q		

		44.27375		0.04750375		425.507875		0.04744		96.372875		0.047495		164.45075		0.04646		60.261625		0.047045

		115.610375		0.047185		949.28575		0.0470625		201.405125		0.04719		342.4695		0.04564375		125.7965		0.0465275

		205.33875		0.04692375		1497.34675		0.0467125		311.0815		0.04692125		522.933875		0.045165		192.245625		0.04622

		431.710875		0.0466075		2156.027875		0.0464175		431.543875		0.0466425		724.854125		0.04482375		263.126125		0.04602375

		586.156625		0.046295		2841.80575		0.04616625		558.96775		0.04641625		933.5835		0.0446425		335.53475		0.04587375

		940.209		0.04605625		3651.247375		0.04589375		700.877375		0.0461875		1165.8005		0.0444975		416.6955		0.04569375

		1234.934		0.04576375		4490.07775		0.045655		851.62075		0.04596875		1405.307375		0.04440375		500.704		0.045625

		1764.517125		0.0455025		5486.623375		0.04539375		1019.443375		0.04572875		1673.430375		0.04424875		595.502875		0.0454075

		2395.988125		0.045235		6516.12		0.0451575		1197.4665		0.04554		1948.997		0.04410125		693.39075		0.04533625

		3180.793		0.04496375		7732.209		0.044915		1397.9355		0.04530875		2261.873125		0.04395625		801.80625		0.0451875

		4119.981		0.0447575		9004.209125		0.04469125		1611.366		0.0450975		2584.1315		0.04385		912.83125		0.04506125

		5277.33625		0.04451375		10495.67975		0.04447125		1854.12275		0.04488875		2952.871875		0.04368		1041.616		0.0449625

		6620.78875		0.04427		12039.382375		0.04420625		2108.79725		0.04465125		3332.3025		0.04360125		1174.285625		0.04494625

		8471.459375		0.04404875		13830.123375		0.04397625		2403.876125		0.04446875		3767.393125		0.04339		1328.50825		0.04471875

		10480.672375		0.043785		15700.086125		0.0437675		2709.219375		0.04426625		4215.38		0.04336		1485.8935		0.04462

		13311.963375		0.0435225		17880.718375		0.043565		3061.289125		0.04405375		4736.414375		0.0431875		1664.722875		0.0444125

		16643.5255		0.0433375		20436.582125		0.04338375		3476.553375		0.0438525		5347.22275		0.04295875		1878.379875		0.04422125

		21978.941875		0.0431225		23413.319		0.04317125		3965.725		0.04361625		6067.1985		0.042815		2132.260125		0.04391375

		28187.13975		0.04291		26886.904		0.04293		4549.745625		0.0433475		6917.103125		0.04257125		2428.19475		0.0437125

		36439.3045		0.04271125		30974.8585		0.0427175		5254.220125		0.043115		7942.53275		0.04227625		2785.28675		0.04350625

		45794.392125		0.04248		35802.59225		0.0425		6104.315875		0.0429125		9169.474		0.04208875		3218.81775		0.043225

		59252.611375		0.04224125		41506.67325		0.04228625		7123.56875		0.04270625		10645.95325		0.04191875		3733.2475		0.0429875

						48286.445875		0.04208875		8337.463375		0.04249875		12408.603		0.041695		4352.523125		0.04270875

						56307.247625		0.04186625		9817.741875		0.0422475		14557.601625		0.04149625		5115.333125		0.04253125

						65811.57825		0.04167125		11607.967125		0.042045		17184.662		0.0413225		6021.619875		0.04233625

										13789.940625		0.04183375		20403.244625		0.0411025		7147.32675		0.042075

										16451.082625		0.0416225		24353.212125		0.040905		8555.99425		0.04191625

										19203.81875		0.0414425		28412.808		0.04086		9962.620375		0.04181875

										22630.535		0.04130125		33449.6575		0.04068		11721.267625		0.04161875

										26880.626875		0.04111625		39681.348625		0.0404375		13936.531375		0.04138

										32153.838625		0.04093625		47442.5445		0.04027375		16656.9935		0.04118875

										38692.383125		0.04077625		57136.718375		0.04009625		20055.446375		0.04102375

										46905.399875		0.04054625		69295.037875		0.039955		24384.572125		0.04081625

										57131.358125		0.04038						29716.801375		0.0405975

										69133.67025		0.04021						36702.853		0.04038875

																		45399.9781428571		0.0401814285714286

																		57945.1073333333		0.0399733333333333
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we have available to us. We will use far fewer than n2, typically a value between n and
2n, but still refer to however many samples we do use as m.

Our method for solving LWE is via embedding e into a uSVP instance [Kan87,
BG14b] but using the success condition originally given in [ADPS16] and experimentally
justified in [AGVW17]. We also use the embedding coefficient t = 1 following [ADPS16,
AGVW17]. Concretely we embed the vector (e∥1) into a dimension d = m + 1
embedding basis of the form (2.16). For notational ease we still refer to the embedded
vector as e.

We approximate the minimal β such that after BKZ-β reduction, ∥πd−β(e)∥ <∥∥∥b∗d−β

∥∥∥. Therefore in the final full block of a BKZ-β tour, πd−β(e) will be inserted at
index d− β in the sense of Line 7 of Algorithm 7. The success condition in [ADPS16,
AGVW17] using Definition 2.4.6 of the root Hermite factor is

√
β · σ < δ2β−d−1

β · vol(Λ)1/d. (3.14)

It is shown in [AGVW17, Sec. 4.3] that after this insertion, size reduction in the sense
of Algorithm 1 on bd−β is enough to recover e from πd−β(bd−β) = πd−β(e) with high
probability over the randomness of the basis.

There is no a priori reason why the β used for BKZ reduction and the dimension
of the SVP call (currently the last full block in some BKZ-β tour) which first finds a
projection of e, should be the same. For enumeration based algorithms it is customary
to run one large enumeration after the smaller enumerations inside BKZ, see [LN13].
To apply this to sieving we alter the above inequality to allow a ‘decoupling’ of these
quantities and then balance the expected total time cost.

Let β continue to denote the BKZ block size and η denote the dimension of an
SVP call on the lattice Λ[d−η]. We obtain the following success condition

√
η · σ < δη−1

η · δη−d
β · vol(Λ)1/d. (3.15)

The left hand side is an approximation of the length πd−η(e) using Definition 2.4.10
and the right hand side an approximation of the Gaussian heuristic of Λ[d−η]. Indeed

gh(Λ[d−η]) ≈
√
η/2πe · (πη)1/2η · vol(Λ[d−η])1/η

=
√
η/2πe · (πη)1/2η ·

 d−1∏
i=d−η

∥b∗i ∥

1/η

. (3.16)
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(n, α) Estimated (β, η, d) Successful (β, ν, ν ′) CPU time Wall time M.

(65, 0.010) (108, 137, 244) (112, 124, 120) 2553h 60h A
(55, 0.015) (106, 135, 219) (110, 125, 103) 2198h 34h 50m S
(40, 0.030) (102, 133, 179) (108, 120, 111) 1116h 17h 43m S

(75, 0.005) (88, 118, 252) (88, 112, 107)‡ 591h 12h 26m S

(60, 0.010) (92, 122, 222) (94, 112, 106)† 579h 11h 59m S
(50, 0.015) (87, 118, 194) (81, 111, 95) 8h 36m 1h 23m S

†: There was also a failed search after β = 90, with ν = 115.
‡: There was also a failed search after β = 84, with ν = 115.

Table 3.3 Performance on Darmstadt LWE challenges.

From (2.15) we have δη−1
η =

√
η/2πe · (ηπ)1/2η. By combining this with the GSA and

the estimate the root Hermite factor gives for ∥b0∥, (3.15) may be derived from (3.16).

Note that when we are in this decoupling regime we are hoping that
sufficient reduction has occurred during BKZ-β reduction such that
we obtain πd−η(e) = OSVP(Λ[d−η]). For η ≤ β this is equivalent
to ∥πd−η(e)∥ <

∥∥∥b∗d−η

∥∥∥, since each of these b∗d−η were returned by
previous OSVP calls on Λ[d−η]. In the case we are interested in, where
η > β, we previously obtained b∗d−η ← OSVP(Λ[d−η:d−η+β]) for d −
η + β < d, i.e. a block that does not extend to the end of the basis.
This means that an SVP solution w ← OSVP(Λ[d−η]) may be such
that ∥w∥ <

∥∥∥b∗d−η

∥∥∥. Therefore, it is not enough to approximate η
for which ∥πd−η(e)∥ <

∥∥∥b∗d−η

∥∥∥, and instead we approximate where
∥πd−η(e)∥ < gh(Λ[d−η]). This Gaussian heuristic derivation in the
β = η case collapses to (3.14).

Implemented strategy and performance

To solve LWE instances in practice we implemented code which returns triples (β, η, d)
that satisfy (3.15), and choose the number of LWE samples accordingly. We then run
PumpNJumpTour with s = 1, j = 1, e = 12 and triple_sieve as the underlying sieve,
and increase β progressively (choosing f as the experimental fit of Figure 3.3b). After
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each tour, we measure the wall time T elapsed since the beginning of the reduction,
and predict the maximal dimension ν reachable by pumping up within time T . We
predict whether we expect to find the projected short vector in this pump (ignoring
on-the-fly lifting), following the reasoning of [Duc18a]. That is, we check the inequality

√
ν · σ ≤

√
4/3 · gh(Λ[d−ν]). (3.17)

If this condition is satisfied, we proceed to search for the LWE solution with a Pumpκ,f,β,s

using κ, f = d− ν − κ, β = d− κ, and s = 0 for 0 ≤ κ ≤ d− ν, otherwise we continue
BKZ reduction with larger β. This pump ultimately sieves in Λ[d−ν] and lifts database
vectors to Λ[κ].

Allowing a range of values for κ is a practical cost saving mechanism,
as the smaller κ is the more expensive the lifting operation. For
κ = 0 this Pump reaches saturation for the projected sublattice Λ[d−ν]

and, believing πd−ν(e) to be in this database, lifts database vectors
to Λ. In the case where 0 < κ ≤ d − ν again we reach saturation
in Λ[d−ν] but instead lift the database to Λ[κ]. If πd−ν(e) is in the
database before lifting and we satisfy πκ(e) ≈

√
d− κ · σ < gh(Λ[κ]),

then the projection πκ(e) of e will be inserted into the basis at index
κ (rather than just be in the lifted database). We then expect LLL to
recover e, and thus solve the LWE instance. In practice we may take
κ smaller than the inequality above suggests, say by 5 or so, to try
and ensure we do not have to perform another costly pump because
of just missing a successful lift of the solution.

If this search is triggered but fails, we go back to reducing the basis with progressive
BKZ, and reset the timer T . The search may also succeed before reaching the maximum
pump dimension ν, in which case we denote by ν ′ the dimension at which it stops.

Details of the six new Darmstadt LWE records are in Table 3.3. It should be noted
that the CPU time/wall time ratio can be quite far from e.g. 80, the number of threads
on machine S. This is because parallelism only kicks in for sieves in large dimensions
(see [ADH+19b, App. B]), while the wall times of some of the computations were
dominated by BKZ tours with medium blocksizes. One could tailor the parametrisation
to improve the wall time further, but this would be in vain as we are mostly interested
in the more difficult instances, which suffer little from this issue.
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3.8 Conclusion

Since the publication of this work the experimental results of Section 3.7 have been
used to inform the concrete security analysis of several submissions to the NIST
post quantum standardisation procedure, e.g. [SAB+20, DKR+20]. In particular the
experimental evidence for the number of attainable dimensions for free and the required
number of vectors to sieve in a given dimension are considered.

The implementation has been incorporated into the open source lattice reduction
project fplll,16 and has been used to run experiments in various papers, e.g. [AH21,
ABLR21]. In [AH21] the authors break through the ‘lattice barrier’ when solving the
hidden number problem using lattices. This lattice barrier was a conjecture that said
that below a certain number of bits of bias the hidden number problem could not be
solved by lattice embedding techniques. Using a new definition of bounded distance
decoding with a predicate (some knowledge on the sought after embedded lattice vector
that makes it uniquely identifiable) and the ability to tune various parameters such
as the saturation ratio of a sieve, the authors use G6K in experiments that show
this conjecture is false. In [ABLR21] the authors use G6K to answer in the negative
whether using sieving to instantiate an approximate SVP within lattice reduction led
to significant gains. The time complexity given for enumeration in the introduction
has also been improved in the work of [ABF+20]; the leading constant in the exponent
has been improved from 1/(2e) · d to d/8.

The implementation has also been used as the groundwork for a GPU based imple-
mentation.17 Firstly the authors implement an asymptotically faster sieve [BDGL16]
and then define a new filtering condition for close vectors based on the dual lattice.
This dual filter is tailored to a GPU architecture [DSvW21]. Given these improvements
the authors are able to solve SVP in dimension 180 [GS10], twenty-five dimensions
higher than the record achieved in this work.

The future work directions for this chapter are quite open ended. The pump
and workout strategies are natural, but they by no means exhaust the possibilities
given the available instructions. A functional extend right instruction would allow
one to experiment with the sliding window sieve of [LM18]. It would also be useful
to understand how the myriad parameters can be better tuned for particular lattice
problems. Given the new filter for close vectors in [DSvW21] and the use of a predicate
to find a unique vector with properties beyond being short in [AH21], the design space
for how one can select vectors to be lifted within G6K seems ripe.

16https://github.com/fplll/g6k
17https://github.com/WvanWoerden/G6K-GPU-Tensor

https://github.com/fplll/g6k
https://github.com/WvanWoerden/G6K-GPU-Tensor




Chapter 4

Quantum Algorithms for the k-List
Problem

In this chapter we consider quantum variants of a line of works that introduced what
one might call ‘low memory’ lattice sieves. The memory requirement for a sieve is
determined by the size of the list of lattice vectors it needs to maintain to find reducing
pairs, or indeed reducing k-tuples in this chapter, and by any memory needed for
locality sensitive techniques. The memory complexity of these ‘low memory’ sieves
is still exponential in the dimension of the lattice, but prior to the first of these
works [BLS16] it was not known how to reduce the size of the list below (4/3)d/2+o(d).
The fundamental idea is to create more opportunities for reductions by looking at
combinations of k lattice vectors at once, rather than just pairs. For a list L one has
roughly |L|k k-tuples to consider, and in [BLS16] it is shown that for growing k the
number of lattice vectors required to be stored in the list decreases by exponential
factors.

Of course, what one gains in memory complexity can just as easily be lost in time
complexity, and this is the case in this setting. Let L be a list of the size required for a
2-sieve, one that checks pairs, and L′ be a list of the size required for a 3-sieve, one
that checks triples. Then the cost to check all pairs in L is approximately |L|2 and the
cost of checking all triples in L′ is approximately |L′|3. Unfortuntely the L′ required
by a 3-sieve is such that |L′| > |L|2/3, and we therefore have a larger time complexity
in the 3-sieve case.

To try and minimise this increase in time complexity, while still obtaining the
decreased memory complexity, a filtering condition is introduced in [BLS16] for the
3-sieve case. This filtering condition is an inner product constraint between the first
two vectors in a triple, such that pairs of vectors which satisfy this local constraint are
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more likely to find a third vector with which they form a reducing triple. In particular,
under the standard heuristic lattice sieve assumptions, it is shown that one need only
search for triples (x1,x2,x3) of lattice vectors from the list such that ⟨x1,x2⟩ ≥ 1/3.
In practice this is achieved by looping over pairs (x1,x2) and then only searching for a
x3 to create a reducing triple if ⟨x1,x2⟩ ≥ 1/3. Since most vectors sampled uniformly
from a high dimensional sphere will be close to orthogonal, this filtering condition is
often unsatisfied, and therefore avoids a final loop over L′ to search for x3. We call
this style of constraint local because it depends on only a pair of vectors, even though
the algorithm is in general searching for a k-tuple of vectors that together satisfy some
condition, namely that they are reducible.

Using inner product based local constraints within k-sieves is generalised in the work
of [HK17]. Gram matrices called configurations are introduced, which determine what
the inner product should be between any two elements of a k-tuple. This is reminiscent
of the filtering approach of [BLS16] except rather than enforcing an inner product
constraint on the first pair of elements in a tuple, there are now O(k2) such inner
product constraints. The problem of finding reducing k-tuples is reduced to finding
k-tuples that satisfy a well chosen configuration. For the purpose of this introduction,
we will call such k-tuples satisfying k-tuples. The list size required to expect as many
satisfying k-tuples as elements in the input list is derived as a function of the dimension
of the lattice and the chosen configuration. By finding the configuration that minimises
this list size, one obtains the memory optimal parameters for performing a k-sieve
in this configuration framework. In doing so [HK17] are able to match the memory
complexity of [BLS16] while significantly improving the time complexity.

The framing of a k-sieve as a configuration problem was studied further in [HKL18].
While [HK17] had asked the question ‘what is the memory optimal configuration?’,
here the authors asked the question ‘given any amount of memory (above the minimum
implied by the memory optimal case), what is the time optimal configuration for
which this is sufficient memory?’. Smooth time memory trade offs were therefore
given in [HKL18]; pick a maximum allowable amount of memory, then check which
combination of k and configuration gives the minimum time complexity for this amount
of memory.

The works above approach the finding of k-tuples that satisfy the various constraints
in different manners. Brute force search through lists is used in [BLS16, HK17],
whereas [HKL18] also considers locality sensitive data structures for this task. In this
chapter we replace brute force search with tailored quantum search algorithms built
from nested Grover search and amplitude amplification. In particular we first produce
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a quantum variant of the [BLS16] algorithm, and then give a hybrid version of it
and [HKL18] which also makes use of quantum enumeration. To finish we switch gears
by specialising to the k = 3 case and reducing the configuration problem to a graph
theoretic problem, namely finding triangles. There are several quantum algorithms
for this task, and we investigate their performance relative to the quantum variants
of [BLS16] and [HKL18].
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4.1 Quantum algorithms for the approximate k-List
problem and their application to lattice sieving

The work presented here is an amended and annotated version of what is published as

Kirshanova E., Mårtensson E., Postlethwaite E.W., Moulik S.R. (2019) Quantum
Algorithms for the Approximate k-List Problem and Their Application to Lattice
Sieving.

In: Galbraith S., Moriai S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASI-
ACRYPT 2019. Lecture Notes in Computer Science, vol 11921. Springer, Cham.
https://doi.org/10.1007/978-3-030-34578-5_19

The omitted portions of this work are available at https://eprint.iacr.org/2019/
1016.

4.2 Introduction

The Shortest Vector Problem (SVP) is one of the central problems in the theory of
lattices. For a given d dimensional Euclidean lattice, usually described by a basis,
to solve SVP one must find a shortest non zero vector in the lattice. This problem
gives rise to a variety of efficient, versatile, and (believed to be) quantum resistant
cryptographic constructions [AD97, Reg05]. To obtain an estimate for the security of
these constructions it is important to understand the complexities of the fastest known
algorithms for SVP.

There are two main families of algorithms for SVP, (1) algorithms that require
2ω(d) time and poly(d) memory; and (2) algorithms that require 2Θ(d) time and mem-
ory. The first family includes lattice enumeration algorithms [Kan83, GNR10]. The
second contains sieving algorithms [AKS01, NV08, MV10c], Voronoi cell based ap-
proaches [MV10b] and others [BGJ14, ADRS15]. In practice, it is only enumeration
and sieving algorithms that are currently competitive in large dimensions [ADH+19a,
TKH18]. Practical variants of these algorithms rely on heuristic assumptions. For
example we may not have a guarantee that the returned vector will solve SVP ex-
actly (e.g. pruning techniques for enumeration [GNR10], lifting techniques for siev-
ing [Duc18a]), or that our algorithm will work as expected on arbitrary lattices
(e.g. sieving algorithms may fail on orthogonal lattices). Yet these heuristics are natural

https://doi.org/10.1007/978-3-030-34578-5_19
https://eprint.iacr.org/2019/1016
https://eprint.iacr.org/2019/1016
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for lattices often used in cryptographic constructions, and one does not require an exact
solution to SVP to progress with cryptanalysis [ADH+19a]. Therefore, one usually
relies on heuristic variants of SVP solvers for security estimates.

Among the various attractive features of lattice based cryptography is its potential
resistance to attacks by quantum computers. In particular, there is no known quantum
algorithm that solves SVP on an arbitrary lattice significantly faster than existing
classical algorithms.1 However, some quantum speedups for SVP algorithms are possible
in general.

It was shown by Aono–Nguyen–Shen [ANS18] that enumeration algorithms for SVP
can be sped up using the quantum backtracking algorithm of Montanaro [Mon18]. More
precisely, with quantum enumeration one solves SVP on a d dimensional lattice in
time d 1

4e
d+o(d), a square root improvement over classical enumeration. This algorithm

requires poly(d) classical and quantum memory. This bound holds for both provable
and heuristic versions of enumeration. Quantum speedups for sieving algorithms are
considered by Laarhoven–Mosca–van de Pol [LMv13] and later by Laarhoven [Laa16].
The latter study presents various quantum sieving algorithms for SVP. One of them
achieves time and classical memory complexity of order 20.2653d+o(d) and requires poly(d)
quantum memory. This is the best known quantum time complexity for heuristic
sieving algorithms. Provable single exponential SVP solvers are considered in the
quantum setting by Chen–Chang–Lai [CCL18]. Based on [DRSD14, ADRS15], the
authors describe a 21.255d+o(d) time, 20.5d+o(d) classical and poly(d) quantum memory
algorithm for SVP. All heuristic and provable results rely on the classical memory
being quantumly addressable, i.e. on qRAM.2

A drawback of sieving algorithms is their large memory requirements. Initiated by
Bai–Laarhoven–Stehlé, a line of work [BLS16, HK17, HKL18] gives a family of heuristic
sieving algorithms, called tuple lattice sieves, or k-sieves for some fixed constant k,
that offer time memory trade offs. Such trade offs have proven important in the
current fastest SVP solvers, as the ideas of tuple sieving offer significant speedups
in practice, [ADH+19a]. In this work, we explore various directions for asymptotic
quantum accelerations of tuple sieves.

1For some families of lattices, e.g. ideal lattices, there exist quantum algorithms that solve an SVP
variant faster than classical algorithms [CDW17, PHS19]. We consider arbitrary lattices.

2A recent work [CL21] achieves time 20.2570d+o(d) but requires exponential rather than polynomial
quantum memory, and for the qRAM operation to be applied to this quantum memory.
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Our results

1. In Section 4.5 we show how to use a quantum computer to speed up the k-
sieve of Bai–Laarhoven–Stehlé [BLS16] and its improvement due to Herold–
Kirshanova–Laarhoven [HKL18] (Algorithms 8 and 9). One data point achieves
a time complexity of 20.2989d+o(d), while requiring 20.1395d+o(d) classical memory
and poly(d) width quantum circuits. Compared to the algorithm of [Laa16] with
time and memory complexities 20.2653d+o(d) we almost halve the constant in the
exponent for memory at the cost of a small increase in the respective constant
for time.

2. In Section 4.6 we reduce the 3-sieve case to the graph theoretic problem of finding
triangles. We show that using the triangle finding algorithm of [BdWD+01] gives
an algorithm that matches the complexity of the memory optimal version of
Algorithm 9. We then go on to use the triangle finding algorithm of [GN17], the
complexity of which depends on the sparsity of the graph we embed the 3-sieve
problem into. By altering the sparsity of the graph we are able to perform a
3-sieve using 20.3264d+o(d) queries.3 We do not convert this query complexity into
time complexity, see the second open question below.

In [KMPM19b] we further perform the following analyses.

1. In Appendix B, borrowing ideas from [Laa16] we give a quantum k-sieve that
also exploits nearest neighbour techniques, namely locality sensitive filtering
(LSF). For k = 2, we recover Laarhoven’s 20.2653d+o(d) time and memory quantum
algorithm.

2. In Section 7 we describe a quantum circuit consisting only of gates from a
universal gate set (e.g. CNOT and single qubit rotations) of depth 20.1038d+o(d) and
width 20.2075d+o(d) that implements the 2-sieve as proposed classically in [NV08].
In particular we consider exponential quantum memory to make significant
improvements to the number of time steps. Our construction adapts the parallel
search procedure of [BBG+13].

Our main results, quantum time memory trade offs for sieving algorithms, are
summarised in Figure 4.1. When optimising for time a quantum 2-sieve with LSF
remains the best algorithm. For k ≥ 3 the speedups offered by LSF are less impressive,

3This means that the complexity of the algorithm is measured in the number of oracle calls to the
adjacency matrix of the graph.
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and one can achieve approximately the same asymptotic time complexity by considering
quantum k-sieve algorithms (without LSF) with k ≥ 10 and far less memory.

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.25

0.3

0.35

0.4

0.45

0.5

log2(Memory)/d

lo
g 2

(T
im

e)
/d

Quantum 10-sieve
Quantum 15-sieve
Quantum 20-sieve
Quantum 2-sieve with LSF
Quantum 3-sieve with LSF

Figure 4.1 Time memory trade offs for Algorithm 8 with k ∈ {10, 15, 20}
and [KMPM19b, Alg B.2] with k ∈ {2, 3}. Each curve provides time memory trade
offs for a fixed k, either with nearest neighbour techniques (the right two curves) or
without (the left three curves). Each point on a curve (x, y) represents (Memory, Time)
values, obtained by numerically optimising for time while fixing available memory.
For example, we build the leftmost curve (dotted brown) by computing the mem-
ory optimal (Memory, Time) value for the 20-sieve and then repeatedly increase the
available memory (decreasing time) until we reach the time optimal (Memory, Time)
value. Increasing memory further than the rightmost point on each curve does not
decrease time. The figures were obtained using an optimisation package provided by
Maple™ [Map].

All the results presented in this work are asymptotic in nature: our algorithms have
time, classical memory, and quantum memory complexities of order 2cd+o(d), 2c′d+o(d),
and poly(d) respectively, for c, c′ ∈ Θ(1), which we aim to minimise. We do not attempt
to specify the o(d) or poly(d) terms.

Our techniques

We now briefly describe the main ingredients of our results.
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1. A useful abstraction of the k-sieve is the configuration problem, first described
in [HK17]. It consists of finding k elements that satisfy certain pairwise in-
ner product constraints from k exponentially large lists of vectors. Assuming
(x1, . . . ,xk) is a solution tuple, the ith element xi can be obtained via a brute
force search either over the ith input list [BLS16], see Figure 4.2a, or over a certain
sublist of the ith list [HK17, HKL18], see Figure 4.2b. We replace the brute
force searches with calls to Grover’s algorithm and reanalyse the configuration
problem.

2. The configuration problem can be reduced to the k-clique problem in a graph with
vertices representing elements from the lists given by the configuration problem.
Vertices are connected by an edge if and only if the corresponding list elements
satisfy some inner product constraint. We specialise to the k = 3 case and apply
the quantum triangle finding algorithms of Buhrman et al. [BdWD+01] and Le
Gall–Nakajima [GN17]. For this latter algorithm we exploit its dependence on
sparsity by forming many graphs from unions of subsets of vertices of the original
graph, which allows us to control the sparsity of these newly formed graphs.

Open questions

1. The classical configuration search algorithms of [HKL18] offer time memory trade
offs for SVP by varying k (larger k requires less memory but more time). We
observe in Section 4.4 that time optimal classical algorithms for the configuration
problem hit a certain point on the time memory trade off curve once k becomes
large enough, see Table 4.1. The same behaviour is observed in our quantum
algorithms for the configuration problem, see Table 4.2. Although we provide
some explanation of this, we do not rigorously prove that the trade off curve
indeed stops on its time optimal side. We leave it as an open problem to determine
the shape of the configuration problem for these time optimal instances of the
algorithm. Another open problem originating from [HK17] is to extend the
analysis to non constant k.

2. We do not give time complexities for our approach based on [GN17] in Section 4.6,
instead reporting the query complexity. We leave open the question of determining
e.g. the complexity of forming auxiliary databases used by the quantum random
walks on Johnson graphs of [GN17], as well as giving the (quantum) memory
requirements of these methods in our setting. To determine the number of
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repetitions of the algorithm we also assume it outputs a uniform triangle from
the graph, the proof (or disproof) of which we leave open.

4.3 Preliminaries

Recall we define Sd−1 = {x ∈ Rd : ∥x∥ = 1} ⊂ Rd and [n] = {1, . . . , n}. We use soft
O notation to denote running times, in particular we let any function f(d) ∈ 2cd+o(d)

be such that f(d) ∈ Õ(2cd), i.e. the notation suppresses subexponential factors.4

For some matrix A ∈ Rn×n we denote its (i, j)th entry as Ai,j . For any x1, . . . ,xk ∈
Rd the Gram matrix C ∈ Rk×k is given by Ci,j = ⟨xi,xj⟩, the set of pairwise inner
products. For I ⊂ [k], we denote by C[I] the |I| × |I| submatrix of C obtained by
restricting C to the rows and columns indexed by I. For a vector x and i ∈ [d], we
denote by x[i] the ith entry of x.

Lattices

Recall the introduction to lattices given in Section 2.2. In this work we deal solely
with full rank lattices of rank and dimension d.

Quantum search

Recall the introduction given to Grover’s algorithm and amplitude amplification given
in Section 2.6.2. In particular recall the unitaries D,R0,Rf , the Grover and amplitude
amplification iterations G(f) and G(A, f), and the results of Theorem 2.6.1 and
Theorem 2.6.2. The results of this paper rely on applying both Grover’s algorithm and
amplitude amplification.

Computational models

Our algorithms are analysed in the quantum circuit model [NC11, KLM07]. Each wire
represents a qubit, i.e. a vector in a two dimensional complex Hilbert space, and we
assert that we have a set of universal gates. We work in the noiseless quantum theory
model, i.e. we assume there is no (or negligible) decoherence or other sources of noise
in the computational procedures.

The algorithms given in Sections 4.5 and 4.6 are in the qRAM model and assume
quantumly accessible classical memory [GLM08]. More concretely in this model we

4Note that this is not exactly the same as the usual meaning where f(d) ∈ Õ(g(d))⇒ there exists
a k ∈ N such that f(d) ∈ O(g(d) · logk(g(d)))
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store all data, e.g. the list of vectors, in classical memory and only demand that this
memory is quantumly accessible, i.e. that elements in the list can be efficiently accessed
in coherent superposition. Concretely, we require the qRAM operation described in
Section 2.6.1. This enables us to design algorithms that in principle do not require
large quantum memories that can be implemented with only poly(d) qubits and with
the 2Θ(d) sized lists stored in classical memory. Several works [BHT97, Kup13] suggest
that this memory model is potentially easier to achieve than a full quantum memory.

In Section 4.6 we study the algorithms in the query model, which is the typical model
for quantum triangle finding algorithms. Namely, the complexity of our algorithm is
measured in the number of oracle calls to the adjacency matrix of a graph associated
to a list of vectors.

4.4 Sieving as configuration search

In this section we describe previously known classical heuristic sieving algorithms. We
will not go into detail or give proofs, which can be found in the relevant references.

Sieving algorithms receive a basis B ∈ Rd×d as input and start by sampling an
exponentially large list L of (long) lattice vectors from Λ(B). There are efficient
algorithms for sampling lattice vectors, e.g. [Kle00]. The elements of L are then
iteratively combined to form shorter lattice vectors, xnew = x1±x2± . . .±xk such that
∥xnew∥ ≤ maxi≤k{∥xi∥}, for some k ≥ 2. Newly obtained vectors xnew are stored in a
new list and the process is repeated with this new list of shorter vectors. Namely, we
consider Nguyen–Vidick style sieves in this work. It can be shown [NV08, Reg09a] that
after poly(d) such iterations we obtain a list that contains a short vector. Therefore,
the asymptotic complexity of sieving is determined by the cost of finding k-tuples
whose combination produces shorter vectors. Under certain heuristics, specified below,
finding such k-tuples can be formulated as the approximate k-List problem.

Definition 4.4.1 (Approximate k-List problem). We are given k lists L1, . . . , Lk ⊂ Rd

of equal exponential (in d) size |L| and whose elements are i.i.d. uniform on Sd−1.
The approximate k-List problem is to find |L| solutions, where a solution is a k-tuple
(x1, . . . , xk) ∈ L1 × · · · × Lk satisfying ∥x1 + · · ·+ xk∥ ≤ 1.

The assumption made in analyses of heuristic sieving algorithms [NV08] is that the
lattice vectors in the new list after an iteration are thought of as i.i.d. uniform vectors
on a thin spherical shell (essentially, a sphere), and, once normalised, on Sd−1. Hence
sieves do not ‘see’ the discrete structure of the lattice from the vectors operated on.
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The heuristic becomes invalid when the vectors become short. In this case we assume
we have solved SVP. Thus, we may not find a shortest vector, but an approximation
to it, which is enough for many cryptanalytic purposes.

We consider k to be constant. The lists L1, . . . , Lk in Definition 4.4.1 may be
identical. Note that the approximate k-List problem only looks for solutions with +
signs, i.e. ∥x1 + · · ·+ xk∥ ≤ 1, while sieving looks for arbitrary signs. This is not an
issue, as we may repeat an algorithm for the approximate k-List problem 2k ∈ O(1)
times in order to obtain all solutions.

Configuration search

Using a concentration result on the distribution of inner products of x1, . . . ,xk ∈ Sd−1

shown in [HK17], the approximate k-List problem can be reduced to the configuration
problem. In order to state this problem, we introduce configurations.

Definition 4.4.2 (Configuration). The configuration C = Conf(x1, . . . ,xk) of k points
x1, . . . ,xk ∈ Sd−1 is the Gram matrix of the xi, i.e. Ci,j = ⟨xi,xj⟩.

A configuration C ∈ Rk×k is a symmetric positive semidefinite matrix. Note that the
diagonal of C is formed of all ones. Rewriting the solution condition ∥x1 + · · ·+ xk∥2 ≤
1, one can check that a configuration C for a solution tuple satisfies 1tC1 ≤ 1. We
denote the set of such ‘good’ configurations by

C = {C ∈ Rk×k : C is symmetric positive semidefinite and 1tC1 ≤ 1}.

It has been shown [HK17] that rather than looking for k-tuples that form a solution
for the approximate k-List problem, we may look for k-tuples that satisfy a constraint
on their configuration. This gives rise to the following problem.

Definition 4.4.3 (Configuration problem). Let k ∈ N and ε > 0. Suppose we are
given a target configuration C ∈ C . Given k lists L1, . . . , Lk ⊂ Rd all of exponential
(in d) size |L|, whose elements are i.i.d. uniform from Sd−1, the configuration problem
consists of finding a 1 − o(1) fraction of all solutions, where a solution is a k-tuple
(x1, . . . ,xk) with xi ∈ Li such that |⟨xi,xj⟩ −Ci,j| ≤ ε for all i, j.

Solving the configuration problem for a C ∈ C gives solutions to the approximate
k-List problem. For a given C ∈ Rk×k the number of expected solutions to the
configuration problem is a function of det(C) as the following theorem shows.
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Theorem 4.4.1 (Distribution of configurations [HK17, Theorem 1]). If x1, . . . ,xk are
i.i.d. from Sd−1 and d > k, then their configuration C = Conf(x1, . . . ,xk) follows a
distribution with density function

µ = Wd,k · det(C)
1
2 (d−k)dC1,2 . . . dCd−1,d, (4.1)

where Wd,k ∈ Ok(d 1
4 (k2−k)) is an explicitly known normalisation constant that only

depends on d and k. Here Ok denotes that the asymptotic statement is true for fixed k.

This theorem tells us that the expected number of solutions to the configuration
problem for C is given by ∏i (|Li|) · (det C)d/2. If we want to apply an algorithm for
the configuration problem to the approximate k-List problem (and to sieving), we
require that the expected number of output solutions to the configuration problem is
equal to the size of the input lists. Namely, C and the input lists Li of size |L| should
(up to polynomial factors) satisfy |L|k · (det C)d/2 = |L|. This condition gives a lower
bound on the size of the input lists. Using Chernoff bounds, one can show (see [HKL18,
Lemma 2]) that increasing this bound by a poly(d) factor gives a sufficient condition
for the size of input lists. In particular

|L| ∈ Õ

( 1
det(C)

) d
2(k−1)

 (4.2)

is sufficient.

Classical algorithms for the configuration problem

The first classical algorithm for the configuration problem which chose k ≥ 2 was given
by Bai–Laarhoven–Stehlé [BLS16] (Figure 4.2a). It was later improved by Herold–
Kirshanova [HK17] and by Herold–Kirshanova–Laarhoven [HKL18] (Figure 4.2b).
These results present a family of algorithms for the configuration problem that offer
time memory trade offs. In Section 4.5 we present quantum versions of these algorithms.

Both algorithms [BLS16, HKL18] process the lists from left to right but in a
different manner. For each x1 ∈ L1 the algorithm from [BLS16] applies a filtering
procedure to L2 and creates the ‘filtered’ list L2(x1). This filtering procedure takes
as input an element x2 ∈ L2 and adds it to L2(x1) if and only if |⟨x1,x2⟩ −C1,2| ≤ ε.
Throughout, vectors in brackets indicate fixed elements with respect to which the
list has been filtered. Having constructed the list L2(x1), the algorithm then iterates
over it: for each x2 ∈ L2(x1) it applies the filtering procedure to L3 with respect to
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C2,3 and obtains L3(x1,x2). Filtering of the original lists (L1, . . . , Lk) continues in
this fashion until we have constructed Lk(x1, . . . ,xk−1) for fixed values x1, . . . ,xk−1.
Amongst the tuples of the form (x1, . . . ,xk−1,xk) for xk ∈ Lk(x1, . . . ,xk−1) will be
solutions to the configuration problem. The algorithms from [HK17, HKL18] apply
more filtering steps. For a fixed x1 ∈ L1, they not only create L2(x1), but also
L3(x1), . . . , Lk(x1). This speeds up the iteration over x2 ∈ L2(x1), where now the
filtering step with respect to C2,3 is applied not to L3, but to L3(x1), as well as to
L4(x1), . . . , Lk(x1). Each Li(x1) is smaller than Li. This speeds up the construction of
L3(x1,x2), . . . , Lk(x1,x2). The algorithm continues with this filtering process until the
last inner product check with respect to Ck−1,k and some xk−1 ∈ Lk−1(x1, . . . ,xk−2)
is applied to all the elements from Lk(x1, . . . ,xk−2) and the list Lk(x1, . . . ,xk−1) is
constructed. This gives configuration problem solutions of the form (x1, . . . ,xk−1,xk)
for all xk ∈ Lk(x1, . . . ,xk−1). Pseudocode for the [HK17, HKL18] approach can be
found in [KMPM19b, App A].

The fundamental difference between the BLS and HKL algorithms is
that the first never constructs the lists Lj(x1, . . . ,xi) for i < j − 1.
As such the conditions |⟨xi,xj⟩ −Ci,j| ≤ ε for i < j − 1 are not
checked, see Figure 4.2a and set e.g. (i, j) = (1, 3). Provided the
input lists are sufficiently large, in the sense of Theorem 4.4.1 and
below, then enough solutions to the configuration problem will be
found by the BLS algorithm in the form of tuples (x1, . . . ,xk−1,xk).
Depending on the configuration there may also be many non solutions
of this form. On the other hand, the HKL algorithm checks every
condition demanded by the configuration problem, and as such any
tuple (x1, . . . ,xk−1,xk) will be a solution.
In this work we give two quantum algorithms, a quantum variant of
BLS and of a quantum variant of HKL. The quantum BLS variant
(Algorithm 8) is like the classical BLS algorithm in the sense that
it never explicitly constructs lists Lj(x1, . . . ,xi) for i < j − 1. It is
unlike the classical BLS algorithm in that it does check all the filtering
conditions required by a configuration C, see Definition 4.5.1 of the
function encoded by Grover iterations. The quantum HKL variant
(Algorithm 9) is like the classical HKL algorithm in that it explicitly
creates some filtered lists of the form Lj(x1, . . . ,xi) for i < j− 1, and
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checks all the filtering conditions required by a configuration C. It
is unlike the classical HKL algorithm in that it does not necessarily
explicitly create all such filtered lists.

Important for our analyses throughout the paper is the result of [HKL18] that
describes the sizes of all the intermediate lists that appear during the configuration
search algorithms via the determinants of submatrices of the target configuration C.
The next theorem gives the expected sizes of these lists and the time complexity of the
algorithm from [HKL18].

Theorem 4.4.2 (Intermediate list sizes [HKL18, Lemma 1] and time complexity).
During a run of the configuration search algorithm described in Figure 4.2b, given
an input configuration C ∈ Rk×k and lists L1, . . . , Lk ⊂ Sd−1 each of size |L|, the
intermediate lists for 1 ≤ i < j ≤ k are of expected sizes

E[|Lj(x1, . . . ,xi)|] = |L| ·
(

det(C[1, . . . , i, j])
det(C[1, . . . , i])

)d/2

. (4.3)

The expected running time of the algorithm described in Figure 4.2b is

TC
k-Conf = max

1≤i≤k

[
i∏

r=1
|Lr(x1, . . . ,xr−1)| · max

i+1≤j≤k
|Lj(x1, . . . ,xi−1)|

]
. (4.4)

The quantum variants of both the BLS and HKL algorithms check
all filtering conditions and output tuples that are solutions for an
input configuration C. They therefore both follow the expected
intermediate list sizes of (4.3). They should also both be compared
to the performance of the classical HKL algorithm (4.4) for which
time optimal values are given in Table 4.1.

Finding a configuration for optimal runtime

For a given i the square bracketed term in (4.4) represents the expected time required
to create all possible filtered lists on a given ‘level’.

Definition 4.4.4. Given some k ≥ 1, a list L ⊂ Sd−1, vectors x1, . . . ,xk−1 ∈ Rd we
say L(x1, . . . ,xi−1) is on or at level i. In particular, L is at level 1 and L(x1, . . . ,xk−1)
is at level k.
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Figure 4.2 Algorithms for the configuration problem. Procedures Filteri,j receive as
input a vector (e.g. x1), a list of vectors (e.g. L2), and a real number Ci,j. It creates
another shorter list (e.g. L2(x1)) that contains all vectors from the input list whose
inner product with the input vector is within some small ε from Ci,j.

L1 L2 L3 · · · Lk

x1
Filter1,2

L2(x1) · · ·

x2
Filter2,3

L3(x1,x2) . . .

Filterk−1,k

Lk(x1, . . . ,xk−1)

(a) The algorithm of Bai et al. [BLS16] for the configuration problem.

L1 L2 L3 · · · Lk

x1
Filter1,2 Filter1,3 Filter1,k

L2(x1) L3(x1) · · · Lk(x1)

x2
Filter2,3 Filter2,k

L3(x1,x2) · · · Lk(x1,x2)

. . . ...

Filterk−1,k

Lk(x1, . . . ,xk−1)

(b) The algorithm of Herold et al. [HKL18] for the configuration problem.
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k 2 3 4 5 6 . . . 16 17 18
Time 0.4150 0.3789 0.3702 0.3707 0.3716 0.3728 0.37281 0.37281
Space 0.2075 0.1895 0.1851 0.1853 0.1858 0.1864 0.18640 0.18640

Table 4.1 Asymptotic complexity exponents base 2 for the approximate k-List problem.
The table gives optimised runtime, and the corresponding memory, exponents for the
classical algorithm from [HKL18], see Figure 4.2b and [KMPM19b, App. A].

In particular one may think of a row of lists in Figure 4.2b.

A given i in the outer max of (4.4) represents the cost of forming all
possible filtered lists on level i+ 1, e.g. i = 1 is

|L1| ·max{|Lj| : j ∈ {2, . . . , k}}.

This is the cost (up to a constant factor) of forming L2(x1), . . . , Lk(x1)
for all x1 ∈ L1.
The final value i = k in the outer max gives the expected number of
total solutions tuples (x1, . . . ,xk−1,xk) and therefore represents the
cost of reading the output.

In order to find an optimal configuration C that minimises (4.4), we perform
numerical optimisations using the Maple™ package [Map].5 In particular, we search
for C ∈ C that minimises (4.4) under the condition that (4.2) is satisfied (so that
we actually obtain enough solutions for the k-List problem). Figures for the optimal
runtime and the corresponding memory are given in Table 4.1. The memory is
determined by the size of the input lists computed from the optimal C using (4.2).
Since the k-List routine determines the asymptotic cost of a k-sieve, the figures in
Table 4.1 are also the respective constants for the complexities of k-sieves.

Interestingly, the optimal runtime constant turns out to be equal for large enough
k. This can be explained as follows. The optimal C achieves the situation where all
the expressions in the outer max of (4.4) are equal. This implies that creating all the
filtered lists on level i asymptotically costs the same as creating all the filtered lists on
level i + 1 for 2 ≤ i ≤ k − 1. The cost of creating filtered lists Li(x1) on the second
level is of order |L|2. This value |L|2 becomes (up to poly(d) factors) the running
time of the whole algorithm (compare the Time and Space constants for k = 16, 17, 18

5The code is available at https://github.com/ElenaKirshanova/QuantumSieve.

https://github.com/ElenaKirshanova/QuantumSieve
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in Table 4.1). The precise shape of C ∈ C that makes the costs per level equal can
be obtained by equating all the terms in the outer max of (4.4) and minimising the
value |L|2 under these constraints. Even for small k these computations become rather
tedious and we do not attempt to express Ci,j as a function of k, which is, in principal,
possible.

Finding a configuration for optimal memory

If we want to optimise for memory, the optimal configuration C has all its off diagonal
elements Ci,j = −1/k. Such a configuration is called balanced. It is shown in [HK17]
that such C maximises det(C) among all C ∈ C , which, in turn, minimises the sizes of
the input lists, see (4.2). However, such configurations do not lead to optimal running
times since the costs per level are not equal.

4.5 Quantum configuration search

In this section we present several quantum algorithms for the configuration problem
(Definition 4.4.3). As explained in Section 4.4, these directly translate to quantum
sieving algorithms for SVP. We start with a quantum version of the BLS style configu-
ration search [BLS16], then we show how to improve this algorithm by constructing
intermediate filtered lists.

Recall that in the configuration problem we receive k lists L1, . . . , Lk ⊂ Sd−1, a
configuration matrix C ∈ Rk×k, and ε > 0 as input. We assume for simplicity each of
L1, . . . , Lk has size a power of two, namely |Li| = 2t. This is not necessary, but it allows
us notational simplicity by creating uniform superpositions using only Hadamard gates.
To describe our algorithms we define f[i],j, a function that takes d dimensional vectors
as input.

Definition 4.5.1. Let k ≥ 2 and 1 ≤ i < j ≤ k. Given some L1, . . . , Lk ⊂ Sd−1, and
for some implicit and hardcoded x1 ∈ L1, configuration C ∈ Rk×k, and ε > 0, define

f[i],j : L2 × · · · × Li × Lj → {0, 1}

(x2, . . . ,xi,xj) 7→

0 |⟨xℓ,xj⟩ −Cℓ,j| ≤ ε for all ℓ ∈ [i],
1 else.

Using f[i],j we perform a check for ‘good’ elements and may construct the lists
Lj(x1,x2, . . . ,xi) from Lj(x1, . . . ,xℓ) for any 0 ≤ ℓ ≤ i. We assume that any vector
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encountered by the algorithm, e.g. an element of Lj(x1, . . . ,xi), can be stored as d̄
qubits. We denote by |0⟩ the d̄-tensor of 0 qubits, i.e. |0⟩ = |0⊗d̄⟩. Recall that Rf[i],j

denotes the part of the Grover iteration G(f[i],j) that negates a non root of f[i],j, see
Section 2.6.2. In particular we have

Rf[i],j |x2⟩ · · · |xi⟩ |xj⟩ = |x2⟩ · · · |xi⟩ (−1)f[i],j(x2,...,xi,xj) |xj⟩ .

We are searching for elements of Lj(x1, . . . ,xi) so we apply the rest of the Grover
iteration, the DR0D†, to only the final register above. Our Grover iteration therefore
is of the form

G(f[i],j) = (I⊗(i−1)
d̄

⊗D) · (I⊗(i−1)
d̄

⊗R0) · (I⊗(i−1)
d̄

⊗D†) ·Rf[i],j .

The level 1 lists L1, . . . , Lk are stored classically and are assumed to be quantumly
accessible. In particular, we assume that we can efficiently construct a uniform
superposition over all elements from a given list L by first applying Hadamards
followed by a qRAM table lookup. That is, we assume an efficient circuit for

|0⊗t⟩ |0⟩ → 1√
|L|

∑
i

|i⟩ |0⟩ → 1√
|L|

∑
i

|i⟩ |L[i]⟩ . (4.5)

Here the first register is used to index elements of L and the second register to store them.
The first arrow denotes the unitary H⊗t that puts the indices into equal superposition,
and the second arrow denotes a call to qRAM as introduced in Section 2.6.1. We call
the unitary that performs the above D, and for simplicity we ignore the first register
that stores the indices. Note that often it is the second register which is ignored, and
the indices remembered. This is how quantum search was introduced in Section 2.6.2,
where the domain of the function f is the indices of elements in a list, and where f is
a function that checks a property of the elements of this list relating to these indices.
For notational and expository reasons in this chapter we prefer to work directly with
the list elements.

We denote by |ΨL⟩ a uniform superposition over the elements of L, i.e. |ΨL⟩ =
1√
|L|

∑
x∈L |x⟩. More generally we define the following notation.

Definition 4.5.2. Given any (possibly filtered) list Lj(x1, . . . ,xi) we denote

|ΨLj(x1,...,xi)⟩ = 1√
|Lj(x1, . . . ,xi)|

∑
x∈Lj(x1,...,xi)

|x⟩.
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The idea of our algorithm for the configuration problem is the following. We have a
global classical loop over x1 ∈ L1 inside which we run our quantum algorithm to find
a (k − 1) tuple (x2, . . . ,xk) that together with x1 gives a solution to the configuration
problem. We expect to have O(1) such (k − 1) tuples per x1.6 At the end of the
algorithm we expect to obtain such a solution by means of amplitude amplification,
recall Theorem 2.6.2. In Theorem 4.5.1 we argue that this procedure succeeds in finding
a solution with probability in 1− 2−Ω(d).

Inside the classical loop over x1 we prepare (k − 1)d̄ qubits, which we arrange into
k − 1 registers, so that each register will store (a superposition of) input vectors, see
Figure 4.3. Each such register is set in uniform superposition over the elements of the
input lists: |ΨL2⟩ ⊗ |ΨL3⟩ ⊗ · · · ⊗ |ΨLk

⟩. We apply Grover’s algorithm on |ΨL2⟩ using
G(f[1],2). We have |L2(x1)| ‘good’ states out of |L2| states in |ΨL2⟩, so by performing
O
(√

|L2|
|L2(x1)|

)
applications of G(f[1],2) we obtain

|ΨL2(x1)⟩ = 1√
|L2(x1)|

∑
x2∈L2(x1)

|x2⟩ . (4.6)

In fact, what we obtain is a state close to (4.6) as there will be some probability of
measuring an x2 ̸∈ L2(x1). We do not now measure this state, and instead keep it
in superposition. For now we drop the expression ‘close to’ for all the states in this
description, and argue about the failure probability in Theorem 4.5.1.

Now consider the state |ΨL2(x1)⟩ |ΨL3⟩ and the function f[2],3 that uses the first and
second registers as inputs, with a hardcoded x1. We apply the unitary G(f[2],3) to
|ΨL2(x1)⟩ |ΨL3⟩. In other words, for all vectors from L3, we check if they satisfy the
inner product constraints with respect to x1 and x2. There are |L3(x1,x2)| ‘good’
states in |ΨL3⟩. We therefore perform O

(√
|L3|

|L3(x1,x2)|

)
applications of G(f[2],3) to

obtain the state

|ΨL2(x1)⟩ |ΨL3(x1,x2)⟩ = 1√
|L2(x1)|

∑
x2∈L2(x1)

|x2⟩

 1√
|L3(x1,x2)|

∑
x3∈L3(x1,x2)

|x3⟩

 .
We continue creating the lists Li+1(x1,x2, . . . ,xi) by filtering the level 1 list Li+1

with respect to x1 (fixed by the outer classical loop), and with respect to x2, . . . ,xi

(in superposition) using G(f[i],i+1). At level k − 1 we obtain the state |ΨL2(x1)⟩ ⊗
|ΨL3(x1,x2)⟩ ⊗ · · · ⊗ |ΨLk−1(x1,...,xk−2)⟩. For the last list Lk we filter with respect to
x1, . . . ,xk−2, as for the list Lk−1, rather than x1, . . . ,xk−1. Finally, for a fixed x1, the

6This follows by multiplying the sizes of the lists Li(x1, . . . xi−1) for all 2 ≤ i ≤ k.
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‘filtered’ state we obtain is of the form

|ΨF ⟩ = |ΨL2(x1)⟩ ⊗ |ΨL3(x1,x2)⟩ ⊗ · · · ⊗ |ΨLk−1(x1,...,xk−2)⟩ ⊗ |ΨLk(x1,...,xk−2)⟩ . (4.7)

The state is expected to contain O(1) many (k − 1) tuples (x2, . . . ,xk) which together
with x1 give a solution to the configuration problem. To prepare the state |ΨF ⟩ for a
fixed x1, we need

TInGrover ∈ O


√√√√( |L2|
|L2(x1)|

)
+ · · ·+

√√√√( |Lk|
|Lk(x1, . . . ,xk−2)|

) (4.8)

unitary operations of the form G(f[i],j). This is what we call the ‘inner’ Grover
procedure.

Recall amplitude amplification, as introduced in Section 2.6.2. Let us denote by A
an algorithm that creates |ΨF ⟩ from |0⟩ ⊗ · · · ⊗ |0⟩ in time TInGrover without performing
any measurements. In order to obtain a solution tuple (x2, . . . ,xk) we apply amplitude
amplification using the unitary G(A, f ∩ g).

Here f is a function where a tuple (x2, . . . ,xk) is a root of f , i.e. f(x2, . . . ,xk) = 0,
if and only if it a root of each of f[1],2, . . . , f[k−2],k−1, f[k−2],k. That is, it satisfies the
filtering conditions that produce |ΨF ⟩. A tuple (x2, . . . ,xk) is a root of f ∩ g if and
only if it is a root of f and a root of g. The function g operates on the final two
elements of the tuple, as defined below.

Definition 4.5.3. Let k ≥ 3. Given some Lk−1, Lk ⊂ Sd−1, and for some implicit and
hardcoded configuration C ∈ Rk×k, and ε > 0, define

g : Lk−1 × Lk → {0, 1}

(xk−1,xk) 7→

0 |⟨xk−1,xk⟩ −Ck−1,k| ≤ ε

1 else.
(4.9)

Therefore, a tuple satisfying (f ∩ g)(x2, . . . ,xk) = 0 forms the solution (x1, . . . ,xk)
to the configuration problem with the fixed x1. Indeed, in the state |ΨF ⟩ it is only the
last two registers storing xk−1 and xk that are left to be checked against the target
configuration, which is precisely the purpose of g. Let |z⟩ = |x′2 · · ·x′k⟩ be any state
that gives a solution of the form (x1,x′2, . . . ,x′k). The state |z⟩ appears in |ΨF ⟩ with
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amplitude

⟨z|ΨF ⟩ = (|L2(x1)| · · · |Lk−1(x1, . . . ,xk−2)| · |Lk(x1, . . . ,xk−2)|)−1/2. (4.10)

Note that since we are currently assuming that the Grover iterations
G(f[i],j) give us a uniform superposition over only the ‘good’ states,
we can calculate this quantity as

⟨z|ΨF ⟩ = n2
∑

x2∈L2(x1)
⟨x′2 |x2⟩ ⊗ · · · ⊗ nk

∑
xk∈Lk(x1,...,xk−2)

⟨x′k |xk⟩

= n2 · · · · nk,

where ni = |Li(x1, . . . ,xi−1)|−1/2 for i ∈ {2, . . . , k − 1}, and nk =
|Lk(x1, . . . ,xk−2)|−1/2. In practice it will be a little smaller, as dealt
with in Theorem 4.5.1.

This value is the inverse of the number of applications of G(A, f ∩ g) we repeat in
order to maximise our probability of obtaining z when measuring |ΨF ⟩. The overall
complexity of the algorithm for the configuration problem becomes

T Q
BLS ∈ O

|L1|


√√√√( |L2|
|L2(x1)|

)
+ · · ·+

√√√√( |Lk|
|Lk(x1, . . . ,xk−2)|

)
·
√
|L2(x1)| · |L3(x1,x2)| · · · |Lk(x1, . . . ,xk−2)|

)
.

(4.11)

The filtered lists in the above expression are assumed to be of expected size greater than
or equal to 1. There exist configurations for which intermediate lists have expected size
less than 1 (see (4.3)), which should be understood as the reciprocal of the expected
number of times we need to construct these lists to obtain 1 element in them. For such a
configuration there therefore exist states in the superposition for which a solution does
not exist. For states for which a solution does exist (we expect O(1) of these per x1), we
perform O(

√
|L|) Grover iterations during the ‘inner’ Grover procedure, and during the

‘outer’ procedure these ‘good’ elements contribute a O(1) factor to the running time.
For such configurations each |Li(x1, . . . ,xi−1)| in (4.11) and Theorem 4.5.1 (below)
should be changed to max{1, |Li(x1, . . . ,xi−1)|}. Alternatively, one can enforce that
intermediate lists are of size greater than 1 during the optimisation. We choose this
option, and therefore disregard this subtlety for the rest of this work.
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Algorithm 8 Quantum algorithm for the Configuration Problem.
Input: L1, . . . , Lk ⊂ Sd−1, target configuration C ∈ Rk×k, ε > 0.
Output: Lout, list of k-tuples satisfying configuration C.

1: Lout ← ∅
2: for all x1 ∈ L1 do
3: Prepare the state |ΨL2⟩ ⊗ · · · ⊗ |ΨLk

⟩
4: for all i = 2 . . . k − 1 do
5: Apply G(f[i−1],i)ai for some ai to obtain |ΨL2(x1)⟩ · · · |ΨLi(x1,...,xi−1)⟩.
6: Apply G(f[k−2],k)ak for some ak to obtain |ΨL2(x1)⟩ · · · |ΨLk(x1,...,xk−2)⟩.
7: Let A be unitary that implements lines 3–6, i.e.

A |0⊗(k−1)⟩ = |ΨF ⟩ .

8: Apply G(A, f ∩ g)a to |ΨF ⟩ for some a, where g is defined in (4.9).
9: Measure all the registers to obtain a tuple (x2, . . . ,xk).

10: if (x1, . . . ,xk) satisfies C then
11: Lout ← Lout ∪ {(x1, . . . ,xk)}.

4.5.1 Intermezzo: on using expected list sizes

Throughout this work we use the expected size of an intermediate list given by (4.3)
to determine the correct number of Grover iterations to apply in a given quantum
search procedure. This requires some justification, as applying even a constant factor
more Grover iterations than the optimal number can, in some cases, form a quantum
superposition that is almost an equal superposition (see the example of [BBHT98,
Sec. 2]); you have done too much work and are back to where you started! To justify
our use of the expected sizes of given intermediate lists we appeal to [HKL18, Lem. 2]
and a careful analysis of Grover’s algorithm following [BBHT98].

To begin we examine [HKL18, Lem. 2] and recall the two sided Chernoff bound for
a binomial distribution X ∼ Bin(N, p). Let µ = E [X] and δ ∈ (0, 1), then

Pr[X ̸∈ [1− δ, 1 + δ] · µ] ≤ exp
(
− δ2

2 + δ
· µ
)

+ exp
(
−δ

2

2 · µ
)
≤ 2 · exp

(
−δ

2

3 · µ
)
.

The lemma argues that any sublist defined by some configuration C, e.g. Lj(x1, . . . ,xi) ⊂
L, is formed of i.i.d. uniformly sampled elements x← U(Sd−1) that satisfy some con-
stant number, less than or equal to k, of approximate inner product constraints. The
size of Lj(x1, . . . ,xi) is therefore a binomial distribution with N = |L| ∈ 2cd+o(d) and
p some function of the configuration C and x1, . . . ,xi. In our applications, x1, . . . ,xi

will satisfy the subconfiguration C[1, . . . , i] so p is a function of just C.
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We now consider δ in the above Chernoff bound as a function of the dimension d

of our lattice. By the concentration result of Theorem 4.4.1, p will be exponentially
small in d. As we avoid configurations which imply intermediate lists have expected
size less than 1, we focus on the case when µ = Np ∈ 2αd+o(d) for α > 0. Note that for
any ε ∈ (0, α) we may set δ(d) = 2(ε−α)d/2 and have

2 · exp
(
−δ

2

3 · µ
)
∈ exp

(
−2εd+o(d)

)
.

We have chosen a function δ that tends towards 0 exponentially quickly (in d) such
that the Chernoff bound is superexponentially small (in d). To concretise let t =
|Lj(x1, . . . ,xi)|, N = |L|, and µ be our expected value for t. Henceforth N,µ, δ,
and functions of them, implicitly depend on d. The Chernoff bound tells us there
is a superexponentially small probability that t deviates from µ by a multiplicative
factor not in [1 − δ, 1 + δ]. This is equivalent to the statement that there is a
superexponentially small probability that µ deviates from t by a multiplicative factor
not in [1/(1 + δ), 1/(1− δ)].

We now follow the analysis of [BBHT98]. Set θ such that sin2 θ = t/N and also
φ such that sin2 φ = µ/N . If we knew t exactly we would know θ and therefore be
able to reuse the original analysis exactly. Given that we do not, we make use of the
expected value µ. The optimal number of Grover iterations is m̃ = (π− 2θ)/4θ and our
estimate of this value is mφ = ⌊π/(4φ)⌋. We calculate, for ⌊π/(4φ)⌋ = π/(4φ) − γφ

with γφ ∈ [0, 1),

|mφ − m̃| = |π/(4φ)− γφ − π/(4θ) + 1/2|

≤ π

4 · |1/φ− 1/θ|+ 1/2

Let tN =
√
t/N = sin θ and note that tN ∈ 2−Ω(d). Note that 1/φ is maximised when µ

is minimised as µ = t/(1 + δ), and that in this case |1/φ− 1/θ| = 1/φ− 1/θ. Similarly,
1/φ is minimised for µ = t/(1− δ) and in this case |1/φ− 1/θ| = 1/θ − 1/φ. We use
the fact 0 ≤ x ≤ arcsin x ≤ x+ x3 for x ∈ [0, 1] to bound these quantites.
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First, for µ = t/(1 + δ) we have

1/φ− 1/θ = 1/ arcsin(tN/
√

1 + δ)− 1/ arcsin(tN)
≤
√

1 + δ/tN − 1/(tN + t3N)

= (
√

1 + δ − 1) · tN +
√

1 + δ · t3N
t2N + t4N

≤ (
√

1 + δ − 1) · t−1
N +

√
1 + δ · tN

Similarly, for µ = t/(1− δ) we have

1/θ − 1/φ = 1/ arcsin(tN)− 1/ arcsin(tN/(
√

1− δ))

≤
tN ·

(
(1− δ)− (1− δ)3/2

)
+ t3N

t2N · (1− δ) + t4N

≤
tN ·

(
(1− δ)− (1− δ)3/2

)
+ t3N

t2N · (1− δ)
= (1− (1− δ)1/2) · t−1

N + (1− δ)−1 · tN .

Given that 1−
√

1− δ ≥
√

1 + δ − 1 and 1/(1− δ) ≥
√

1 + δ for δ ∈ (0, 1) the latter
bound on 1/θ − 1/φ is always greater. Hence we let E = (1 − (1− δ)1/2) · t−1

N +
(1− δ)−1 · tN . If we let e = |mφ − m̃| then we have

e ≤ π

4 · E + 1/2

≤ E + 1/2

In [BBHT98] e is always upper bounded by 1/2; we have some extra term depending on
how close the expected list size µ is to t. We have 0 ≤ |cos((2mφ + 1)θ)| = |sin(2θe)|
and note that

|cos((2mφ + 1)θ)|2 = cos2((2mφ + 1)θ) = sin2(2θe)

is exactly the probability that upon measuring the superposition after mφ Grover
iterations we fail and receive a non root.
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We expand 2θe as 2θE+ θ and use both sin(A+B) = sinA cosB+ sinB cosA and
0 ≤ |sin x| ≤ |x| to find

|sin(2θe)| = |sin(2θE) cos θ + sin θ cos(2θE)|
≤ |sin(2θE)|+ tN

≤ |2θE|+ tN

= 2θE + tN .

Since 0 ≤ θ = arcsin(tN) ≤ tN + t3N we have

2θE + tN ≤ 2 · (tN + t3N) ·
(
(1− (1− δ)1/2) · t−1

N + (1− δ)−1 · tN
)

+ tN

= 2 · (1− (1− δ)1/2) +O(tN)

Finally, since 0 ≤ sin2 x ≤ |sin x| the probability of failure is bound by the quantity
above; 2 · (1− (1− δ)1/2) +O(tN ). The first summand is of the form δ +O(δ2), which
is exponentially small in d. The second summand is also exponentially small in d.

Hence the probability of measuring a non root after applying the number of Grover
iterations implied by the expected list size is exponentially small in the dimension
of the lattice, except with superexponentially small probability. If we were certain
of the value of t we would achieve the same statement but without the ‘except with
superexponentially small probability’ qualifier.

For fixed classical x1 in Algorithm 8, or x1, . . . ,xj−1 in Algorithm 9, we perform at
most k Grover searches. We wish to show that each of these Grover searches fails with
exponentially small probability. When performing the Grover’s search on Li for i ≥ 2
in Algorithm 8, or on Li(x1, . . . ,xj−1) for i ≥ j in Algorithm 9, we consider fewer than
|L|k ∈ 2O(d) filtered intermediate lists within the superposition. For each i we have a
particular (pi, αi, εi, δi) with which we repeat the above analysis.

Let δ̂ = max {δi}i. By the union bound, the probability that any such intermediate
list, in any of the k Grover searches, differs from the expected list size by a factor not
in [1 − δ̂, 1 + δ̂] is superexponentially small, and therefore the probability of failure
for any of the Grover searches is exponentially small, except with superexponentially
small probability.

4.5.2 Reprise

The procedure we have just described is summarised in Algorithm 8. If we want to
use this algorithm to solve the Approximate k-List problem (Definition 4.4.1), we
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additionally require that the number of output solutions is equal to the size of the input
lists. Using the results of Theorem 4.4.1, we can express the complexity of Algorithm 8
for the Approximate k-List problem via the determinant of the target configuration C
and its minors.

Theorem 4.5.1. Given input L1, . . . , Lk ⊂ Sd−1 and a configuration C ∈ C , such
that (4.2) holds, Algorithm 8 solves the Approximate k-List problem in expected time

Tk-List ∈ Õ


( 1

det(C)

) k+1
2(k−1)

·
√

det(C[1, . . . , k − 1])
d/2 (4.12)

using

Mk-List ∈ Õ

( 1
det(C)

) d
2(k−1)


classical memory and poly(d) quantum memory with success probability in 1− 2−Ω(d).

Proof. From (4.2) the input lists L1, . . . , Lk should be of sizes

|L| ∈ Õ

( 1
det(C)

) d
2(k−1)


to guarantee a sufficient number of solutions. This determines the requirement for clas-
sical memory. Furthermore, since all intermediate lists are stored in the superposition,
we require quantum registers of size poly(d).

We can simplify the expression for T Q
BLS given in (4.11) by noting that |L2(x1)| ≥

|L3(x1,x2)| ≥ . . . ≥ |Lk−1(x1, . . . ,xk−2)| = |Lk(x1, . . . ,xk−2)| in expectation. The
dominant term in the sum appearing in (4.11) is

√(
|Lk|

|Lk(x1,...,xk−2)|

)
.

We consider the product
√
|L2(x1)| · · · |Lk−1(x1, . . . ,xk−2)| which is the amplitude

amplification term from (4.11) where the final term
√
|Lk(x1, . . . ,xk−2)| has cancelled

with the denominator of the dominant term described above. Using Theorem 4.4.2
this product becomes less than

|L|
k−2

2

(√
det(C[1, . . . , k − 1])

)d/2
.

in expectation.
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We have applied Jensen’s inequality (in ‘reverse’) here. In particular,
for some real convex function φ and X a real valued random variable
we have φ(E [X]) ≤ E [φ(X)]. The function f : [0,∞)→ [0,∞), x 7→
√
x is concave, so −f is convex. We therefore have −f(E [X]) ≤

E [−f(X)]⇔ E [f(X)] ≤ f(E [X]).
Therefore taking L2(x1) as an example we have

E
[√
|L2(x1)|

]
≤
√
E [|L2(x1)|].

We arrive at the expression for Tk-List in the theorem statement by simplifying |L| · |L|1/2 ·
|L|

k−2
2
(√

det(C[1, . . . , k − 1])
)d/2

as

|L|
k+1

2

(√
det(C[1, . . . , k − 1])

)d/2
∈ Õ


( 1

det(C)

) d
2(k−1)


k+1

2 (√
det(C[1, . . . , k − 1])

)d/2


= Õ

( 1
det(C)

) d(k+1)
4(k−1)(√

det(C[1, . . . , k − 1])
)d/2



= Õ


( 1

det(C)

) k+1
2(k−1)

·
√

det(C[1, . . . , k − 1])
d/2

The success probability of Algorithm 8 is determined by the probability that measuring
A |0⊗(k−1)⟩ returns the (x2, . . . ,xk) part of a solution tuple. For this we consider the
precise form of the state |ΨF ⟩ given in (4.7). This state is obtained by running k − 1
(sequential) Grover algorithms. While we have been assuming that each application of
Grover’s algorithm outputs an idealised state in the form of a uniform superposition
over elements of the appropriate filtered list, in fact each tensor |ΨLi(x1,...,xi−1)⟩ in this
state is of the form

|ΨLi(x1,...,xi−1)⟩ =
√

1− ϵi

|Li(x1, . . . ,xi−1)|
∑

x∈Li(x1,...,xi−1)
|x⟩+

√
ϵi

|Li \ Li(x1, . . . ,xi−1)|
∑

x∈Li\Li(x1,...,xi−1)
|x⟩ ,

where ϵi ∈ 2−Ω(d). This follows from the explanation given in the ‘Intermezzo’ of
Section 4.5.1, in particular that using the expected list sizes to parametrise our
Grover’s searches fails with exponentially small probability.
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Therefore, the probability of measuring the (x2, . . . ,xk) part of a solution tuple is

a =
(

k−1∏
i=2

1− ϵi

|Li(x1, . . . ,xi−1)|

)
· 1− ϵk

|Lk(x1, . . . ,xk−2)|

which is in the class (1− 2−Ω(d)) ·
((∏k−1

i=2 |Li(x1, . . . ,xi−1)|
)
· |Lk(x1, . . . ,xk−2)|

)−1
.

The square root of this quantity is the non idealised amplitude ⟨z|ΨF ⟩
that we calculated an idealised value for in (4.10). It is smaller than
the idealised amplitude by a factor that is exponentially close to 1,
which means the optimal number of amplitude amplification iterations
differs only by a factor similarly close to 1.

According to Theorem 2.6.2, after performing

((
k−1∏
i=2
|Li(x1, . . . ,xi−1)|

)
· |Lk(x1, . . . ,xk−2)|

)1/2

amplitude amplification iterations, in Step 9 we measure a ‘good’ (x2, . . . ,xk) with
probability at least max{a, 1− a} ∈ 1− 2−Ω(d).

4.5.3 Quantum version of the [HKL18] configuration search
algorithm

The main difference between the two algorithms for the configuration problem –
the algorithm due to Bai–Laarhoven–Stehlé [BLS16] and due to Herold–Kirshanova–
Laarhoven [HKL18] – is that the latter constructs intermediate filtered lists, Figure 4.2.
We use quantum enumeration to construct and classically store these lists.

For a fixed x, quantum enumeration repeatedly applies Grover’s algorithm to a list
L, where each successful application returns a random vector from the filtered list L(x)
with probability in 1 − 2−Ω(d). The quantum complexity of obtaining one vector by
running Grover’s algorithm is O

(√
|L|
|L(x)|

)
. We check that the returned vector belongs

to L(x) by checking its inner product with x. Repeating this process Õ(|L(x)|) times
we obtain the entire list L(x) stored classically in time Õ(

√
|L| · |L(x)|).

The advantage of constructing the lists Li(x) is that we can now efficiently prepare
the state |ΨL2(x)⟩ ⊗ · · · ⊗ |ΨLk(x)⟩ (cf. Line 3 in Algorithm 8) and run amplitude
amplification on the states |ΨLi(x)⟩ rather than on |ΨLi

⟩. This may give a speed up
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if the complexity of the lines 3–11 of Algorithm 8, which is of order Õ(T Q
BLS/ |L1|),

dominates the cost of quantum enumeration, which is of order Õ(
√
|Li| · |Li(x)|). In

general, we can continue creating the ‘levels’ as in [HKL18] (see Figure 4.2b) using
quantum enumeration and at some level switch to the quantum BLS style algorithm.
For example, for some level 1 < j ≤ k − 1, we apply quantum enumeration to obtain
Li(x1, . . . ,xj−1) for all i ≥ j. Then, rather than looping over x1 ∈ L1 and applying
Grover’s algorithm to |ΨL2⟩ ⊗ · · · ⊗ |ΨLk

⟩ (cf. lines 3–11 of Algorithm 8), we loop over
the (j − 1) tuples (x1, . . . ,xj−1) ∈ L1 × · · · × Lj−1(x1, . . . ,xj−2) and apply Grover’s
algorithm to |ΨLj(x1,...,xj−1)⟩ ⊗ · · · ⊗ |ΨLk(x1,...,xj−1)⟩. Note that since we have these lists
stored in memory, we can efficiently create the latter superposition. In this way we
obtain a quantum ‘hybrid’ between the HKL and the BLS algorithms: until some
level j, we construct the intermediate filtered lists using quantum enumeration, create
superpositions over all the filtered lists at level j for some fixed values x1, . . . ,xj−1,
and apply Grover’s algorithm to find (if it exists) the (k − j + 1) tuple (xj, . . . ,xk)
such that (x1, . . . ,xk) is a solution to the configuration problem. Pseudocode for this
approach is given in Algorithm 9. Note that on lines 11 and 12 we only write the
register altered by the Grover iteration, even though it acts on more registers.

Let us now analyse Algorithm 9. Recall Definition 4.4.4 of the level of a list. To
simplify notation we denote L(r)

i = Li(x1, . . . ,xr−1) for all r ≤ i, so r denotes the level
e.g. L(1)

i = Li and L(i)
i = Li(x1, . . . ,xi−1). In the following all O notations are omitted.

Each quantum enumeration of L(r)
i from L

(r−1)
i for i ≥ r ≥ 2 costs

√∣∣∣L(r−1)
i

∣∣∣ ∣∣∣L(r)
i

∣∣∣.
Let j ≥ 2 determine the level to which we create the filtered intermediate lists via
quantum enumeration, i.e. we create L(j)

j , . . . , L
(j)
k . For a given 2 ≤ ℓ ≤ j we form

L
(ℓ)
ℓ , . . . , L

(ℓ)
k once for each tuple (x1, . . . ,xℓ−1), that is ∏ℓ−1

r=1

∣∣∣L(r)
r

∣∣∣ times. Once the lists
L

(j)
i for i ≥ j are constructed we can form the state

|Ψ
L

(j)
j
⟩ ⊗ |Ψ

L
(j)
j+1
⟩ ⊗ · · · ⊗ |Ψ

L
(j)
k−1
⟩ ⊗ |Ψ

L
(j)
k

⟩

and sequential applications of Grover’s algorithm then gives

|Ψ
L

(j)
j
⟩ ⊗ |Ψ

L
(j+1)
j+1
⟩ ⊗ · · · ⊗ |Ψ

L
(k−1)
k−1
⟩ ⊗ |Ψ

L
(k−1)
k

⟩
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Algorithm 9 Hybrid quantum algorithm for the Configuration Problem.
Input: L1, . . . , Lk ⊂ Sd−1, target configuration C ∈ Rk×k, ε > 0, hybrid parameter
2 ≤ j ≤ k − 1.
Output: Lout, list of k-tuples satisfying configuration C.

1: Lout ← ∅
2: for all x1 ∈ L1 do
3: Use quantum enumeration to construct Li(x1) for i ≥ 2
4: for all x2 ∈ L2(x1) do
5: Use quantum enumeration to construct Li(x1,x2) for i ≥ 3
6:

. . . ▷ This represents an arbitrary but constant number of nested loops.
7: for all xj−1 ∈ Lj−1(x1, . . . ,xj−2) do
8: Use quantum enumeration to construct Li(x1, . . . ,xj−1) for i ≥ j
9: Prepare the state |ΨLj(x1,...,xj−1)⟩ ⊗ · · · ⊗ |ΨLk(x1,...,xj−1)⟩

10: for all i = j + 1, . . . , k − 1 do
11: For some ai do G(f[i−1],i)ai |ΨLi(x1,...,xj−1)⟩ = |ΨLi(x1,...,xi−1)⟩
12: For some ak do G(f[k−2],k)ak |ΨLk(x1,...,xj−1)⟩ = |ΨLk(x1,...,xk−2)⟩
13: Let A be unitary that implements lines 9–12, i.e.

A |0⊗(k−j+1)⟩ = |ΨLj(x1,...,xj−1)⟩ ⊗ · · · ⊗ |ΨLk−1(x1,...,xk−2)⟩ ⊗ |ΨLk(x1,...,xk−2)⟩

14: Apply G(A, f ∩ g)a for some a to A |0⊗(k−j+1)⟩, where g is defined
in (4.9).

15: Measure all the registers to obtain a tuple (xj, . . . ,xk).
16: if (x1, . . . ,xk) satisfies C then
17: Lout ← Lout ∪ {(x1, . . . ,xk)}.

in time 
√√√√√
∣∣∣L(j)

j+1

∣∣∣∣∣∣L(j+1)
j+1

∣∣∣ + · · ·+

√√√√√
∣∣∣L(j)

k−1

∣∣∣∣∣∣L(k−1)
k−1

∣∣∣ +

√√√√√
∣∣∣L(j)

k

∣∣∣∣∣∣L(k−1)
k

∣∣∣


(cf. lines 11–12 in Algorithm 9). On Step 14 the unitary G(A, f ∩ g) must be executed
√∣∣∣L(j)

j

∣∣∣ · · · ∣∣∣L(k−1)
k−1

∣∣∣ · ∣∣∣L(k−1)
k

∣∣∣
times to maximise the probability that the system returns a ‘good’ tuple (xj, . . . ,xk).
Such tuples may not exist. For j ≥ 3, i.e. for fixed x1,x2, we expect to have less than
1 such tuple. Therefore in many instances the measurement will return a uniform
(k − j + 1) tuple, which we classically check against the target configuration C. To
simplify the expression for time complexity we introduce two functions of j. The first



166 Quantum Algorithms for the k-List Problem

captures the maximum cost of any of the quantum enumerations,

qe(j) = max
2≤ℓ≤j

{
ℓ−1∏
r=1

∣∣∣L(r)
r

∣∣∣ · max
ℓ≤i≤k

√∣∣∣L(ℓ−1)
i

∣∣∣ · ∣∣∣L(ℓ)
i

∣∣∣} .
The outer max over ℓ denotes the level being quantumly enumerated with the product
denoting the number of times that level is quantumly enumerated. The inner max
determines the largest cost to quantumly enumerate a list on that level. The second
function of j captures the cost of the quantum search component of Algorithm 9, i.e. the
Grover’s search and amplitude amplification,

qs(j) =
j−1∏
r=1

∣∣∣L(r)
r

∣∣∣ ·

√√√√√
∣∣∣L(j)

j+1

∣∣∣∣∣∣L(j+1)
j+1

∣∣∣ + · · ·+

√√√√√
∣∣∣L(j)

k−1

∣∣∣∣∣∣L(k−1)
k−1

∣∣∣ +

√√√√√
∣∣∣L(j)

k

∣∣∣∣∣∣L(k−1)
k

∣∣∣


·
√∣∣∣L(j)

j

∣∣∣ · . . . ∣∣∣L(k−1)
k−1

∣∣∣ · ∣∣∣L(k−1)
k

∣∣∣.
Overall, given on input a level j ≥ 2, the runtime of Algorithm 9 is

T Q
Hybrid(j) = max{qe(j), qs(j)}. (4.13)

The above complexity can be expressed via the determinant and subdeterminants of
the target configuration C using Theorem 4.4.2. An optimal value of j for a given C
can be found using numerical optimisations by looking for j that minimises (4.13).

Numerical optimisations

We performed numerical optimisations for the target configuration C which minimise the
runtime of the two algorithms for the configuration problem given in this section. The
upper part of Table 4.2 gives time optimal c for (4.12) and the c′ of the corresponding
memory requirements for various k, i.e. the time and memory complexities are 2cd+o(d)

and 2c′d+o(d) respectively. These constants decrease for k ≥ 3 and, eventually, those
for time become close to the value 0.2989. Looking at (4.11) the expression decreases
when the lists Li(x1, . . . ,xi−1) under the square root become smaller. When k is
large enough, in particular, once k ≥ 6, there is a target configuration that ensures
that |Li(x1, . . . ,xi−1)| are of expected size 1 for levels i ≥ 4. So for k ≥ 6, under the
observation that the maximal value in the sum appearing in (4.11) is attained by the last
summand, the runtime of Algorithm 8 becomes T Q

BLS = |L1|3/2 ·
√
|L2(x1)| |L3(x1,x2)|.

The list sizes can be made explicit using (4.3) when a configuration C is such that
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|Li(x1, . . . ,xi−1)| are of expected size 1. Namely, for k ≥ 6 and for configuration C
that minimises the runtime exponent, (4.11) with the help of (4.3) simplifies to

( 1
det(C)

) 5
2(k−1)√

det(C[1, 2, 3])
d/2

.

We experimentally observe that this expression becomes constant for time optimal
configurations C and large enough k.

k 2 3 4 5 6 . . . 28 29 30

Quantum version of [BLS16] Algorithm 8
Time 0.3112 0.3306 0.3289 0.3219 0.3147 . . . 0.29893 0.29893 0.29893
Space 0.2075 0.1907 0.1796 0.1685 0.1596 . . . 0.1395 0.1395 0.1395

Quantum Hybrid version of [BLS16, HKL18] Algorithm 9
Time 0.3112 0.3306 0.3197 0.3088 0.3059 . . . 0.29893 0.29893 0.29893
Space 0.2075 0.1907 0.1731 0.1638 0.1595 . . . 0.1395 0.1395 0.1395

Low memory Quantum Hybrid version of [BLS16, HKL18] Algorithm 9
Time 0.3112 0.3349 0.3215 0.3305 0.3655 . . . 0.6352 0.6423 0.6490
Space 0.2075 0.1887 0.1724 0.1587 0.1473 . . . 0.0637 0.0623 0.0609

Table 4.2 Asymptotic complexity exponents base 2 for the approximate k-List problem.
The top part gives optimised runtime exponents and the corresponding memory
exponents for Algorithm 8. These are the results of the optimisation (minimisation) of
the runtime expression given in (4.12). The middle part gives the runtime and memory
exponents for Algorithm 9, again optimising for time, with j = 2, i.e. when we use
quantum enumeration to create the second level lists Li(x1) for i ≥ 2. The bottom
part gives the exponents for Algorithm 9 with j = 2 in the memory optimal setting.

The optimal runtime exponents for the hybrid given as Algorithm 9 with j = 2 are
given in the middle part of Table 4.2. Experimentally, we establish that j = 2 is optimal
for small values of k and that this algorithm has the same behaviour for large values of
k as Algorithm 8. Indeed, for the runtime optimal configuration C the intermediate
filtered lists on the same level increase in size ‘from left to right’, i.e. |L2(x1)| ≤
|L3(x1)| ≤ · · · ≤ |Lk(x1)|. It is also the case for the runtime optimal configuration that
|Lk(x1)| becomes almost |Lk| (i.e. the target inner product determined by C1,k is very
close to 0), so quantumly enumerating this list brings no advantage over Algorithm 8
where we use the initial list Lk, of essentially the same size, in Grover’s algorithm.
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4.6 Quantum configuration search for k = 3 via tri-
angle finding

In this section we introduce a distinct approach to finding solutions of the configuration
problem of Definition 4.4.3 via triangle listing in graphs. We achieve this by embedding
solution tuples of the configuration problem as triangles in a graph and repeatedly
applying a triangle finding algorithm. Throughout this section we assume that L1 =
· · · = Lk = L. We solve the configuration problem with k = 3 and the balanced
configuration C. This is memory optimal configuration with all off diagonal entries
equal to −1/k and the size of L determined by (4.2). In particular

C =


1 −1/3 −1/3
−1/3 1 −1/3
−1/3 −1/3 1

 , |L| ∈ Õ
(

(3
√

3/4)d/2
)
.

Let G = (V,E) be an undirected graph with known vertices and let fE : V 2 → {0, 1}
be a function such that (x1,x2) 7→ 0 if (x1,x2) ∈ E and 1 otherwise. A triangle is a
set {x1,x2,x3} ⊂ V of pairwise distinct vertices such that fE(x1,x2) = fE(x1,x3) =
fE(x2,x3) = 0. In the balanced configuration case we define the vertices of V as the
elements of the list L and let (xi,xj) ∈ E ⇔ |⟨xi,xj⟩+ 1/3| ≤ ε for some ε > 0. The
function fE is therefore realised by performing a d dimensional inner product and a
comparison. We note that ⟨x,x⟩ = 1, and so by setting ε < 1 < 1 + 1/3 we do not
allow loops in our graph, i.e. we never have fE(x,x) = 0. Throughout we let |V | = n

and |E| = m.

4.6.1 The algorithm of Buhrman et al.

We start with the triangle finding algorithm of [BdWD+01]. Given the balanced
configuration and k = 3 on Sd−1, we set

n = |L| ∈ Õ
(

(3
√

3/4)d/2
)
, m = |L| · E [|L(x1)|] ∈ Õ

(
n2(8/9)d/2

)
(4.14)

by (4.2) and (4.3) respectively.7 The values of n and m are approximately 20.1887d+o(d)

and 20.2925d+o(d) respectively. We expect Θ(n) triangles to be found since |L| is chosen
as in (4.2). The algorithm of [BdWD+01] consists of three steps

7As we are in the balanced configuration case, and our input lists are identical, (4.4.2) has no
dependence on j, i.e. we may take any j > 1 for E [|L(x1)|].
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1. Use Grover’s algorithm to find any edge (x1,x2) ∈ E among all potential O(n2)
edges.

2. Use Grover’s algorithm to find a vertex x3 ∈ V such that (x1,x2,x3) is a triangle.

3. Apply amplitude amplification to steps 1–2.

Note that the algorithm returns triangles from the graph according to some distri-
bution, we will argue below that it is uniform. Explicitly step 1 applies the relevant
Grover iteration to the equal superposition over all pairs of vertices,

G(fE)e

 1
n

∑
(x1,x2)∈V 2

|x1⟩ ⊗ |x2⟩

 =
√

ϵ

n2 −m
∑

(x1,x2 )̸∈E

|x1⟩ ⊗ |x2⟩

+
√

1− ϵ
m

∑
(x1,x2)∈E

|x1⟩ ⊗ |x2⟩,

where e ∈ O
(√

n2/m
)
. Above ϵ ≤ m/n2 ∈ 2−Ω(d) represents the probability of failure,

so as in Theorem 4.5.1 this will only alter the optimal number of amplitude amplification
iterations by a similarly small factor, which we disregard going forwards.

We then consider a function that recognises triangles defined as fT : V 3 → {0, 1},
(x1,x2,x3) 7→ 0 ⇔ fE(x1,x2) = fE(x1,x3) = fE(x2,x3) = 0 and 1 otherwise. We
consider the superposition above tensored with a further uniform superposition over
the vertices, namely

1√
m

∑
(x1,x2)∈E

|x1⟩ ⊗ |x2⟩ ⊗
1√
n

∑
x3∈V

|x3⟩.

and apply t ∈ O(
√
n) iterations of G(fT ). We call the final state |ΨF ⟩, specifically

|ΨF ⟩ = G(fT )t · (G(fE)e ⊗ Id̄)
( 1

n

)3/2 ∑
(x1,x2,x3)∈V 3

|x1⟩ ⊗ |x2⟩ ⊗ |x3⟩


Let A |0⊗3⟩ → |ΨF ⟩. We apply amplitude amplification G(A, fT )a for a determined
by the probability that measuring A |0⊗3⟩ returns a triangle, calculated below.

We first argue that t is the correct number of iterations for G(fT ). For any edge in
G we expect a subconstant number of triangles. We calculate the number of triangles
we expect a given edge to be part of as E [|L(x1,x2)|] = (

√
3/2)d/2 using (4.3) and
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setting j = 3, that is

E [|L3(x1,x2)|] = |L| · (det(C[1, 2, 3])/ det(C[1, 2]))d/2

= (3
√

3/4)d/2 ·
(16

27 ·
9
8

)d/2
= (
√

3/2)d/2
.

Therefore if a given edge is included in a triangle, we expect it to be included in one
triangle, and hence apply t ∈ O(

√
n) Grover iterations to find the final vertex of the

triangle. This will succeed with constant probability greater than 1/2, and so the
asymptotic probability that A succeeds is the probability that step 1 selects an edge of
a triangle. There are Θ(n) triangles and m edges, so this is Θ(n/m), we must therefore
apply amplitude amplification a ∈ Θ(

√
m/n) times.

The cost of the first step is O(
√
n2/m) and the second step O(

√
n). From (4.14),

and that the costs of step 1 and step 2 are additive, we see that O(
√
n) dominates,

therefore steps 1–2 cost O(
√
n). By applying the amplitude amplification in step 3

O(
√
m/n) times, the cost of finding a triangle is O(

√
m).8

The algorithm finds one of the n triangles uniformly at random. Indeed, step 1
uniformly selects an edge of G. If this edge is part of a triangle we expect it to be part
of a single triangle as argued above, so uniformly selecting an edge of a triangle selects
a uniform triangle. By the coupon collector problem we must repeat the algorithm
Õ(n) times to find all the triangles. Therefore the total cost of finding all triangles is
Õ(n
√
m) = Õ(|L|3/2|L(x1)|1/2) ≈ 20.3349d+o(d) using 20.1887d+o(d) memory. This matches

the complexity of Algorithm 9 for k = 3 in the balanced setting (see Table 4.2).

4.6.2 The algorithm of Le Gall–Nakajima

The [BdWD+01] algorithm finds a triangle in an arbitrary graph in O(n +
√
nm)

queries. We measure the sparsity of a graph G in terms of c such that m = nc, and
say that a graph becomes more sparse as c decreases. When m ∈ Ω(n), i.e. c ≥ 1, the
sparsity determines the size of the dominant summand for the [BdWD+01] algorithm.

Another triangle finding algorithm whose complexity depends on the sparsity of
the graph is given in [GN17], and for certain sparsity regimes it outperforms the query
complexity of the [BdWD+01] algorithm. Finally, the algorithm of [Gal14] finds a
triangle in an arbitrary graph using Õ(n5/4) queries, regardless of sparsity.

8Note that this differs from [BdWD+01] as in general either of step 1 or 2 may dominate and we
also make use of the existence of Θ(n) triangles.
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The operations counted in the works discussed above are queries to an oracle that
returns whether an edge exists between two vertices in our graph. The algorithms
of [Gal14, GN17] use more complex data structures than [BdWD+01], and converting
the query complexity into a time or memory complexity is more challenging. We report
only the query complexity in this section. We also assume that a triangle returned by
the [GN17] algorithm is (close to) uniform over the triangles in a given graph.

The main result of [GN17] is an interpolation between the query complexities
of [BdWD+01, Gal14] as the sparsity of the graph varies.

Theorem 4.6.1 ([GN17, Theorem 1]). There exists a quantum algorithm that solves,
with high probability, the triangle finding problem over graphs of n vertices and m edges
with query complexity



O(n+
√
nm) if 0 ≤ m ≤ n7/6

Õ(nm1/14) if n7/6 ≤ m ≤ n7/5

Õ(n1/6m2/3) if n7/5 ≤ m ≤ n3/2

Õ(n23/30m4/15) if n3/2 ≤ m ≤ n13/8

Õ(n59/60m2/15) if n13/8 ≤ m ≤ n2.

More specifically it is shown that for c ∈ (7/6, 2) a better complexity can be achieved
than shown in [BdWD+01, Gal14]. At the end points the two previous algorithms are
recovered; [BdWD+01] for c ≤ 7/6 and [Gal14] for c = 2. We recall that these costs
are in the query model, and that for c > 7/6 where we do not recover [BdWD+01], we
do not convert them into time complexity.

We explore two directions that follow from the above embedding of the configuration
problem into a graph. The first is the most naïve, we simply calculate the sparsity
regime as per Theorem 4.6.1 that the graph lies in, and calculate the query complexity
of finding all triangles. The second splits our list into triples of distinct sublists and
considers graphs formed from the union of said triples of sublists. The sublists are
parameterised such that the sparsity and the expected number of triangles in these
new graphs can be altered.

Naïve triangle finding

With G = (V,E) and n,m as in (4.14), we expect to have

m = O
(
n2+δ

)
= O

(
n1.5500

)
, δ = log(8/9)/log(3

√
3/4).
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Therefore the sparsity is c = 1.55 and by Theorem 4.6.1 finding a triangle takes
Õ(n23/30m4/15) = Õ (n1.1799) queries. We require Õ(n) repeats, giving a total query
complexity of Õ(n2.1799) = 20.4114d+o(d). This is not competitive with classical algo-
rithms [HK17] or the approach of Section 4.5.

Altering the sparsity

Let n remain as in (4.14) and γ ∈ (0, 1) be such that we consider Γ = n1−γ disjoint
sublists of L, ℓ1, . . . , ℓΓ, each with n′ = nγ elements. There are O(n3(1−γ)) triples of
these sublists (ℓi, ℓj, ℓk) with 1 ≤ i < j < k ≤ Γ.

Letting Γ = n1−γ then the number of triples with indices as stated is

Γ−2∑
i=1

Γ−i−1∑
j=1

j

 = 1
2

Γ−2∑
i=1

(Γ− i+ 1)(Γ− i) = Γ3

6 −
Γ2

2 + Γ
3 .

We define the union of the sublists within a triple as ℓijk = ℓi ∪ ℓj ∪ ℓk which has size
O(n′). Let Gijk = (ℓijk, Eijk) with (x1,x2) ∈ ℓijk× ℓijk being an edge (x1,x2) ∈ Eijk ⇔
|⟨x1,x2⟩+ 1/3| ≤ ε as before. Using Theorem 4.4.2 each Gijk is expected to have

m′ = |ℓijk| |ℓijk(x1)| ∈ O
(
(n′)2(8/9)d/2

)
= O

(
n2γ(8/9)d/2

)
edges. By finding all triangles in all Gijk we find all triangles in G, and as n is chosen
to expect Θ(n) triangles in G, we have sufficiently many solutions for the underlying
configuration problem. We expect by Theorem 4.4.2

|ℓijk||ℓijk(x1)||ℓijk(x1,x2)| = |ℓijk|
(
|ℓijk|(8/9)d/2

) (
|ℓijk|(2/3)d/2

)
∈ O(n3γ)(16/27)d/2 = O(n3γ−2)

triangles per ℓijk. We must at least test each ℓijk once, regardless of O(n3γ−2). The
sparsity of ℓijk given γ is calculated as

m′ ∈ O
(
(n′)2+β(γ))

, β(γ) =
log(8/9)

γ log(3
√

3/4)
. (4.15)

In conclusion then, for a given γ the number of ℓijk to test is O(n3(1−γ)), the number
of triangles to find per ℓijk is O(n3γ−2) – we always perform at least one triangle
finding attempt and assume finding them all takes Õ(n3γ−2) repeats – and when using
Theorem 4.6.1 we are in the sparsity regime c(γ) = 2 + β(γ) for β(γ) defined in (4.15).
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Let a, b represent the exponents of n′,m′ respectively in Theorem 4.6.1 when
m′ = (n′)c(γ). We therefore minimise, for γ ∈ (0, 1), the exponent of n in

O(n3(1−γ)) · Õ(n3γ−2) · Õ((n′)a(m′)b).

In the final term we calculate

(n′)a = nγa and (m′)b = (nγ·c(γ))b = n(2γ+γ·β(γ))b

from which we arrive at the following exponent for n,

3(1− γ) + max{0, 3γ − 2}+ γa+
2γ +

log(8/9)
log(3

√
3/4)

 b.
The minimal query complexity of n1.7298+o(d) = 20.326d+o(d) is achieved at γ = 2

3 .
Note that the same triangle may be discovered several times in the above algorithm.

For example if we define Gij = (ℓij, Eij), with ℓij and Eij defined analogously to ℓijk

and Eijk, then any triangle in Gij will be present in Gijk for all j < k ≤ Γ. Similarly,
any triangle in Gi = (ℓi, Ei) will be present in Gijk for all i < j < k ≤ Γ. However,
the cost of these rediscoveries is already accounted for since we find all triangles in
each Gijk. Unfortunately, it does not seem that finding an approach that reduces the
number of such rediscoveries would improve the asymptotics of the above. Concretely,
each Gijk contains Gi, Gj, Gk, Gij, Gik, and Gjk, each of which contain an expected
O(n3γ−2) triangles.9 Therefore these potential rediscoveries do not alter the number of
triangles to be found in each Gijk.

4.7 Conclusion

Since the publication of this work a new sieving algorithm with heuristic complexity
20.2570d+o(d) has been introduced [CL21]. To obtain this improvement the authors make
use of a quantum random walk on Johnson graphs. This time complexity is lower than
the quantum version of [BDGL16] described in [Laa16], although it requires different
assumptions on quantum memory. The authors provide interesting time memory trade
offs for their algorithm to vary the amount of different forms of memory required, which
would then allow one to optimise the algorithm if given precise relative costs for these
different forms of memory. To achieve the 20.2570d+o(d) time complexity the algorithm

9Given that e.g. |ℓi| = nγ , |ℓij | = 2nγ , |ℓijk| = 3nγ the expected numbers of triangles in Gi, Gij , Gijk

differ only by subexponential factors.
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requires exponential quantum memory, as opposed to the polynomial quantum memory
required in this work and previous quantum lattice sieves that apply Grover’s algorithm
to speed up the search for reducing lattice vectors. The authors also make the distinction
between two types of qRAM, which are called QRACM and QRAQM. Throughout this
thesis when referring to qRAM we have been implicitly referring to QRACM, where
the qRAM operation is used to create arbitrary superpositions of classical registers.
In QRAQM the same is true, but for quanutm registers. The relative difficulty of
constructing these different forms of qRAM, and indeed qRAM in any form, is an open
topic of research [Kup13, AGJO+15].

Future work directions for this chapter could include examining whether the quan-
tum random walks described in [CL21] could be applied to k-sieves, even for fixed
small k, e.g. 3. It would also be interesting to understand the extent to which quantum
random walks can be applied to the exponential width quanutm sieve given in the full
version of this work [KMPM19b, Sec. 7]. Other open problems are listed in Section 4.2.



Chapter 5

Lattice Sieves in (Quantum) Cost
Metrics

Shortly after heuristic lattice sieves became an area of research with [NV08, MV10c]
the effect of using quantum search to find reducible pairs was examined [LMv13, Laa16].
This is a natural line of inquiry; under the heuristics we consider we have a large list of
uniform points on some sphere. We fix one and try to find others that are close under
an angular metric, so that we may form reducible pairs. At least in the simple setting
where we do not use locality sensitive techniques, none of the list points are a priori
more likely to form a reducible pair, and so we have an unstructured list search with a
large list, say of size N .

Classically we have a cost of Θ(N) to find a reducible pair provided there are
not many, say some small constant number per fixed point. If reducible pairs were
significantly more frequent then we could take a smaller list. Quantumly, using Grover’s
search algorithm, we have a cost of Θ(

√
N) to find a reducible pair. Given that we

repeat this process for each of the points in the list we have a classical cost of Θ(N2)
and a quantum cost of Θ(N3/2).

An immediate question is ‘how is this cost measured?’ In the classical case one
computes the angle between the fixed point in the list and all other points. Each such
computation can be realised as an inner product on real vectors of some dimension and
using some precision, followed by a comparison. Ultimately, when the dimension and
precision are fixed, each computation will take Θ(1) classical gates. In the quantum
case we apply the Grover iteration approximately

√
N times in series, and then measure

the resulting quantum state. Each of these Grover iterations will also require Θ(1)
quantum gates.
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Replacing Θ(1) with 1 in the above is called the query model. In our case a classical
query means to ask an oracle for the angle between two vectors on the sphere, and
a quantum query means to ask an oracle for the quantum state given by applying a
Grover iteration to an input quantum state. If we go beyond this query model, and
try our best to tear open the Θ(1) and determine the gate cost of implementing these
oracles, then even if we succeed with perfect accuracy we are left with a number of
classical gates, and a number of quantum gates.

Perhaps a more useful question is therefore ‘how can the reported classical and
quantum costs be meaningfully compared?’ In this chapter we approach this question
in several ways following [JS19]. Here the idea is that a certain amount of classical
control is necessary to enact gates in the quantum circuit. By calculating this classical
control we can then compare the gate cost of a classical circuit to the classical gate cost
required to enact a quantum circuit. In [JS19] the authors introduce the gate metric,
which assumes Θ(1) classical gates are required to enact each quantum gate. Implicit in
this metric is the idea that identity wires in the quantum circuit cost nothing to enact
– that self correcting quantum memories exist that require no control to maintain the
state they contain. Whether such quantum memories are realisable is an active area of
research, and so the other cost the authors introduce is the depth width cost, which
assumes Θ(1) classical gates are required to enact any part of the quantum circuit,
including identity wires. In particular this metric assumes that some amount of active
error correction will be required to ensure the quantum circuit correctly computes its
output. In this chapter we further consider a particular style of active error correction
that uses surface codes. Surface codes encode logical qubits into a grid of noisy physical
qubits, where the size of this grid grows with the size of the circuit. Some fraction
of the noisy qubits that encode a logical qubit are measured at regular intervals, and
reinitialised based on classical computations over the outcome of these measurements.
By adapting the scripts of an in depth study of surface codes given in [GE21] we are
able to estimate the classical cost of (a part of) the surface code computation.

We therefore have three different metrics that we can compare to a classical gate
cost for a circuit that achieves the same task. Each of the three represents a different
physical reality; the gate metric represents a world where self correcting quantum
memory can be built, the depth width metric represents one where it cannot, but
active error correction has a constant cost that is independent of the size of the circuit,
and the surface code metric represents a world where the cost of active error correction
grows with the size of the circuit. It should be noted that if a sieve has a complexity
of e.g. 2cn+o(n) in the quantum query model, none of the above costs alter the leading
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constant c. Instead, for dimensions of cryptanalytical relevance we are interested in
providing estimates for the cost of quantum sieving that can be meaningfully compared
to similar estimates for classical sieves.

All of the above metrics require a quantum circuit to be designed, the gate metric
and depth width metric because they require the number of gates and the depth and
width of the circuit respectively, and the surface code metric because the number of
physical qubits used to encode a logical qubit is an increasing function of the depth
and width of the circuit. We therefore must design quantum circuits for various lattice
sieves to give these costs.

To do this we consider one iteration of Nguyen–Vidick style sieves, in particular we
have some list of size N and from it we wish to find N reducible pairs so that we can
iterate. To build this quantum circuit we need to specify the unitaries that make up a
Grover iteration, and in particular Rf (recall Section 2.6.2). A natural choice for f
would be a function that has the fixed point from our list hardwired into it and takes
the inner product of this fixed point with its input. If this inner product is sufficiently
large, which implies the angle between the points in the list is sufficiently small, then
the input is a root. However, we choose instead to use the popcount filter introduced
in Section 2.5.4. This filter is used in the sieving implementation that at the time held
the record on the Darmstadt SVP challenges [GS10] and has a significantly smaller and
simpler quantum circuit. In particular it only requires addition and comparison, rather
than floating point multiplication. However, this choice does require us to design a
suitable filtered quantum search procedure, that first uses Grover search to find roots
of the popcount filter before using amplitude amplification techniques to find elements
which also satisfy the inner product constraint.

Given this filtered quantum search routine we analyse iterations of various sieves in
such a way that exposes the popcount parameters along with any sieve parameters.
We can then design quantum circuits for these sieve iterations and minimise their
complexity under a given metric. This finally allows us our comparison to classical
sieving, and we conclude by discussing the remaining barriers to realising quantum
sieving with the costs that we estimate.
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5.1 Estimating quantum speedups for lattice sieves

The work presented here is an amended and annotated version of what is published as

Albrecht M.R., Gheorghiu V., Postlethwaite E.W., Schanck J.M. (2020) Estimat-
ing Quantum Speedups for Lattice Sieves.

In: Moriai S., Wang H. (eds) Advances in Cryptology – ASIACRYPT 2020. ASI-
ACRYPT 2020. Lecture Notes in Computer Science, vol 12492. Springer, Cham.
https://doi.org/10.1007/978-3-030-64834-3_20

The appendices are available at https://eprint.iacr.org/2019/1161.

An implementation is available at https://github.com/jschanck/eprint-2019-1161.

5.2 Introduction

Sieving algorithms for the shortest vector problem (SVP) in a lattice have received a
great deal of attention recently [AKS01, ADH+19a, BDGL16, Duc18a, Laa15, NV08].
The attention mostly stems from lattice based cryptography, as many attacks on lattice
based cryptographic constructions involve finding short lattice vectors [ADPS16, LP11,
MR09].

Lattice based cryptography is thought to be secure against quantum adversaries.
None of the known algorithms to solve SVP (to a small approximation factor) do so
in subexponential time, but this is not to say that there is no gain to be had given a
large quantum computer. Lattice sieve algorithms use near neighbour search (NNS) as
a subroutine; near neighbour search algorithms use black box search as a subroutine;
and Grover’s quantum search algorithm [Gro96] gives a square root improvement to
the query complexity of black box search. A black box search that is expected to take
Θ(N) queries on classical hardware will take Θ(

√
N) queries on quantum hardware

using Grover’s algorithm.
Previous work has analysed the effect of quantum search on the query complexity of

lattice sieves [Laa16, LMv13]. Of course, one must implement the queries efficiently in
order to realise the improvement in practice. Recent work has given concrete quantum
resource estimates for the black box search problems involved in key recovery attacks
on AES [GLRS16, JNRV20] and preimage attacks on SHA-2 and SHA-3 [AMG+16].

https://doi.org/10.1007/978-3-030-64834-3_20
https://eprint.iacr.org/2019/1161
https://github.com/jschanck/eprint-2019-1161
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In this work, we give explicit quantum circuits that implement the black box search
subroutines of several quantum lattice sieves. Our quantum circuits are efficient enough
to yield a cost improvement in dimensions of cryptanalytic interest. However, for
the most performant sieve that we analyse the cost improvement is small and several
barriers stand in the way of achieving it.

Outline and contributions

We start with some preliminaries in Section 5.3. In Section 5.4 we introduce and
analyse a filtered quantum search procedure. We present our quantum circuit for
popcount (recall Section 2.5.4) in Section 5.5. In Section 5.6 we provide a heuristic
analysis of the probability that popcount successfully identifies pairs of vectors that
are close to each other. The popcount operation is our primary optimisation target,
and is typically less expensive than a full inner product computation. This analysis
may be of independent interest; previous work [ADH+19a, Duc18a] relied largely on
experimental data for choosing popcount parameters. In Section 5.7, we rederive the
overall cost of the NNS subroutines of three lattice sieves. Our cost analysis exposes
the impact of the popcount parameters so that we can numerically optimise these in
parallel with the sieve parameters.

We have chosen to profile the Nguyen–Vidick sieve [NV08], the bgj1 specialisa-
tion [ADH+19a] of the Becker–Gama–Joux sieve [BGJ15], and the Becker–Ducas–Gama–
Laarhoven sieve [BDGL16]. We have chosen these three sieves as they are, respectively,
the earliest and most conceptually simple, the most performant implemented (at the
time of publication), and the fastest known asymptotically.

Finally, we optimise the cost of classical and quantum search under various cost
metrics to produce Figure 5.2 of Section 5.8. We conclude by discussing barriers to
obtaining the reported quantum advantages in NNS, the relationship between SVP and
NNS, and future work. Both the data produced, and the source code used to compute
it, are available at https://github.com/jschanck/eprint-2019-1161. We consider
our software a contribution in its own right; it is documented, easily extensible and
allows for the inclusion of new nearest neighbour search strategies and cost models.

Interpretation

Quantum computation seems to be more difficult than classical computation. As
such, there will likely be some minimal dimension, a crossover point, below which
classical sieves outperform quantum ones. Our estimates give non-trivial crossover
points for the sieves we consider. Yet, our results do not rule out the relevance of

https://github.com/jschanck/eprint-2019-1161
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quantum sieves to lattice cryptanalysis. The crossover points that we estimate are
well below the dimensions commonly thought to achieve 128 bits of security against
quantum adversaries. However, our initial logical circuit level analysis (Figure 5.2, q:
depth-width) is optimistic. It ignores the costs of quantum random access memory
and quantum error correction.

To illustrate the potential impact of error correction, we apply a cost model
developed by Gidney and Ekerå to our quantum circuits. The Gidney–Ekerå model was
developed as part of a recent analysis of Shor’s algorithm [GE21]. In the Gidney–Ekerå
model, the crossover point for the NNS algorithm underlying the Becker–Ducas–Gama–
Laarhoven sieve [BDGL16] is dimension 312. In this dimension, the classical and
quantum variants both perform 2119.0 operations and need at least 278.3 bits of (quantum
accessible) random access memory. A large cost improvement is obtained asymptotically,
but for cryptanalytically relevant dimensions the improvement is tenuous. Between
dimensions 352 and 824 our estimate for the quantum cost grows from appoximately
2128 to approximately 2256. In dimension 352 this is an improvement of a factor of 21.8

over our estimate for the classical cost. In dimension 824 the improvement is by a
factor of 214.4.

We caution that a memory constraint would significantly reduce the range of
cryptanalytically relevant dimensions. For instance, an adversary with no more than
2128 bits of quantum accessible classical memory is limited to dimension 544 and below.
In these dimensions we estimate a cost improvement of no more than a factor of 213.6

at the logical circuit level and no more than 27.1 in the Gidney–Ekerå metric.
A depth constraint would also reduce the range of cryptanalytically relevant dimen-

sions. The quantum algorithms that we consider would be more severely affected by a
depth constraint than their classical counterparts, due to the poor parallisability of
Grover’s algorithm.

5.3 Preliminaries

5.3.1 Models of computation

We describe quantum algorithms as circuits using the Clifford+T gate set, but we
augment this gate set with a table lookup operation (qRAM), recall Section 2.6.1. We
note that quantum access to classical RAM is a powerful resource, and the algorithms
we describe below fail to achieve an advantage over their classical counterparts when
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qRAM is not available. We discuss qRAM at greater length in Section 5.8. We describe
classical algorithms as programs for RAM machines (random access memory machines).

RAM machines

We describe classical algorithms in terms of random access memory machines. For
comparability with the Clifford+T gate set, we will work with a limited instruction
set, e.g. {NOT, AND, OR, XOR, LOAD, STORE}. For comparability with qRAM,
LOAD and STORE act on ℓ bit registers.

Cost

The cost of a RAM program is the number of instructions that it performs. One can
similarly define the gate cost of a quantum circuit to be the number of gates that it
performs. Both metrics are reasonable in isolation, but it is not clear how one should
compare the two. Jaques and Schanck recommend that quantum circuits be assigned a
cost in the unit of RAM instructions to account for the role that classical computers
play in dispatching gates to quantum memories [JS19]. They also recommend that the
identity gate be assigned unit cost to account for error correction. The depth-width
cost of a quantum circuit is the total number of gate operations that it performs when
one includes identity gates in the count.

5.3.2 Filtered black box search

In Section 5.4 of this work we design a filtered quantum search operation tailored to
our needs. We first define a filtered classical search routine and introduce a lemma
from the literature we will make use of. Recall the definitions of a predicate, exhaustive
search, Grover’s algorithm, and amplitude amplification from Section 2.6.2.

A black box search algorithm finds a root of a predicate without exploiting any
structure present in the description of the predicate itself. However, we may still use
them in cases where some structure is known, for example ‘f has M roots’ or ‘f is
expected to have no more than M roots’. Our analyses often use this kind of knowledge
of structure. We will also use the fact that the set of predicates on any given finite
set can be viewed as a Boolean algebra. We write f ∪ g for the predicate with kernel
Ker (f) ∪ Ker (g) and f ∩ g for the predicate with kernel Ker (f) ∩ Ker (g).

If f is expensive to evaluate, we may try to decrease the cost of exhaustive search
by applying a search filter. We say that a predicate g is a filter for f if f ≠ g and
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|f ∩ g| ≥ 1. We say that g recognises f with a false positive rate of

ρf (g) = 1− |f ∩ g|
|g|

,

and a false negative rate of
ηf (g) = 1− |f ∩ g|

|f |
.

A classical filtered search evaluates g(0), f(0), g(1), f(1), g(2), f(2), and so on until
a root of f ∩ g is found. The evaluation of f(i) is skipped when i is not a root of g,
which may reduce the cost of filtered search below that of exhaustive search.

We wish to design a quantum filtered search, which will make use of the following
lemma. It is an integral part of [BBHT98, Thm. 3] which allows Grover’s algorithm to
maintain the same asymptotic query complexity if the number of roots is unknown. We
will refer to this paper by BBHT, and the algorithm analysed in [BBHT98, Thm. 3] as
the BBHT algorithm.

Lemma 5.3.1 (Lemma 2 of [BBHT98]). Suppose that measuring D|0⟩ would yield a
root of f with probability sin2(θ). Fix a positive integer m. Let j be chosen uniformly
from {0, . . . ,m− 1}. The expected probability that measuring G(f)jD|0⟩ yields a root
of f is 1

m

∑m−1
j=0 sin2((2j + 1) · θ) = 1

2 −
sin(4mθ)

4m sin(2θ) . If m > 1/ sin(2θ) then this quantity
is at least 1/4.

5.3.3 Lattice sieving and near neighbour search on the sphere

In Section 2.5 we introduced lattice sieves, heuristics that are commonly used to
analyse them, the measure of several geometric figures on the sphere, and the popcount
filter. In this paper we consider 2-sieves on full rank lattices Λ ⊂ Rd, and assume the
elements of a list L held by a lattice sieve are i.i.d. vi ← U(Sd−1). Therefore a pair
(u,v) is reducible if and only if θ(u,v) < π/3. The popcount filter is used as a first
approximation to θ(· , ·) and by modelling L as a subset of Sd−1 we may translate some
lattice sieves into the language of (angular) near neighbour search on the sphere. To
wit, we want to take a list L ⊂ Sd−1 and find |L| reducible pairs so that the sieve can
be iterated.

The near neighbour search subroutine of a Nguyen–Vidick style sieve that we
examine is given below as AllPairSearch. This algorithm represents one iteration of
the sieve, to continue the sieve one takes each pair (u,v) ∈ L′ and returns u − v.
Progress is made provided θ = π/3− ε for any ε ∈ (0, π/3). The smaller ε the smaller
the expected size of L required to iterate will be, so we consider ε→ 0.
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Algorithm 10 AllPairSearch.
Require: A list L = (v1,v2, . . .vN) ⊂ Sd−1 of N points. Parameter θ ∈ (0, π/2).
Ensure: A list of pairs (u,v) ∈ L× L with θ(u,v) ≤ θ.

1: function AllPairSearch(L; θ)
2: L′ ← ∅
3: for 1 ≤ i < N do
4: Li ← (vi+1, . . . ,vN)
5: Search Li for any number of u that satisfy θ(u,vi) ≤ θ.
6: For each such u found, add (u,vi) to L′.
7: If |L′| ≥ N , return L′.
8: return L′

Recall the geometric figures on the sphere introduced in Section 2.5.2 and the
description of the popcount filter in Section 2.5.4, both of which we make frequent use
of throughout this work. In particular, in Section 5.6 we calculate the false positive
and negative rates of popcount under the heuristic that one can fix h and vary u and
v. These calculations, the fact that popcount is significantly cheaper than an inner
product, and that it is a filter used in many performant sieves [ADH+19a, Duc18a],
make popcount a good candidate for use as a filter under the techniques of Section 5.4.

5.4 Filtered quantum search

A filter can reduce the cost of a search because a classical computer can branch to
avoid evaluating an expensive predicate. A quantum circuit cannot branch inside a
Grover search in this way. Nevertheless, a filter can be used to reduce the cost of a
quantum search.

The idea is to apply amplitude amplification to a Grover search. The inner Grover
search prepares the uniform superposition over roots of the filter, g. The outer
amplitude amplification searches for a root of f among the roots of g. We present
pseudocode for this strategy in Algorithm 11.

If |g| and |f ∩ g| are known, then we can choose the number of iterations of the
inner Grover search and the outer amplitude amplification optimally. When these
quantities are not known, we can attempt to guess them as in the BBHT algorithm.
In our applications, we have some information about |g| and |f ∩ g|, which we can use
to fine tune a BBHT like strategy.

Proposition 5.4.2 gives the cost of Algorithm 11 when we know 1. a lower bound,
Q, on the size of |f ∩ g|, and 2. the value of |g| up to relative error γ. In essence, when
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a filter with a low false positive rate is used to search a space with few true positives,
Algorithm 11 can be tuned such that it finds a root of f with probability at least 1/14
and at a cost of roughly γ

2

√
N/Q iterations of G(g).

Algorithm 11 FilteredQuantumSearch.
Require: A predicate f and a filter g defined on {0, . . . , N − 1}. Integer parameters

m1 and m2.
Ensure: A root of f or ⊥.

1: function FilteredQuantumSearch(f, g;m1,m2)
2: Sample integers j and k with 0 ≤ j < m1 and 0 ≤ k < m2 uniformly at random.
3: Let Aj = G(g)jD.
4: Let Bk = G(Aj, f ∩ g)k.
5: Prepare the state |ψ⟩ = BkAj|0⟩.
6: Let r be the result of measuring |ψ⟩ in the computational basis.
7: if f(r) = 0 then
8: return r
9: return ⊥

If we know that the inner Grover search succeeds with probability x < 1 then we
can compensate with a factor of approximately

√
1/x more iterations of the outer

amplitude amplification. In particular, recall Theorem 2.6.2 and let the A therein
represent the inner Grover mentioned above. Amplitude amplification then requires
approximately π/(4

√
x) applications of G(A, f) to succeed in finding a root with

probability at least max{x, 1− x}.
We do not know x. However, in our applications, we do know that the value of θ

for which sin2(θ) = |g| /N will be fairly small, e.g. θ < 1/10. The following technical
lemma shows that, when θ is small, we may assume that x = 1/5 with little impact on
the overall cost of the search.

Let j and Aj be as in Algorithm 11. Let pθ(j) be the probability that measuring
Aj|0⟩ would yield a root of g. For any x ∈ (0, 1), there is some probability qx(m1) that
the choice of j is insufficient, i.e. that pθ(j) < x. We expect to repeat Algorithm 11 a
total of (1− qx(m1))−1 times to avoid this type of failure.

Lemma 5.4.1. Fix θ ∈ (0, π/2] and x ∈ [0, 1). Let pθ, qx : R → R be defined by
pθ(j) = sin2((2j + 1) · θ) and qx(m) = 1

m
|{j ∈ Z : 0 ≤ j < m, pθ(j) < x}|. If m > π

4θ
,

then
qx(m) < 3 arcsin(

√
x)

π − arcsin(
√
x) + 8θ

π
.

Proof. Observe that qx(m) is exactly the probability that a uniform integer j ∈ [m− 1]0
is such that measuring Aj|0⟩ returns a root of g with probability less than x, and that
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pθ(j) < x when |(2j + 1)θ mod π| < arcsin(
√
x). Let I0 be the interval [0, arcsin(

√
x)).

For integers t ≥ 1 let It = (tπ − arcsin(
√
x), tπ + arcsin(

√
x)). Then (It)t≥0 are the

intervals for which |(2j + 1)θ mod π| < arcsin(
√
x). Let c = c(m) be the largest integer

for which [0, (2m− 1) · θ) intersects Ic, and note 2m− 1 = 2j + 1 for j = m− 1.
The quantity mqx(m) counts the number of non negative integers i < m for which

(2i+1)·θ lies in I0∪I1∪· · ·∪Ic. This is no more than (c+1)+⌊(2c+1) arcsin(
√
x)/(2θ)⌋.

Indeed, we have two kinds of interval, I0 and It for integer t ≥ 1.
Given an interval of length ℓ (ultimately of length 2θ) we wish to
upper bound the number of such intervals that can fit in intervals of
the form [a, b) (for I0) or (a, b) (for It). The intervals of length ℓ may
only overlap on their endpoints. Having done this, by adding one we
count the number of endpoints that can fit in these intervals, i.e. the
number of different (2i+ 1) · θ.
In both the [a, b) and (a, b) cases we find that ⌈(b−a)/ℓ⌉−1 intervals
can fit, and so ⌈(b− a)/ℓ⌉ ≤ ⌊(b− a)/ℓ⌋+ 1 endpoints. Setting a =
0, b = arcsin(

√
x), ℓ = 2θ gives us ⌊arcsin(

√
x)/2θ⌋+ 1 for the single

interval I0. Setting a = t − arcsin(
√
x), b = t + arcsin(

√
x), ℓ = 2θ

gives us ⌊2 arcsin(
√
x)/2θ⌋+ 1 for the c intervals I1, . . . , Ic.

Using the fact that for α, β ∈ N and x, y ≥ 0 we have α⌊x⌋+ β⌊y⌋ ≤
⌊αx+ βy⌋, from

⌊arcsin(
√
x)/2θ⌋+ 1 + c ·

(
⌊2 arcsin(

√
x)/2θ⌋+ 1

)
we attain the required result.

It follows that qx(m) ≤ (c + 1)/m + (2c + 1) arcsin(
√
x)/2mθ. Note that for c ≥ 1

we have 2mθ > (2m − 1)θ > cπ − arcsin(
√
x) and (c + 1)/m < 4θ/π + 1/m. Hence

qx(m) < (2c + 1) arcsin(
√
x)/(cπ − arcsin(

√
x)) + 4θ/π + 1/m. Moreover, qx(m) >

qx(m− 1) when (2m− 1) · θ lies in Ic, and qx(m) < qx(m− 1) otherwise. The upper
bound on qx(m) that we have derived is decreasing as a function of c. Hence the claim
holds when c ≥ 1.

Note that the m that maximises qx(m) for a given c, i.e. we enforce
(2m− 1) · θ ∈ (cπ − arcsin(

√
x), (c+ 1)π − arcsin(

√
x)], is such that

(2m − 1) · θ ∈ Ic but (2m + 1) · θ /∈ Ic. The counting argument to
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upper bound qx(m) above captures this case. If we take m′ < m or
m′ > m while maintaining the same c then the bound continues to
hold. The bound decreases with c so we set c = 1 and show the same
bound is valid in the c = 0 case below.

In the c = 0 case we have qx(m) ≤ arcsin(
√
x)/2mθ + 1/m, and since m > π/4θ we

therefore have qx(m) < 2 arcsin(
√
x)/π + 4θ/π. This bound is smaller than the one

derived above for the c ≥ 1 case and by observation holds for all m such that c = 0.

For m such that (2m − 1) · θ ∈ I0 we have qx(m) = 1, which our
bound satisfies. Indeed π/2− θ < (2m− 1) · θ follows from m > π/4θ
and (2m − 1) · θ < arcsin(

√
x) since c = 0. We therefore have

π/2− θ < arcsin(
√
x) which implies 2 arcsin(

√
x)/π + 4θ/π > 1. For

m′ > m such that we maintain c = 0 but (2m′ − 1) · θ /∈ I0 we have
qx(m′) < qx(m), and hence the bound continues to hold.

There are situations in which filtering is not effective, e.g. when the false positive
rate of g is very high, when evaluting g is not much less expensive than evaluating
f , or when f has a very large number of roots. In these cases, other algorithms will
outperform Algorithm 11. We remark on these below. Proposition 5.4.2 optimises the
choice of m1 and m2 in Algorithm 11 for a large class of filters that are typical of our
applications.

Proposition 5.4.2. Suppose that f and g are predicates on a domain of size N and
that g is a filter for f . Let Q ∈ R be such that 1 ≤ Q ≤ |f ∩ g|. Let P and γ be real
numbers such that P/γ ≤ |g| ≤ γP . If γP/N < 1/200 and γ |f ∩ g| /P < 1/4, then
there are parameters m1 and m2 for Algorithm 11 such that Algorithm 11 finds a root
of f with probability at least 1/14 and has a cost that is dominated by approximately
γ
2

√
N/Q times the cost of G(g) or by approximately 2

3

√
γP/Q times the cost of Rf∩g.

Proof. Fix x ∈ (0, 1). We will analyse Algorithm 11 with respect to the parameters
m1 =

⌈
π
4

√
γN/P

⌉
and m2 =

⌈√
γP/3xQ

⌉
. Let θg be such that sin2(θg) = |g| /N . Let

j and k be chosen as in Algorithm 11. Let p = pθg(j) and q = qx(m1) be defined as
in Lemma 5.4.1. Note that since |g| /N ≤ γP/N < 1/200 we can use 8θg/π < 1/5 in
applying Lemma 5.4.1.
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By bounding γP/N above we are bounding the number of elements
that pass the filter g, and therefore its false positive rate. The additive
8θg/π term of Lemma 5.4.1 when applied to the filter g intuitively
captures the component of the upper bound on qx(m1) determined
by the false positive rate of g.

Let θh(j) be such that sin2 (θh(j)) = p · |f ∩ g| / |g|. With probability at least 1− q
we have p ≥ x, which implies that sin(θh(j)) ≥

√
xQ/γP . Since γ |f ∩ g| /P < 1/4⇒

sin2(θh(j)) < 1/4, then cos(θh(j)) >
√

3/4. Thus 1/ sin(2θh(j)) <
√

γP
3xQ
≤ m2. By

Lemma 5.3.1 measuring G(Aj, f ∩ g)kAj|0⟩ yields a root of f ∩ g with probability at
least 1/4.

We are applying an ‘amplitude amplification’ version of Lemma 5.3.1.
We have that measuring Aj |0⟩ returns a root of f ∩g with probability
sin2 (θh(j)) since a uniform root of g is measured with probability
p and it is also a root of f with probability |f ∩ g| / |g|. Measuring
G(Aj, f ∩ g)kAj|0⟩ returns a root of f ∩g with probability sin2((2k+
1) · θh(j)), and hence we may apply the lemma by ensuring m2 >

1/ sin(2θh(j))⇔ m2 · sin(θh(j)) · cos(θh(j)) > 1/2.
The condition γ |f ∩ g| /P < 1/4 may seem like both a loose and a
strange requirement. Setting the technical factor γ = 1 for ease, it
is equivalent to |f ∩ g| / |g| < 1/4, and surely the larger this ratio,
the better? This is true, but if it is sufficiently large then one may
as well just search on the filter g, see Remark 5.4.1 below. In fact,
given its use above to lower bound cos(θh(j)), the smaller the upper
bound on this ratio the better. Indeed, if e.g. γ |f ∩ g| /P < 1/8 then
cos(θh(j)) >

√
7/8 >

√
3/4. In terms of looseness, even if we had

cos(θh(j)) = 1 this would allow us to choose m2 > (1/2) ·
√

γP
xQ

, only
a factor of

√
3/2 smaller than the requirement on m2 given above.

It follows that Algorithm 11 succeeds with probability at least (1− q)/4.
The algorithm evaluates G(g) exactly k · j + 1 times and evaluates G(g)† exactly

k · j times. The expected value of 2kj+ 1 is c1(x) ·γ ·
√
N/Q where c1(x) ≈ (π/8)/

√
3x.

Likewise the algorithm evaluates Rf∩g exactly k times, which is c2(x) ·
√
γP/Q in

expectation where c2(x) ≈ (1/2)/
√

3x.
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We recall that for independent random variables X, Y we have
E [XY ] = E [X] · E [Y ], and that the expectation of the uniform
distribution on integers a, . . . , b is (b− a)/2, hence the above.

Taking x = 1/5, and applying the upper bound on qx(m1) from Lemma 5.4.1, we have
(1− qx(m1))/4 ≥ 1/14, c1(x) ≈ 1/2 and c2(x) ≈ 2/3.

Remark 5.4.1. When γP/N ≥ 1/200 or γ |f ∩ g| /P ≥ 1/4 there are better algorithms.
If both inequalities hold then classical search finds a root of f quickly. If γ |f ∩ g| /P ≥
1/4 then finding a root of f is not much harder than finding a root of g, so one can
search on g directly. If γP/N ≥ 1/200 then the filter has little effect and one can
search on f directly.

Remark 5.4.2. It is helpful to understand when we can ignore the cost of Rf∩g in
Proposition 5.4.2. Roughly speaking, if evaluating f is c times more expensive than
evaluating g, then the cost of calls to G(g) will dominate when N > c2 |g|. In a classical
filtered search the cost of evaluating g dominates when N > c |g|.

5.5 Circuits for popcount

Consider a program for popcountk,n(u,v). This program loads u and v from specified
memory addresses, computes h(u) and h(v), computes the Hamming weight of h(u)⊕
h(v), and checks whether it is less than or equal to k. Recall h(u) is defined by n

inner products. If the popcount procedure is executed many times for each u, then it
may be reasonable to compute h(u) once and store it in memory. Moreover, if u is
fixed for many sequential calls to the procedure, then it may be reasonable to cache
h(u) between calls. The algorithms that we consider in Section 5.7 use both of these
optimisations.

In this section we describe RAM programs and quantum circuits that compute
popcountk,n(u, ·) for a fixed u. These circuits have the value of h(u) hard coded. They
load h(v) from memory, compute the Hamming weight of h(u) ⊕ h(v), and check
whether the Hamming weight is less than or equal to k. We ignore the initial, one
time, cost of computing h(u) and h(v).
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5.5.1 Quantum circuit for popcount

Loading h(v) costs a single qRAM gate. Computing h(u) ⊕ h(v) can then be done
in-place using a sequence of X gates that encode h(u). The bulk of the effort is in
computing the Hamming weight. For that we use a tree of in-place adders. The final
comparison is also computed with an adder, although only one bit of the output is
needed. See Figure 5.1 for a full description of the circuit.

We use the Cuccaro–Draper–Kutin–Petrie adder [CDKM04], with ‘incoming carry’
inputs, to compute the Hamming weight. We argue in favour of this choice of adder
in [AGPS19, App. C]. We use the Häner–Roetteler–Svore [HRS17] carry bit circuit for
implementing the comparison.

We will later use popcount within filtered quantum searches by defining predicates
of the form g(i) = popcountk,n(u,vi), i ∈ {0, . . . , N − 1}. To simplify that later
discussion, we cost the entire Grover iteration G(g) = DR0D†Rg here. In [AGPS19,
App. B] we introduce the (possibly multiply controlled) Toffoli gate and discuss the
Toffoli count for G(g), which in turn gives the T count for G(g).

The cost of Rg

The Rg subroutine is computed by running the popcount circuit in Figure 5.1 and then
uncomputing the addition tree and X gates. The circuit uses in-place i bit adders1 for
i ∈ {1, . . . , ℓ− 1}. The width of the circuit is given in [AGPS19, App. B]. The depth
of the circuit is

depth = 2 + d(CARRY) +
ℓ−1∑
i=1

2 · d(ADDi), (5.1)

where d(·) denotes the depth of its argument. The factor of 2 accounts for uncompu-
tation of the ADDi circuits. The CARRY circuit is only cost once as the carry bit is
computed directly into the |−⟩ state during the CARRY circuit itself. The summand 2
accounts for the X gates used to compute, and later uncompute, h(u)⊕ h(v).

The phase kickback mentioned in the caption of Figure 5.1 works as
follows. We let g : {0, . . . , N − 1} → {0, 1}, i 7→ popcountk,n(u,vi)
map indices of vectors to whether they pass a popcount filter with u
and parameters (k, n) (all left implicit). We consider the unitary Ug

1An in-place i bit quantum adder takes two i bit inputs, initialises an ancilla qubit in the |0⟩ state,
and returns the addition result in an i + 1 bit register that includes the new ancilla and overlaps with
i bits of the input.
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Figure 5.1 A quantum circuit for popcount. This circuit computes h(u)⊕ h(v) for a
fixed n bit h(u), computes the Hamming weight of h(u)⊕h(v), and checks whether the
Hamming weight is less than or equal to k. Here n = 2ℓ− 1 = 31. The input qubits are
represented as lines ending with a black diamond. The dashed lines represent incoming
carry inputs, and the dotted lines represent carry outputs. Not all of the output wires
are drawn. For space efficiency, some of the input qubits are fed into the incoming
carry qubits of the adders (dashed lines). The Xi mean that gate X is applied to input
qubit i if bit i of h(u) is 1. The circuit uses a depth ℓ− 1 binary tree of full bit adders
from [CDKM04], where ADDi denotes an i bit full adder. The output wt(h(u)⊕ h(v))
from the tree of adders together with the binary representation of the number n− k
are finally fed into the input of the CARRY circuit from [HRS17], which computes the
carry bit of n− k + wt(h(u)⊕ h(v)) (the carry bit will be 0 if wt(h(u)⊕ h(v)) ≤ k,
and 1 otherwise). The final CNOT is for illustration only. In actuality, the carry bit
is computed directly into an ancilla that is initialised in the |−⟩ = (|0⟩ − |1⟩)/

√
2 state,

so we can obtain the needed phase kickback. The tree of adders and the initial X
gates, but not the CARRY circuit, are run in reverse to clean up scratch space and
return the inputs to their initial state. The uncomputation step is not depicted here.
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that acts on computational basis states as Ug |x⟩ |y⟩ = |x⟩ |y ⊕ g(x)⟩,
for x ∈ {0, . . . , N − 1}, y ∈ {0, 1}. In general the first register will
contain a superposition of these indices. The second register will
contain the state |−⟩ = (1/

√
2) · (|0⟩ − |1⟩) which has the property

that (1/
√

2) · (|0⊕ g(x)⟩ − |1⊕ g(x)⟩) = (−1)g(x) · (1/
√

2) · (|0⟩ − |1⟩).
We therefore have that Ug |x⟩ |−⟩ = (−1)g(x) |x⟩ |−⟩. Recalling Sec-
tion 2.6.2 this is exactly the requirement for Rg. Since the register
containing the state |−⟩ never alters, it is ignored.

The cost of DR0D†

Recall that D can be any circuit that maps |0⟩ to the uniform distribution on the
domain of the search predicate. While there is no serious difficulty in sampling from the
uniform distribution on {0, . . . , N − 1} for any integer N , when costing the circuit we
assume that N is a power of two. In this case D is simply log2 N parallel H gates. The
reflection R0 is implemented as a multiply controlled Toffoli gate that targets an ancilla
initialised in the |−⟩ state. We use Maslov’s multiply controlled Toffoli from [Mas16].
The depth and width of DR0D† are both O(logN); our software calculates the exact
value.

5.5.2 RAM program for popcount

Recall that we use a RAM instruction set that consists of simple bit operations and
table lookups. A Boolean circuit for popcount is schematically similar to Figure 5.1.
Let ℓ = ⌈log2 n⌉. Loading h(v) has cost 1. Computing h(u) ⊕ h(v) takes n XOR
instructions and has depth 1. Following [Par09, Table. II], with cF A = 5 the number
of instructions in a full adder, (n − ℓ − 1)cF A + ℓ lower bounds the instruction cost
of computing the Hamming weight and comparing it with a fixed k. This has depth
(ℓ− 1)(δsum + δcarry) + 1. We assume δsum = δcarry = 1. Thus, the overall instruction
count is 6n− 4ℓ− 5 and the overall depth is 2ℓ.

5.5.3 Cost of inner products

The optimal popcount parameters will depend on the cost of a computing an inner
product in dimension d. The cost of one inner product is amortised over many
popcounts, and a small change in the popcount parameters will quickly suppress the
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ratio of inner products to popcounts (see Remark 5.4.2). Hence we only need a rough
estimate for the cost of an inner product. We assume 32 bits of precision are sufficient.
We then assume schoolbook multiplication is used for scalar products, which costs
approximately 322 AND instructions. We then assume the cost of a full inner product
is approximately 322 d, i.e. we ignore the cost of the final summation, assuming it is
dwarfed by the ANDs.2

5.6 The accuracy of popcount

Here we give an analysis of the popcount technique based on some standard simplifying
assumptions. We are particularly interested in the probability that a popcount filter
identifies a random pair of points as potential neighbours. We are also interested in the
probability that a pair of actual neighbours are not identified as potential neighbours,
i.e. the false negative rate. Our software computes all of the quantities in this section
to high precision.

Let Pk,n(u,v) be the probability that popcountk,n(u,v;h) = 0 for a uniformly
random h (recall popcountk,n(u,v;h) = 0 if u,v pass the filter). In other words, let h =
(h1, . . . , hn) be a collection of i.i.d. random variables that are distributed uniformly on
the sphere so that

{
popcountk,n(u,v;h)

}
(u,v)∈Sd−1×Sd−1

are random variables indexed
by u,v on the sphere, and define

Pk,n(u,v) = 1− E
[
popcountk,n(u,v;h)

]
.

The hyperplane defined by hi separates u and v with probability θ(u,v)/π, and
popcountk,n(u,v;h) = 0 if no more than k of the hyperplanes separate u and v.
Hence,

Pk,n(u,v) =
k∑

i=0

(
n

i

)
·
(
θ(u,v)
π

)i

·
(

1− θ(u,v)
π

)n−i

.

Note that Pk,n(u,v) depends only on the angle between u and v, so it makes sense
to define Pk,n(θ). The main heuristic in our analysis of popcount is that Pk,n(u,v)
is a good approximation to the probability that popcountk,n(u,v;h) = 0 for fixed h

and varying u and v. Under this assumption, all of the quantities in question can be
determined by integrating Pk,n(u,v) over different regions of the sphere.

2We also tested the effect of assuming 8-bit inner products are sufficient. As expected, this reduces
all costs by a factor of two to four and thus does not substantially alter our relative results.
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Let P̂k,n denote the event that popcountk,n(u,v;h) = 0 for uniformly random u, v,
and h. Let R̂θ be the event that θ(u,v) ≤ θ. Recall that Pr[R̂θ] = Cd(θ), and observe
that Pr[R̂θ] is a cumulative distribution with associated density Ad(θ) = ∂

∂θ
Cd(θ). We

find, letting S = Sd−1 for some implicit d,

Pr[P̂k,n] =
∫

S

∫
S
Pk,n(u,v) dµ(v) dµ(u)

=
∫

S

(∫ π

0
Pk,n(θ) · Ad(θ) dθ

)
dµ(u)

=
∫ π

0
Pk,n(θ) · Ad(θ) dθ. (5.2)

Let u,v such that θ(u,v) ≤ φ be neighbours. The false negative rate is 1−Pr[P̂k,n | R̂φ].
The quantity Pr[P̂k,n∧ R̂φ] can be calculated by changing the upper limit of integration
in (5.2). It follows that

1− Pr[P̂k,n | R̂φ] = 1− 1
Cd(φ)

∫ φ

0
Pk,n(θ) · Ad(θ) dθ. (5.3)

In Section 5.7 we consider u and v that are uniformly distributed in a cap of angle
β < π/2, rather than the uniformly distributed on the sphere. Let B̂w,β be the event
that u and v are uniformly distributed in a cap of angle β about w. We have

Pr[B̂w,β] =
∫

S

∫
S

1
{
w ∈ W d−1(u, β,v, β)

}
dµ(v) dµ(u)

=
∫ 2β

0
Wd(θ, β, β) · Ad(θ) dθ. (5.4)

In the second line we have used the fact that β < π/2 and W (θ, θ1, θ2) is zero
when θ ≥ θ1 + θ2. The quantity Pr[R̂φ ∧ B̂w,β] can be computed by changing the
upper limit of integration in (5.4) from 2β to min{2β, φ}. We note that B̂w,β has no
dependence on w and therefore may also be written B̂β. The conditional probability
that popcountk,n(u,v;h) = 0, given that u,v are uniformly distributed in a cap Bβ,
Pr[P̂k,n | B̂β], can be computed using (5.4) and

Pr[P̂k,n ∧ B̂β] =
∫ 2β

0
Pk,n(θ) ·Wd(θ, β, β) · Ad(θ) dθ. (5.5)

The quantity Pr[P̂k,n ∧ R̂φ ∧ B̂β] can be computed by changing the upper limit of
integration in (5.5) from 2β to min{2β, φ}. The false negative rate for popcount when
restricted to a cap is 1− Pr[P̂k,n | R̂φ ∧ B̂β].
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5.7 Tuning popcount for NNS

We now use the circuit sizes from Section 5.5 and the probabilities from Section 5.6 to
optimise popcount for use in NNS algorithms. Our analysis is with respect to points
sampled independently from the uniform distribution on the sphere. We further restrict
our attention to list-size preserving parameterisations, which take an input list of size
N and return an output list of (expected) size N .

We use the notation for events introduced in Section 5.6. In particular, we write
R̂θ for the event that a uniformly random pair of vectors are neighbours, i.e. that they
lie at angle less than or equal to θ of one another; P̂k,n for the event that popcount
identifies a uniformly random pair of vectors as potential neighbours; B̂β for the event
that a uniformly random pair of vectors lie in a uniformly random cap of angle β; and
B̂w,β for the same event except we highlight the cap is centred on w. Throughout this
section we use popcountk,n(u, ·), for various fixed u, as a filter for the search predicate
θ(u, ·) ≤ θ. We write η(k, n) for the false negative rate of popcount. We assume that
θ(u,v) ≤ θ is computed using an inner product test. Throughout this section, c1

represents the instruction cost of the inner product test from Section 5.5.3, c2(k, n) the
instruction cost of popcount from Section 5.5.2, q1 the quantum cost of the reflection
Rf∩g, and q2(k, n) the quantum cost of G(g) from Section 5.5.1. We note that c1 and
q1 have a dependence on d that we suppress. We write q0(m) for the number of G(g)
iterations that are applied during a quantum search on a set of size m.

Our goal is to minimise the cost of list-size preserving NNS algorithms as a function
of the input list size, the popcount parameters k and n, and the other NNS parameters.
In a list of N points there are

(
N
2

)
ordered pairs. We expect

(
N
2

)
·Pr[R̂θ] =

(
N
2

)
·Cd(θ)

of these to be neighbours, and we expect a 1 − η(k, n) fraction of neighbours to be
detected by popcount. List-size preserving parmaterisations that use a popcount filter
must therefore take an input list of size at least

ℓ(k, n) = 2
1− η(k, n) ·

1
Cd(θ) . (5.6)

The optimised costs reported in Figure 5.2 typically use popcount parameters for
which ℓ(k, n) ∈ (2/Cd(π/3), 4/Cd(π/3)). Here we assume that list-size preserving
parameterisations take N = ℓ(k, n). Note that η(k, n) = 1 − Pr[P̂k,n | R̂θ] when
the search is over a set of points uniformly distributed on the sphere, and η(k, n) =
1− Pr[P̂k,n | R̂θ ∧ B̂β] when the search is over a set of points uniformly distributed in
a cap of angle β (left implicit).
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In each of the quantum analyses, we apply Proposition 5.4.2 with γ = 1, P = |g|
and Q = 1 to estimate q0(m). We assume that filtered quantum search succeeds with
probability 1 instead of probability at least 1/14, as guaranteed by Proposition 5.4.2.
In practice, one will not know |g| and one will therefore take γ > 1. Our use of
γ = 1 is a systematic underestimate of the true cost of the search. There may be
searches where our lower bound of Q = 1 on |f ∩ g| is too pessimistic. However, the
probability of success in filtered quantum search decreases quadratically with Q/ |f ∩ g|
if Q > |f ∩ g|. In Sections 5.7.1 and 5.7.3 we expect |f ∩ g| ≈ 2 so the effect of taking
Q = 1 is negligible. In Section 5.7.2, where Q may be larger, an optimistic analysis
using the expected value of Q makes negligible savings in dimension 512 and small
savings in dimension 1024. This analysis does not decrement Q when a neighbour is
found in, then removed from, a search space and ignores the quadratic decrease in
success probability.

5.7.1 AllPairSearch
As a warmup, we optimise AllPairSearch. Asymptotically its complexity is 2(0.415...+o(1))d

classically and 2(0.311...+o(1))d quantumly. We describe implementations of Line 5 of
Algorithm 10 based on filtered search and filtered quantum search, and optimise
popcount relative to these implementations.

Filtered search

Suppose that Line 5 applies popcountk,n(vi, ·) to each of vi+1 through vN and then
applies an inner product test to each vector that passes. With an input list of size
N = ℓ(k, n), we expect this implementation to test all

(
N
2

)
pairs before finding N

neighbouring pairs. Moreover, we expect the popcount filter to identify
(

N
2

)
· Pr[P̂k,n]

potential neighbours, and to perform an equal number of inner product tests. The
optimal parameters are obtained by minimising

(
c1 · Pr[P̂k,n] + c2(k, n)

)
·
(
ℓ(k, n)

2

)
. (5.7)

Filtered quantum search

Suppose that Line 5 is implemented using the search routine Algorithm 11. Specifically,
we take the predicate f to be θ(vi, ·) ≤ θ with domain Li. We take the filter g to be
popcountk,n(vi, ·). Each call to the search routine returns at most one neighbour of vi.
To find all detectable neighbours of vi in Li we must repeat the search |f ∩ g| times.
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This is expected to be |Li| · Pr[P̂k,n ∧ R̂θ]. Known neighbours of vi can be removed
from Li to avoid a coupon collector scenario. We consider an implementation in which
searches are repeated until a search fails to find a neighbour of vi.

We expect to call the search subroutine |Li| · Pr[P̂k,n ∧ R̂θ] + 1 times in iteration i.
Proposition 5.4.2 with P = |Li| · Pr[P̂k,n], Q = 1, and γ = 1 gives q0 (|Li|) = 1

2

√
|Li|

iterations of G(g). As i ranges from 1 to N − 1 the quantity |Li| takes each value in
{1, . . . , N − 1}. Our proposed implementation therefore performs an expected

N−1∑
j=1

1
2
√
j
(
j · Pr[P̂k,n ∧ R̂θ] + 1

)
= Pr[P̂k,n ∧ R̂θ]

(1
5N

5/2 + 1
4N

3/2
)

+ 1
3N

3/2 +O(
√
N) (5.8)

applications of G(g); the expansion is obtained by the Euler–Maclaurin formula. When
N = ℓ(k, n) we expect N · Pr[P̂k,n ∧ R̂θ] = 2 +O(1/N). The right hand side of (5.8) is
then 11

15N
3/2 +O(

√
N).

Proposition 5.4.2 also provides an estimate for the rate at which reflections about
the true positives, Rf∩g are performed. With P and Q as above, we find that Rf∩g

is performed at roughly p(k, n) =
√

Pr[P̂k,n] the rate of calls to G(g). The optimal
popcount parameters (up to some small error due to the O(

√
N) term in (5.8)) are

obtained by minimising the total cost

11
15 (q1p(k, n) + q2(k, n)) · ℓ(k, n)3/2. (5.9)

5.7.2 RandomBucketSearch
One can improve AllPairSearch by bucketing the search space such that vectors in the
same bucket are more likely to be neighbours [Laa15]. For example, one could pick a
hemisphere H and divide the list into L1 = L ∩H and L2 = L\L1. These lists would
be approximately half the size of the original and the combined cost of AllPairSearch
within L1 and then within L2 would be half the cost of an AllPairSearch within L.
However, this strategy would fail to detect the expected θ/π fraction of neighbours
that lie in opposite hemispheres.

Becker, Gama, and Joux [BGJ15] present a very efficient generalisation of this
strategy. They propose bucketing the input list into subsets of the form {v ∈ L :
popcountk,n(0,v;h) = 0} with varying choices of h. This bucketing strategy is applied
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recursively until the buckets are of a minimum size. Neighbouring pairs are then found
by applying AllPairSearch.

A variant of the Becker–Gama–Joux algorithm that uses buckets of the form
L ∩ Cd−1(f, θ1), with randomly chosen f and fixed θ1, was proposed and imple-
mented in [ADH+19a]. This variant is sometimes called bgj1. Here we call it
RandomBucketSearch. This algorithm has asymptotic complexity 2(0.349...+o(1))d classi-
cally [ADH+19a] and 2(0.301...+o(1))d quantumly.3 This is worse than the Becker–Gama–
Joux algorithm, but RandomBucketSearch is conceptually simple and still provides an
enormous improvement over AllPairSearch. Pseudocode is presented in Algorithm 12.

Algorithm 12 RandomBucketSearch.
Require: A list L = (v1,v2, . . .vN) ⊂ Sd−1 of N points. Parameters θ, θ1 ∈ (0, π/2)

and t ∈ Z+.
Ensure: A list of pairs (u,v) ∈ L× L with θ(u,v) ≤ θ.

1: function RandomBucketSearch(L; θ, θ1, t)
2: L′ ← ∅
3: for 1 ≤ i ≤ t do
4: Sample f uniformly on Sd−1

5: Lf ← L ∩ Cd−1(f, θ1)
6: for j such that vj ∈ Lf do
7: Lf,j ← {vk ∈ Lf : j < k ≤ N}
8: Search Lf,j for any number of u that satisfy θ(vj, u) ≤ θ
9: For each such u found, add (vj,u) to L′.

10: If |L′| ≥ N , return L′.
11: return L′

Description of Algorithm 12

The algorithm takes as input a list of N points uniformly distributed on the sphere. A
random bucket centre f is drawn uniformly from Sd−1 in each of the t iterations of the
outer loop. The choice of f defines a bucket in Line 5, Lf = L ∩ Cd−1(f, θ1), which is
of expected size N · Cd(θ1). For each vj ∈ Lf , the inner loop searches a set Lf,j ⊂ Lf

for neighbours of vj. The quantity |Lf,j| takes each value in {1, . . . , |Lf | − 1} as vj

ranges over Lf . The inner loop is identical to the loop in AllPairSearch apart from
indexing and the fact that elements of Lf are known to be in the cap Cd−1(f, θ1).

3The asymptotic quantum complexity is calculated, similarly to the classical complexity [ADH+19a],
using the asymptotic value of Wd(θ, θ1, θ1) given in [BDGL16]. Let N = 1/Cd(π/3) and t(θ1) =
1/Wd(π/3, θ1, θ1). The exponent 0.3013 . . . is obtained by minimising t(θ1)

(
N + (NCd(θ1))3/2

)
with

respect to θ1.
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A bucket Lf is expected to contain
(

N
2

)
· Pr[R̂θ ∧ B̂f,θ1 ] neighbouring pairs. Only a

1− η(k, n) fraction of these are expected to be identified by the popcount filter. When
θ1 > θ it is reasonable to assume that Pr[R̂θ∧ B̂f,θ1 ] ≈ Cd(θ) ·Wd(θ, θ1, θ1). We use this
approximation. The expected number of neighbouring pairs in Lf that are detected by
the popcount filter is therefore approximately

(
N
2

)
· (1− η(k, n)) · Cd(θ) ·Wd(θ, θ1, θ1).

When N = ℓ(k, n) this is N ·Wd(θ, θ1, θ1). If all detectable neighbours are found by
the search routine then the algorithm is list-size preserving when N = ℓ(k, n) and
t = 1/Wd(θ, θ1, θ1).

We can now derive optimal popcount parameters for various implementations of
Line 8.

Filtered search

Suppose that Line 8 of Algorithm 12 applies popcountk,n(vj, ·) to each element of Lf,j

and then applies an inner product test to each vector that passes. This implementation
applies popcount tests to all

(|Lf |
2

)
≈
(

N ·Cd(θ1)
2

)
pairs of elements in Lf and finds

all of the neighbouring pairs that pass. In the process it applies inner product
tests to a p(θ1, k, n) = Pr[P̂k,n | B̂f,θ1 ] fraction of pairs. The cost of populating
buckets in one iteration of Line 5 is c1 · ℓ(k, n). The cost of all searches on Line 8 is
(c1 · p(θ1, k, n) + c2(k, n)) ·

(
NCd(θ1)

2

)
. With the list-size preserving parameters N and t

given above, the optimal θ1, k, and n can be obtained by minimising the total cost

c1 · ℓ(k, n) + (c1 · p(θ1, k, n) + c2(k, n)) ·
(

ℓ(k,n)·Cd(θ1)
2

)
Wd(θ, θ1, θ1)

. (5.10)

Filtered quantum search

Suppose that Line 8 is implemented using the search routine Algorithm 11. We
take the predicate f to be θ(vj, ·) ≤ θ with domain Lf,j. We take the filter g to be
popcountk,n(vj, ·). Each call to the search routine returns at most one neighbour of vj .
To find all detectable neighbours of vj in Lf,j we must repeat the search several times.
Known neighbours of vj can be removed from Lf,j to avoid a coupon collector scenario.
Proposition 5.4.2 with P = |Lf,j| · Pr[P̂k,n | B̂f,θ1 ], Q = 1, and γ = 1 gives us that the
number of G(g) iterations in a search on a set of size |Lf,j| is q0 (|Lf,j|) = 1

2

√
|Lf,j|.

We consider an implementation of Line 8 in which searches are repeated until a
search fails to find a neighbour of vj. With N = ℓ(k, n), the set Lf is of expected
size ℓ(k, n) · Cd(θ1) and contains an expected ℓ(k, n) ·Wd(θ, θ1, θ1) neighbouring pairs
detectable by popcount. The set Lf,j is expected to contain a proportional fraction
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of these pairs. As such, we expect to call the search subroutine |Lf,j| · r(θ1, k, n) + 1
times in iteration j where

r(θ1, k, n) = N ·Wd(θ, θ1, θ1)(|Lf |
2

) ≈ 2Wd(θ, θ1, θ1)
ℓ(k, n) · Cd(θ1)2 .

The inner loop makes an expected

|Lf |−1∑
j=1

1
2
√
j (j · r(θ1, k, n) + 1)

applications of G(g). This admits an asymptotic expansion similar to that of (5.8).
If we assume that |Lf | takes its expected value of ℓ(k, n) · Cd(θ1), then the inner loop
makes

q3(θ1, k, n) · (ℓ(k, n) · Cd(θ1))3/2

applications of G(g), where

q3(θ1, k, n) = 2Wd(θ, θ1, θ1)
5Cd(θ1)

+ 1
3 .

Proposition 5.4.2 also provides an estimate for the rate at which reflections about
the true positives, Rf∩g are performed. With P and Q as above, we find that Rf∩g

is applied at roughly p(θ1, k, n) =
√

Pr[P̂k,n | B̂f,θ1 ] the rate of G(g) iterations. The
total cost of searching for neighbouring pairs in Lf is therefore

s(θ1, k, n) = (q1 · p(θ1, k, n) + q2(k, n)) · q3(θ1, k, n) ·
(
ℓ(k, n) · Cd(θ1)

)3/2
. (5.11)

Populating Lf has a cost of c1 · ℓ(k, n). With the list-size preserving t given above,
the optimal parameters θ1, k, and n can be obtained by minimising the total cost

c1 · ℓ(k, n) + s(θ1, k, n)
Wd(θ, θ1, θ1)

. (5.12)

5.7.3 ListDecodingSearch
The optimal choice of θ1 in RandomBucketSearch balances the cost of N · t cap
membership tests against the cost of all calls to the search subroutine. It can be seen
that reducing the cost of populating the buckets would allow us to choose a smaller θ1,
which would reduce the cost of searching within each bucket.
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Algorithm 13, ListDecodingSearch, is due to Becker, Ducas, Gama, and Laar-
hoven [BDGL16]. Its complexity is 2(0.292...+o(1))d classically and 2(0.265...+o(1))d quan-
tumly [Laa16, LMv13]. Like RandomBucketSearch, it computes a large number of
list-cap intersections. However, these list-cap intersections involve a structured list –
the list-cap intersections in RandomBucketSearch involve the inherently unstructured
input list.

Algorithm 13 ListDecodingSearch.
Require: A list L = (v1,v2, . . .vN) ⊂ Sd−1 of N . Parameters θ, θ1, θ2 ∈ (0, π/2) and

t ∈ Z+.
Ensure: A list of pairs (u,v) ∈ L× L with θ(u,v) ≤ θ.

1: function ListDecodingSearch(L; θ, θ1, θ2, t)
2: Sample a random product code F of size t
3: Initialise an empty list Lf for each f ∈ F
4: for 1 ≤ i ≤ N do
5: Fi ← F ∩ Cd−1(vi, θ2)
6: Add vi to Lf for each f in Fi

7: for 1 ≤ j < N do
8: Fj ← F ∩ Cd−1(vj, θ1)
9: for f ∈ Fj do

10: Lf,j ← {vk ∈ Lf : j < k ≤ N}
11: LF,j ←

∐
f∈Fj

Lf,j (disjoint union)
12: Search LF,j for any number of u that satisfy θ(vj,u) ≤ θ
13: For each such u found, add (vj,u) to L′.
14: If |L′| ≥ N , return L′.
15: return L′

Description of Algorithm 13

The algorithm first samples a t point random product code F . See [BDGL16] for
background on random product codes. In our analysis, we treat F as a list of uniformly
random points on Sd−1. A formal statement is given as [BDGL16, Theorem 5.1],
showing that such a heuristic is essentially true, up to a subexponential loss on the
probability of finding the intend pairs.

The first loop populates t buckets that have as centres the points f of F . Bucket
Lf stores elements of L that lie in the cap of angle θ2 about f . Each bucket is of
expected size N · Cd(θ2).
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The second loop iterates over vj ∈ L and searches for neighbours of vj in the
disjoint union of buckets with centres within an angle θ1 of vj . The set Fj constructed
on Line 8 contains an expected t · Cd(θ1) bucket centres. The disjoint union of
certain elements from the corresponding buckets, denoted LF,j, is of expected size
(N − j) · Cd(θ2) · t · Cd(θ1). We note that by simplifying and assuming the expected
size of LF,j is N ·Cd(θ2) · t ·Cd(θ1) the costs given below are never wrong by more than
a factor of two.

Suppose that w is a neighbour of vj, so θ(vj,w) ≤ θ. The measure of the wedge
formed by a cap of angle θ1 about vj and a cap of angle θ2 about w is at least
Wd(θ, θ1, θ2). Assuming that the points of a random product code are indistinguishable
from points sampled uniformly on the sphere, we expect at least t ·Wd(θ, θ1, θ2) of the
f ∈ Fj to contain w.

The second loop is executed N times. Iteration j searches LF,j for neighbours of
vj. With N = ℓ(k, n) there are expected to be N detectable neighbouring pairs in L.
With t = 1/Wd(θ, θ1, θ2) we expect that each neighbouring pair is of the form (vj,w)
with w ∈ LF,j.

The angles θ1, θ2 relate to the spherical cap parameters α, β respectively in [BDGL16],
and are such that θ1 ≥ θ2. Optimal time complexity is achieved when θ1 = θ2, the
setting we use in our estimates.

We have omitted the list decoding mechanism by which list-cap intersections are
computed. In our analysis we assume that the cost of a list-cap intersection such as
Fi = F ∩ Cd−1(vi, θ2) is proportional to |Fi|, but independent of |F |, i.e. we are in the
‘efficient list-decodability regime’ of [BDGL16, Section 5.1] and may take their parameter
m = log d. In particular, we assume that in the cost of O(log(d) · |Fi|) inner products
and |F |O(1/ log(d)) other operations, as stated in [BDGL16, Lemma 5.1], the first cost
dominates. In [BDGL16] these costs relate to O(m ·M · Cn(α)) and O(nB+mB logB)
respectively. We therefore assume the cost of forming Fi = F∩Cd−1(vi, θ2) is log(d)·|Fi|
inner product tests.

Filtered search

Suppose that the implementation of Line 12 of Algorithm 13 applies popcountk,n(vj, ·)
to each element of LF,j and then applies an inner product test to each vector that
passes. This implementation applies popcount tests to all N ·Cd(θ2) · t ·Cd(θ1) elements
of LF,j and finds all of the neighbours of vj that pass. Note that w ∈ LF,j implies that
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there exists some f ∈ F such that both vj and w lie in a cap of angle θ1 around f .
Inner product tests are applied to a p(θ1, k, n) ≥ Pr[P̂k,n | B̂f,θ1 ] fraction of all pairs.4

The cost of preparing all t buckets in the first loop is c1 ·N · t · Cd(θ2). The cost
of constructing the search spaces in the second loop is c1 ·N · t · Cd(θ1). Each search
has a cost of |LF,j| popcount tests and |LF,j| · p(θ1, k, n) inner product tests. With the
list-size preserving parameterisation given above, the optimal θ1, θ2, k, and n can be
obtained by minimising the total cost

ℓ(k, n)
Wd(θ, θ1, θ2)

(
c1 · Cd(θ1) + c1 · Cd(θ2)

+
(
c1 · p(θ1, k, n) + c2(k, n)

)
· ℓ(k, n) · Cd(θ1) · Cd(θ2)

)
. (5.13)

Filtered quantum search

Suppose that Line 12 is implemented using Algorithm 11. We take the predicate f to
be θ(vj, ·) ≤ θ with domain LF,j. We take the filter g to be popcountk,n(vj, ·). Each
call to the search routine returns at most one neighbour of vj. Known neighbours of
vj can be removed from LF,j to avoid a coupon collector scenario. Proposition 5.4.2
with P = |LF,j| · Pr[P̂k,n | B̂f,θ1 ], Q = 1, and γ = 1 gives us that the number of G(g)
iterations in a search on a set of size |LF,j| is q0 (|LF,j|) ≈ 1

2

√
|LF,j|.

Assuming that computing Fj = F ∩C(vj, θ1) has a cost of c1 |Fj|, the N iterations
of Lines 5 and 8 have a total cost of

c1 ·N · t · (Cd(θ1) + Cd(θ2)) (5.14)

Each search applies an expected

q0 (|LF,j|) ≈
1
2
√
N · Cd(θ1) · t · Cd(θ2)

applications of G(g). Reflections about the true positives, Rf∩g, are performed at
roughly p(θ1, k, n) =

√
Pr[P̂k,n | Bf,θ1 ] the rate of G(g) iterations. We consider an

implementation of Line 8 in which searches are repeated until a search fails to find a
neighbour of vj. With the list-size preserving parameters given above, we expect to
perform two filtered quantum searches per iteration of the second loop. The optimal

4The inequality is because w may be contained in multiple buckets, Lf,j .
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parameters can be obtained by minimising the total cost

ℓ(k, n)
c1

Cd(θ1) + Cd(θ2)
Wd(θ, θ1, θ2)

+ (q1p(θ1, k, n) + q2(k, n))

√√√√ℓ(k, n)Cd(θ1)Cd(θ2)
Wd(θ, θ1, θ2)

 .
5.8 Cost estimates

Our software numerically optimises the cost functions in Sections 5.7.1, 5.7.2 and 5.7.3
with respect to several classical and quantum cost metrics. The classical cost metrics
that we consider are: c (unit cost), which assigns unit cost to popcount; c (RAM),
which uses the classical circuits of Section 5.5. The quantum cost metrics that we
consider are: q (unit cost), which assigns unit cost to a Grover iteration; q (depth-width),
which assigns unit cost to every gate (including the identity) in the quantum circuits
of Section 5.5; q (gates), which assigns unit cost only to the non identity gates; q (T
count), which assigns unit cost only to T gates; and q (GE19), which is described in
Section 5.8.1.

We stress that our software and Figure 5.2 give estimates for the cost of each
algorithm. A similar figure for AllPairSearch can be found in [AGPS19, App. D].
These estimates are neither upper bounds nor lower bounds. As we mention above,
we have systematically omitted and underestimated some costs. For instance, we
have omitted the list decoding mechanism in our costing of Algorithm 13. We have
approximated other costs. For instance, the cost that we assign to an inner product
in Section 5.5.3. We have also not explored the entire optimisation space. We only
consider values of the popcount parameter n that are one less than a power of two.
Moreover, following the discussion of popcount parameters in Section 2.5.4, given that
we want k/n ≈ θ/π and we have θ = π/3, we set k = ⌊n/3⌋.

While we have omitted and approximated some costs, we have tried to ensure that
these omissions and approximations will ultimately lead our software to underestimate
of the total cost of the algorithm. For instance, if our inner product cost is accurate,
our optimisation procedure ensures that we satisfy Remark 5.4.2 and can ignore costs
relating to Rf∩g.

Our results are presented in Figure 5.2. We also plot the leading term of the
asymptotic complexity of the respective algorithms as these are routinely referred to
in the literature. The source code, and raw data for all considered cost metrics, is
available at https://github.com/jschanck/eprint-2019-1161.

https://github.com/jschanck/eprint-2019-1161
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Figure 5.2 Quantum (‘q’) and classical (‘c’) resource estimates for NNS search.
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5.8.1 Barriers to a quantum advantage

As expected, our results in Figure 5.2 indicate that quantum search provides a substan-
tial savings over classical search asymptotically. Our plots fully contain the range of
costs from 2128 to 2256 that are commonly thought to be cryptanalytically interesting.
Modest cost improvements are attained in this range.

The range of parameters in which a sieve could conceivably be run, however, is
much narrower. If one assumes a memory density of one petabyte per gram (253 bits
per gram), a 2140 bit memory would have a mass comparable with that of the Moon.
Supposing that a 2-sieve stores 1/Cd(π/3) vectors, and that each vector is log2(d) bits,
an adversary with a 2140 bit memory could only run a sieve in dimension 608 or lower.
The potential cost improvement in dimension 608 is smaller than the potential cost
improvement in, say, dimension 1000. The potential cost improvement that can be
actualised is likely smaller still.

We expect that our cost estimates are underestimates. However, the quantum
advantage could grow, shrink, or even be eliminated if our underestimates do not affect
quantum and classical costs equally. In this section, we list several reasons to think
that the advantage might shrink or disappear.

Error correction overhead

By using the depth-width metric for quantum circuits, we assume that dispatching a
logical gate to a logical qubit costs one RAM instruction. In practice, however, the
cost depends on the error correcting code that is used for logical qubits. This cost may
be significant.

Gidney and Ekerå have estimated the resources required to factor a 2048 bit RSA
modulus using Shor’s algorithm on a surface code based quantum computer [GE21].
Under a plausible assumption on the physical qubit error rate, they calculate that
a factoring circuit with 212.6 logical qubits and depth 231 requires a distance δ = 27
surface code. Each logical qubit is encoded in 2 δ2 = 1458 physical qubits, and the
error tracking routine applies at least δ2 = 729 bit instructions, per logical qubit per
layer of logical circuit depth, to read its input.

In general, a circuit of depth D and width W requires a distance δ = Θ(log(DW ))
surface code. To perform a single logical gate, classical control hardware dispatches
several instructions to each of the Θ(log2(DW )) physical qubits. The classical control
hardware also performs a non trivial error tracking routine between logical gates, which
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takes measurement results from half of the physical qubits as input.5 Consequently,
the cost of surface code computation grows like Ω(DW log2(DW )).

We have adapted scripts provided by Gidney and Ekerå to estimate δ for our
circuits. The last plot of Figure 5.2 shows the cost of ListDecodingSearch when every
logical gate (including the identity) is assigned a cost of δ2. For ListDecodingSearch
the cost in the Gidney–Ekerå metric grows from 2128 to 2256 between dimensions 352
and 824, and we calculate a 2128 bit memory is sufficient to run in dimension 544. We
find that the advantage of quantum search over classical search is a factor of 21.8 in
dimension 352, a factor of 27.1 in dimension 544, and a factor of 214.4 in dimension
824. Compare this with the naïve estimate for the advantage, 20.292d−0.265d, which is a
factor of 29.5 in dimension 352, a factor of 214.7 in dimension 544, and a factor of 222.5

in dimension 824.
One should also note that error correction for the surface code sets a natural clock

speed, which Gidney and Ekerå estimate at one cycle per microsecond. Gidney and
Ekerå estimate that their factoring circuit, the cost of which is dominated by a single
modular exponentiation, would take 7.44 hours to run. This additional overhead in
terms of time is not refelected in the instruction count.

On the positive side, the cost estimate used in Figure 5.2 is specific to the surface code
architecture. Significant improvements may be possible. Gottesman has shown that
an overhead of Θ(1) physical qubits per logical qubit is theoretically possible [Got14].
Whether this technique offers lower overhead than the surface code in practice is yet
to be seen.

Dependence on qRAM

Quantum accessible classical memories are used in many quantum algorithms. For
example, they are used in black box search algorithms [Gro96], in collision finding
algorithms [BHT97], and in some algorithms for the dihedral hidden subgroup prob-
lem [Kup13]. The use of qRAM is not without controversy [Ber09, GR04]. Previous
work on quantum lattice sieve algorithms [Laa16, LMv13] has noted that constructing
practical qRAM seems challenging.

Morally, looking up an ℓ bit value in a table with 2n entries should have a cost
that grows at least with n+ ℓ. Recent results [AGJO+15, BGB+18, MGM20] indicate
that realistic implementations of qRAM have costs that grow much more quickly
than this. When ancillary qubits are kept to a minimum, the best known Clifford+T

5For a thorough introduction to how logical gates are performed on the surface code see [FMMC12],
and for more advanced techniques see e.g. [HFDM12].
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implementation of a qRAM has a T count of 4 · (2n − 1) [BGB+18]. While it is
conceivable that a qRAM could be constructed at lower cost on a different architecture,
as has been suggested in [GLM08], a unit cost qRAM gate should be seen as a powerful,
and potentially unrealistic, resource.

One can argue that classical RAMs also have a large cost. This is not to say that
classical and quantum RAMs have the same cost. A qRAM can be used to construct
an arbitrary superposition over the elements of a memory. This process relies on
quantum interference and necessarily takes as long as a worst case memory access time.
This is in contrast with classical RAM, where careful programming and attention to a
computer’s caches can mask the fact that accessing an N bit memory laid out in a
3-dimensional space necessarily takes Ω(N1/3) time.

If the cost of a qRAM gate is equivalent to Θ(N1/3) Clifford+T gates, then the
asymptotic cost of quantum AllPair search is 2(0.380...+o(1))d, the asymptotic cost of
quantum RandomBucket search is 2(0.336...+o(1))d, and the asymptotic cost of quantum
ListDecoding search is 2(0.284...+o(1))d. If memory is constrained to two dimensions, and
qRAM costs Θ(N1/2) Clifford+T gates, the quantum asymptotics match the classical
RAM asymptotics.

Quantum sampling routines

We have assumed that D in Section 5.5.1 (the uniform sampling subroutine in Grover’s
algorithm) is implemented using parallel H gates. This is the smallest possible circuit
that might implement D, and may be a significant underestimate. In Line 12 of
Algorithm 13 we must construct a superposition (ideally uniform) over {k : vk ∈ LF,j}.
The set LF,j is presented as a disjoint union of smaller sets. Copying the elements of
these smaller sets to a flat array would be more expensive than our estimate for the
cost of search. While we do not expect the cost of sampling near uniformly from LF,j

to be large, it could easily exceed the cost of popcount.

5.8.2 Relevance to SVP

The NNS algorithms that we have analysed are closely related to lattice sieves for
SVP. While the asymptotic cost of NNS algorithms are often used as a proxy for the
asymptotic cost of solving SVP, we caution the reader against making this comparison
in a non asymptotic setting. On the one hand, our estimates might lead one to
underestimate the cost of solving SVP:
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• the costs given in Figure 5.2 represent one iteration of NNS within a sieve, while
sieve algorithms make poly(d) iterations;

• the costs given in Figure 5.2 do not account for all of the subroutines within each
NNS algorithm.

On the other hand, our estimates might lead one to overestimate the cost of solving
SVP:

• it is a mistake to conflate the cost of NNS in dimension d with the cost of SVP
in dimension d. The ‘dimensions for free’ technique of [Duc18a] can be used to
solve SVP in dimension d by calling an NNS routine polynomially many times in
dimension d′ < d. Our analysis seamlessly applies to dimension d′;

• there are heuristics that exploit structure present in applications to SVP not
captured in our general setting, e.g. the vector space structure allowing both ±u
to be tested for the cost of u, and keeping the vectors sorted by length.

5.9 Conclusion

Since the publication of this work the software we provide, and in particular the gate
count estimates for our sieving routines, have been incorporated into the analysis
of several finalists and alternative finalists of the NIST post quantum cryptography
standardisation process. In particular [SAB+20, DKR+20, NAB+20] use the classical
gate count for the [BDGL16] sieve to provide a secondary security analysis outside of
the ‘CoreSVP’ model [ADPS16, Sec. 6.1]. In the CoreSVP model BKZ-β reduction
is assumed to require a single β dimensional SVP oracle call, and this oracle call is
assumed to cost 20.292d in the classical case, using the best classical complexity achieved
by [BDGL16]. In the call for proposals NIST suggest that submissions are compared
to AES [NIS17, Sec. 4.A.5]. In particular, for the lowest security level they require that
submissions be as hard as key search on AES-128. They estimate that this procedure
costs 2143 classical gates, and the gate counts given in this chapter allow a careful
estimation of BKZ based attacks on lattice submissions, see e.g. [SAB+20, Sec. 5.2].

The classical and quantum gate counts given in this work have also been used
alongside the simulation based LWE estimator,6 an implementation of [DDGR20],
in [HKP+21]. The authors of this work describe post quantum continuous group key

6https://github.com/lducas/leaky-LWE-Estimator/
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agreement protocols that give out many LWE samples and are parametrised to meet
NIST Level I security.

The sieving techniques considered here are not exhaustive. While it would be rela-
tively easy to adapt our software to other 2-sieves, like the cross polytope sieve [BL16],
future work might consider k-sieves such as [BLS16, KMPM19a].

Future work might also address the barriers to a quantum advantage discussed in
Section 5.8.1. Two additional barriers are worth mentioning here. First, as Grover
search does not parallelise well, one might consider depth restrictions for classical and
quantum circuits. Second, our estimates might be refined by including some of the
classical subroutines, present in both the classical and quantum variants of the same
sieve, that we have ignored, e.g. the cost of sampling lattice vectors or the cost of list-
decoding in Algorithm 13. Any cost increase will reduce the range of cryptanalytically
relevant dimensions, giving fewer dimensions to overcome quantum overheads.

Finally, our estimates should be checked against experiments. Our analysis of
Algorithm 12 recommends a database of size N(d) ≈ 2/Cd(π/3), while the largest
sieving experiments to date [ADH+19a] runs Algorithm 12 with a database of size
N ′(d) = 3.2 · 20.2075d up to dimension d = 127. There is a factor of 8 gap between
N ′(127) and N(127). A factor of two can be explained by the fact that [ADH+19a]
treats each database entry u as ±u. It is possible that the remaining factor of four
can be explained by the other heuristics used in [ADH+19a]. As d increases, N(d) and
N ′(d) continue to diverge, so future work could attempt to determine more accurately
the required list size.
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