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Abstract

Over the past decade, lattice-based cryptography has emerged as one of the most
promising candidates for post-quantum public-key cryptography. For most current
lattice-based schemes, one can recover the secret key by solving a corresponding
instance of the unique Shortest Vector Problem (uSVP), the problem of finding a
shortest non-zero vector in a lattice which is unusually short.

This work is concerned with the concrete hardness of the uSVP. In particular, we
study the uSVP in general as well as instances of the problem with particularly small
or sparse short vectors, which are used in cryptographic constructions to increase
their efficiency.

We study solving the uSVP in general via lattice reduction, more precisely, the
Block-wise Korkine-Zolotarev (BKZ) algorithm. In order to solve an instance of the
uSVP via BKZ, the applied block size, which specifies the BKZ algorithm, needs to
be sufficiently large. However, a larger block size results in higher runtimes of the
algorithm. It is therefore of utmost interest to determine the minimal block size that
guarantees the success of solving the uSVP via BKZ. In this thesis, we provide a
theoretical and experimental validation of a success condition for BKZ when solving
the uSVP which can be used to determine the minimal required block size. We
further study the practical implications of using so-called sparsification techniques in
combination with the above approach.

With respect to uSVP instances with particularly small or sparse short vectors,
we investigate so-called hybrid attacks. We first adapt the “hybrid lattice reduction
and meet-in-the-middle attack” (or short: the hybrid attack) by Howgrave-Graham
on the NTRU encryption scheme to the uSVP. Due to this adaption, the attack can
be applied to a larger class of lattice-based cryptosystems. In addition, we enhance
the runtime analysis of the attack, e.g., by an explicit calculation of the involved
success probabilities. As a next step, we improve the hybrid attack in two directions
as described in the following.

To reflect the potential of a modern attacker on classical computers, we show how
to parallelize the attack. We show that our parallel version of the hybrid attack
scales well within realistic parameter ranges. Our theoretical analysis is supported
by practical experiments, using our implementation of the parallel hybrid attack
which employs Open Multi-Processing and the Message Passing Interface.
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Abstract

To reflect the power of a potential future attacker who has access to a large-scale
quantum computer, we develop a quantum version of the hybrid attack which replaces
the classical meet-in-the-middle search by a quantum search. Not only is the quantum
hybrid attack faster than its classical counterpart, but also applicable to a wider
range of uSVP instances (and hence to a larger number of lattice-based schemes) as
it uses a quantum search which is sensitive to the distribution on the search space.

Finally, we demonstrate the practical relevance of our results by using the tech-
niques developed in this thesis to evaluate the concrete security levels of the lattice-
based schemes submitted to the US National Institute of Standards and Technology’s
process of standardizing post-quantum public-key cryptography.
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1 Introduction

Public-key cryptography. In our modern world, billions of internet connections are
protected by Public-Key Cryptography (PKC) every day. To guarantee the effective-
ness of this protection, PKC is required to be secure against attacks. Currently, the
security of virtually all PKC algorithms that are used in practice today is based on
number-theoretic problems such as the integer factorization problem or the discrete
logarithm problem. However, as shown by Peter Shor [Sho97], the integer factoriza-
tion problem and the discrete logarithm problem can be solved in polynomial time
on quantum computers, rendering virtually all of today’s PKC algorithms insecure in
a world where large-scale quantum computers exist. While currently only small-scale
quantum computers exist, recent advances in technology and engineering suggest
that it is not implausible that a large-scale quantum computer which can break
current PKC algorithms can be built within the next one or two decades [Mos15].

Post-quantum and lattice-based cryptography. This threat has resulted in a
search for alternative PKC algorithms that withstand quantum attacks, called post-
quantum cryptography [BBD09, JF11]. The urgency of developing and deploying
post-quantum PKC has been recognized by the US National Institute of Standards
and Technology (NIST) in 2015, when they inidiated the process of standardizing
post-quantum public-key encryption schemes, key encapsulation mechanisms, and
digital signature algorithms, resulting in a call for proposals in 2016 [Nat16]. The
received submissions can be categorized into different classes, including lattice-based,
hash-based, code-based, isogeny-based, and multivariate cryptography. With roughly
a third of the submissions, lattice-based cryptography is the largest of the above
categories. The history of lattice-based cryptography [Pei16a] started over a decade
ago and since then, it has developed into one of the most promising candidates for
post-quantum cryptography due to its high efficiency and wealth of applications,
ranging from basic PKC algorithms such as [HPS98, Reg09, LP11, ADPS16, BG14a]
to cryptographic primitives with enhanced functionality such as fully homomorphic
encryption [BV11, GSW13] or obfuscation of some families of circuits [BVWW16].

Cryptanalysis of lattice-based cryptography. The security of lattice-based cryp-
tosystems is based on the presumed hardness of lattice problems such as the Learning
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1 Introduction

With Errors (LWE) problem, the Short Integer Solution (SIS) problem, their cor-
responding ring or module variants, or the NTRU problem. In more detail, if a
lattice-based scheme is provided with a security reduction, being able to break
the scheme (e.g., recover the secret key) implies that one can efficiently solve the
underlying lattice problem. To analyze the security of lattice-based schemes, more
concretely to determine their security levels, it is therefore important to analyze the
hardness of the above-mentioned lattice problems arising in cryptography. Solving
such lattice problems, and hence breaking lattice-based schemes, can typically be
reduced to solving an instance of the unique Shortest Vector Problem (uSVP), the
problem of finding an unusually short shortest non-zero vector in a lattice. For
instance, in the case of LWE this can be done via Kannan’s [Kan87] or Bai and
Galbraith’s [BG14b] embedding, which is often referred to as the primal (lattice)
attack. One of the most common and efficient general approaches to solve uSVP is
via lattice reduction [LLL82, Sch87, GN08a, HPS11, CN11, MW16]. In addition to
studying this general approach, it is also important to consider specific attacks for
special instantiations of the uSVP, as argued in the following. In order to increase
the efficiency of lattice-based PKC, in particular in the context of fully homomorphic
encryption, variants of lattice problems with small and/or sparse short vectors have
been introduced. Using such instances in cryptographic constructions can reduce the
execution time (e.g., due to faster arithmetic or sampling algorithms) and key sizes.
These instances, however, might be vulnerable to specialized attacks. For instance, if
the shortest non-zero vector of a uSVP instance is particularly small and/or sparse,
one can combine lattice reduction with combinatorial techniques in so-called hybrid
attacks.

1.1 Contribution and Organization

In this work, we answer the following research questions. What is the cost of solving
the uSVP using lattice reduction? How can one decrease this cost for special instances
of the uSVP by combining lattice reduction with combinatorial techniques? Can
one further improve such algorithms by using parallel or quantum computing? And
last but not least, how do the developed techniques influence security estimates for
cryptographic schemes?

We focus on solving the uSVP, as most cryptographic lattice problems can be
transformed into a uSVP instance, and apply our results to various LWE- and
NTRU-based cryptosystems. We consider algorithms to solve uSVP instances in
general as well as hybrid algorithms that are designed to perform better on uSVP
instances with small and/or sparse short vectors.

To study the uSVP in general, we examine the cost of the Block-wise Korkine-
Zolotarev (BKZ) [Sch87] or BKZ 2.0 [CN11] lattice reduction algorithms for solving
the uSVP. In more detail, the BKZ algorithm is specified by a block size, which is the

2



1.1 Contribution and Organization

main factor in determining the algorithm’s runtime. To be more precise, applying a
bigger block size results in a higher runtime of the algorithm and current research
suggests that the runtime increases exponentially with the block size. It is therefore
desirable to apply a block size which is as small as possible. However, using a block
size which is too small, BKZ is not expected to be successful in solving the uSVP. In
order to solve the uSVP as efficiently as possible, it is therefore essential to determine
the minimal block size that guarantees success. In the current literature, there
exist two different estimates to determine the minimal block size, which we call the
2008 estimate [GN08b] and the 2016 estimate [ADPS16], predicting vastly different
results. The 2008 estimate has been used for years to estimate the security of many
lattice-based cryptosystems (e.g., [BG14a, CHK+17, CKLS16a, CLP17, ABB+17]),
but its validity is based on experiments in rather small dimensions, which may not be
representative for cryptographic applications. The recently introduced 2016 estimate
on the other hand has not yet been examined at all. In this work, we provide a
detailed theoretical and experimental analysis of the 2016 estimate. Under standard
lattice assumptions, we show that if the block size satisfies the 2016 estimate, BKZ
recovers a projection of the uSVP solution from which the so-called size reduction
subroutine recovers the entire solution. We further provide practical experiments
performed in medium to large block sizes. Our results validate the 2016 estimate,
answering the important question about the minimal block size required to solve
the uSVP via BKZ. In addition, we apply our results to show that several security
estimates in the literature based on the old estimate need to be revised.

Using our above-mentioned results, we investigate the practical implications of using
sparsification techniques [Kho03, Kho04, DK13, DRS14, SD16] when embedding
lattice problems into uSVP instances. The use of sparsification techniques has
been proposed in the context of theoretical reductions from lattice problems to the
uSVP [BSW16], but has not yet been studied from a practical, cryptanalytic point
of view. We show that, while these techniques yield improved theoretical reductions,
in general they do not lead to better attacks in practice. To draw this conclusion, we
show that for reasonable parameters the expected speedup gained by sparsification
techniques under the 2016 estimate is not sufficient to compensate for the small
success probability introduced by these techniques.

After having considered these general approaches to solve the uSVP, we focus
on hybrid attacks designed to perform better on small and/or sparse instances of
the uSVP. We first adapt the “hybrid lattice reduction and meet-in-the-middle
attack” [HG07] (short: the hybrid attack) on the NTRU encryption scheme [HPS98]
to a more general framework which applies to solving the uSVP, and hence most
lattice-based cryptosystems. The hybrid attack provides a trade-off between lattice
techniques such as lattice reduction and combinatorial techniques, i.e., a meet-in-
the-middle search, and is currently considered the best attack on NTRU [HG07,
HHGP+07, HHHGW09, HPS+17, Sch15]. Besides adapting the attack to a uSVP
framework, which enables to apply the attack to a broader class of cryptosystems,

3



1 Introduction

our main contribution is to provide an improved analysis of the hybrid attack. While
previous analyses suffer from using unnecessary and oversimplifying assumptions, such
as ignoring or simplifying success probabilities, our analysis is based on reasonable
assumptions. One of the most important of our improvements is an explicit calculation
of the collision-finding probabilities in the meet-in-the-middle search. Furthermore,
we apply our improved analysis to reevaluate the security levels of several lattice-
based cryptosystems against the hybrid attack. We compare our results to the 2016
estimate to showcase the improvement of the hybrid attack over a generic lattice
attack in the case of particularly small and/or sparse short vectors.

As a next step, in order to reflect the full potential of a powerful attacker on classical
computers, we show how to parallelize the hybrid attack. We introduce parallelization
to the attack in three different ways. First, we run multiple randomized attacks in
parallel to reduce the runtime of the entire attack. Second, we perform the meet-in-
the-middle search in parallel to speed up the search phase of the attack. Third, the
BKZ precomputation can potentially be run in parallel if a parallel implementation of
BKZ is available. Our theoretical analysis shows that our parallel hybrid attack scales
well withing realistic parameter ranges. We support our theoretical considerations
with practical experiments, employing OpenMP and the Message Passing Interface
in our implementation. Our experiments confirm that running multiple instances of
the attacks in parallel significantly reduces the overall runtime and show that our
parallel meet-in-the-middle search scales very well.

Next, we develop a quantum version of the hybrid attack, using a generalization
of Grover’s quantum search algorithm [Gro96] by Brassard et al. [BHMT02]. Our
quantum hybrid attack is not only faster and more versatile (i.e., applicable to
a wider range of lattice-based cryptosystems) than its classical counterpart, but
also eliminates the problems of large memory requirements and low collision-finding
probabilities in the classical meet-in-the-middle search. We show how to minimize
the runtime of the quantum hybrid attack by optimizing the quantum search and the
attack parameters. In addition, we discuss techniques that can be used to further
improve the attack. We demonstrate our improvements by applying the quantum
hybrid attack to various uSVP instances. We compare our results to the classical
hybrid attack and the general approach of solving the uSVP using lattice reduction
under the 2016 estimate, highlighting the improvements of the quantum hybrid
attack for small and/or sparse instances of the uSVP.

Finally, we analyze the security of the lattice-based schemes accepted to NIST’s
standardization process, highlighting the importance of this work. In their submis-
sions, the authors were asked to estimate the security of their schemes. However, the
applied methods among the different submissions are not uniform, making it hard to
compare the security levels of different schemes. We provide security estimates for
all LWE- or NTRU-based NIST candidates against the primal attack under the 2016
estimate, using all proposed cost models for lattice reduction. This enables a fair
comparison of the security levels of the different schemes. In addition, we analyze

4



1.1 Contribution and Organization

selected schemes with respect to the quantum hybrid attack, which, depending on
the applied cost model for lattice reduction, yields significantly lower costs.

Organization. This thesis is structured as follows.

Chapter 2: this chapter presents all the necessary notation and mathematical back-
ground on lattices, lattice problems, and lattice algorithms and summarizes
some related work.

Chapter 3: this chapter provides theoretical and experimental evidence for the
validity of a recently proposed [ADPS16] (but not yet studied) success condition
for solving the uSVP using the BKZ lattice reduction algorithm. This success
condition determines the security level of most lattice-based cryptosystems.

Chapter 4: this chapter studies the practical influence of using sparsification tech-
niques when embedding lattice problems into an instance of uSVP as suggested
in the context of a theoretical reduction in [BSW16].

Chapter 5: this chapter provides a uSVP framework for the hybrid lattice reduction
and meet-in-the-middle attack [HG07] and an improved runtime analysis of the
attack which can be used to derive security estimates for several lattice-based
cryptosystems.

Chapter 6: this chapter shows how the hybrid attack can be parallelized and exam-
ines the obtained speedup both theoretically and experimentally.

Chapter 7: this chapter develops an improved quantum version of the hybrid attack
which compared to its classical counterpart is faster and applicable to a wider
class of uSVP instances.

Chapter 8: this chapter analyzes the security of lattice-based schemes accepted to
NIST’s standardization process [Nat16] with respect to the primal attack under
the 2016 estimate and the quantum hybrid attack.

Chapter 9: this chapter concludes this work and states some research questions that
remain open for future work.
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2 Background

In this chapter, we provide the background necessary for this work, following and
unifying the preliminaries of the author’s publications used in this thesis.

2.1 Notation

Throughout this work, vectors are denoted in bold lowercase letters, e.g., a, and
matrices in bold uppercase letters, e.g., A. Polynomials are written in normal lower
case letters, e.g., a. We frequently identify polynomials a =

∑n
i=0 aix

i with their
coefficient vectors a = (a0, . . . , an), indicated by using the corresponding bold letter.
We use the notation Zq for the quotient ring Z/qZ. By a mod q we indicate that each
component of the vector is reduced modulo q to lie in the interval [−

⌈
q
2

⌉
, q

2
). Let

n, q ∈ N, f ∈ Z[x] be a polynomial of degree n, and Rq = Zq[x]/(f). We define the
rotation matrix of a polynomial a ∈ Rq as rot(a) = (a, ax, ax2, . . . , axn−1) ∈ Zn×nq ,
where axi denotes the coefficient vector of the polynomial axi. Then for a, b ∈ Rq, the
matrix-vector product rot(a) · b mod q corresponds to the product of polynomials
ab ∈ Rq.

We write 〈·, ·〉 for the inner products and · for matrix-vector products. By abuse
of notation we consider vectors to be row resp. column vectors depending on context,
such that v ·A and may A · v are meaningful, and omit indicating that vectors are
transposed. We write Im for the m×m identity matrix over whichever base ring is
implied from context. We write 0m×n for the m×n all zero matrix. If the dimensions
are clear from the context, we may omit the subscripts. We use the abbreviation
log(·) for log2(·). We further write ‖·‖ instead of ‖·‖2 for the Euclidean norm. For
a vector v, its Hamming weight is defined as the number of non-zero entries. For
N ∈ N0 and m1, . . . ,mk ∈ N0 with m1 + . . .+mk = N the multinomial coefficient is
defined as (

N
m1, . . . ,mk

)
=

N !

m1! · . . . ·mk!
.

For a probability distribution X, we write x
$← X if an element x is sampled

according to X. For every element a in the support of X, we write xa := Pr[a =

b|b $← X]. We will specifically refer to the discrete Gaussian distribution Dσ as the

7
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distribution such that

∀y ∈ Z : Pr[x = y|x $← Dσ] ∼ exp

(
− y2

2σ2

)
.

For a probabilistic algorithm A, x
$← A assigns the outcome of one (random) run of

A to x.

2.2 Lattices and Lattice Bases

In this work, we use the following definition of lattices. A discrete additive subgroup
of Rd for some d ∈ N is called a lattice. In this case, d is called the dimension of the
lattice. Let d be a positive integer. For a set of vectors B = {b1, ...,bn} ⊂ Rd, the
lattice spanned by B is defined as

Λ(B) =

{
x ∈ Rd | x =

n∑
i=1

αibi for αi ∈ Z

}
.

Let Λ ⊂ Rd be a lattice. A set of vectors B = {b1, ...,bn} ⊂ Rd is called a basis
of Λ if B is R-linearly independent and Λ = Λ(B). Abusing notation, we identify
lattice bases with matrices and vice versa by taking the basis vectors as the columns
of the matrix. The number of vectors in a basis of a lattice is called the rank of
the lattice. A lattice Λ ⊂ Rd is called a full-rank lattice if its rank is equal to the
dimension d. In this case, every basis matrix of Λ is a square d× d matrix. For a
point t ∈ Rd and a lattice Λ ⊂ Rd we define the distance from t to the lattice as
dist(t,Λ) = minx∈Λ ‖t− x‖. Note that the minimum exists as a lattice is a discrete
set. For a lattice basis B = {b1, ...,bn} the corresponding Gram-Schmidt basis
B∗ = {b∗1, ...,b∗n} is defined as follows.

• Set b∗1 = b1.

• For j = 2, . . . , n, iteratively set

b∗j = πj(bj) = bj −
j−1∑
k=1

〈bj,b∗k〉
〈b∗k,b∗k〉

· b∗k.

Let q be a positive integer. An integer lattice Λ ⊂ Zd that contains qZd is called a
q-ary lattice. Note that every q-ary lattice is full-rank as it contains the full-rank
lattice qZd. For a matrix A ∈ Zd×nq , we define the q-ary lattice spanned by A as

Λq(A) := {v ∈ Zd | ∃w ∈ Zn : Aw = v mod q}.
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For a lattice basis B = {b1, . . . ,bn} ⊂ Rd of a rank-n lattice its (centered) funda-
mental parallelepiped is defined as

P(B) =

{
n∑
i=1

αibi | −1/2 ≤ αi < 1/2 for all i ∈ {1, . . . , n}

}
.

The determinant det(Λ) of a lattice Λ ⊂ Rd of rank n, also called its (co-)volume, is
defined as the n-dimensional volume of the fundamental parallelepiped of a basis
of Λ, i.e., det(Λ) =

√
det(BTB). Note that the determinant of the lattice is well

defined, i.e., it is independent of the basis. For a full-rank lattice Λ of rank d, the
determinant of the lattice det(Λ) is the absolute value of the determinant of any basis
B and it holds that det(Λ) =

∏d
i=1 ‖b∗i ‖. For two full-rank lattices Λ′ ⊂ Λ it holds

that [Λ : Λ′] = det(Λ′)/ det(Λ). In particular, if Λ′ ⊂ Λ ⊂ Zd are full-rank integer
lattices it holds that det(Λ) | det(Λ′). We write λi(Λ) for Minkowski’s successive
minima, i.e., the radius of the smallest ball centered around zero containing i linearly
independent lattice vectors. In particular, the length of the shortest non-zero vectors
of a lattice Λ is denoted by λ1(Λ). For a full-rank lattice Λ ⊂ Rd the Gaussian
Heuristic predicts

λ1(Λ) ≈
√

d

2πe
det(Λ)1/d.

For a lattice basis B = {b1, . . . ,bn} and for i ∈ {1, . . . , n} let πB,i(v) denote the
orthogonal projection of v onto {b1, . . . ,bi−1}, where πB,1 is the identity. We extend
the notation to sets of vectors in the natural way. Since usually the basis B is clear
from the context, we omit it in the notation and simply write πi instead of πB,i. A
basis is called size reduced if it satisfies the following definition. An algorithm that
size reduced a basis is recalled in Algorithm 1.

Definition 2.1. Let B be a basis, b∗i its Gram-Schmidt vectors and

µi,j =
〈
bi,b

∗
j

〉
/
〈
b∗j ,b

∗
j

〉
.

Then the basis B is called size reduced if |µi,j| ≤ 1/2 for 1 ≤ j ≤ i ≤ n.

Algorithm 1: Size reduction

Input : lattice basis B, top index i, start index 1 ≤ s < i
1 for j from i− 1 to s do
2 µij ←

〈
bi,b

∗
j

〉
/
〈
b∗j ,b

∗
j

〉
;

3 bi ← bi − bµijebj;
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2.3 Lattice Problems

Lattice-based cryptography is based on the presumed hardness of computational
problems in lattices. In the following we describe the important lattice problems
relevant for this work.

2.3.1 Shortest Vector Problems

One of the most fundamental and most studied lattice problems is the Shortest
Vector Problem (SVP).

Definition 2.2. (SVP) Given a lattice basis B, the task is to find a shortest non-zero
vector in the lattice Λ(B).

An important variant of the SVP in the context of lattice-based cryptography is
the unique Shortest Vector Problem (uSVP), where one is given the promise that the
shortest non-zero vector is uniquely short.

Definition 2.3. (uSVPγ) Given a gap γ ≥ 1 and a lattice Λ with λ2(Λ) ≥ γλ1(Λ),
find a shortest non-zero lattice vector in Λ.

2.3.2 Closest Vector Problems

Besides finding short vectors in lattices, an important computational problem is to
find lattice vectors that are close to some target vectors in space. This is called the
Closest Vector Problem (CVP).

Definition 2.4. (CVP) Given a full-rank lattice Λ ⊂ Rd and a target point t ∈ Rd,
find a lattice vector x ∈ Λ with ‖t− x‖ = dist(t,Λ).

A variant of the closest vector problem relevant in lattice-based cryptography it
the Bounded Distance Decoding (BDD) problem.

Definition 2.5. (BDDα) Given 0 < α ≤ 1/2, a full-rank lattice Λ ⊂ Rd, and a
target point t ∈ Rd with dist(t,Λ) < αλ1(Λ), find the unique lattice vector v ∈ Λ
such that ‖t− v‖ < αλ1(Λ).

2.3.3 Learning with Errors

The Learning With Errors (LWE) problem is defined as follows.

Definition 2.6 (LWE [Reg09]). Let n, q be positive integers, χ be a probability
distribution on Z and s be a secret vector in Znq . We denote by Ls,χ the probability
distribution on Znq × Zq obtained by choosing a ∈ Znq uniformly at random, choosing

10
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e ∈ Z according to χ and considering it in Zq, and returning (a, b) = (a, 〈a, s〉+ e) ∈
Znq × Zq.
Decision-LWE is the problem of, given (arbitrarily many) pairs (ai, bi) ∈ Znq ×Zq that
are either all sampled independently according to Ls,χ or the uniform distribution on
Znq × Zq, deciding which is the case.
Search-LWE is the problem of recovering s from (arbitrarily many) independent
samples (ai, bi) = (ai, 〈ai, s〉+ ei) ∈ Znq × Zq sampled according to Ls,χ.

We may write LWE instances in matrix form (A,b = As + e mod q), where A ∈
Zm×nq , b ∈ Zmq and rows correspond to samples (ai, bi) for some number of samples
m. In many instantiations, χ is a discrete Gaussian distribution with standard
deviation σ. In the discrete Gaussian case with standard deviation σ, we expect the
error vector e to have length approximately ‖e‖ ≈

√
mσ. Note that the attacker

can choose a number of samples that is optimal for the applied attack. In typical
cryptographic settings, however, the number of provided samples is not unlimited
but bounded, e.g., by the secret dimension n or by 2n. In this case, the bound needs
to be respected when an attacker chooses their number of samples.

Related problems. Based on the concept of LWE, related problems with additional
algebraic structure have been proposed. In particular, in the Ring-LWE [SSTX09,
LPR10] (RLWE) problem polynomials s, ai and ei (where s and ei are “short”) are
drawn from a ring of the form Rq = Zq[x]/(φ) for some polynomial φ of degree
n. Then, given a list of Ring-LWE samples {(ai, ai · s+ ei)}mi=1, the Search-RLWE
problem is to recover s and the Decision-RLWE problem is to distinguish the list of
samples from a list uniformly sampled from Rq ×Rq. More generally, in the Module-
LWE [LS15] (MLWE) problem vectors (of polynomials) ai, s and polynomials ei are
drawn from Rk

q and Rq respectively. Search-MLWE is the problem of recovering s
from a set {(ai, 〈ai, s〉+ ei)}mi=1, Decision-MLWE is the problem of distinguishing
such a set from a set uniformly sampled from Rk

q ×Rq.

One can view RLWE and MLWE instances as LWE instances by interpreting the
coefficients of elements in Rq as vectors in Znq and ignoring the algebraic structure of
Rq. This identification with LWE is the standard approach for estimating the concrete
hardness of solving RLWE and MLWE due to the absence of known cryptanalytic
techniques exploiting algebraic structure.

One can also define LWE-like problems by replacing the addition of the error term
by a deterministic rounding process. For instance, the Learning With Rounding

(LWR) problem is of the form
(
a, b :=

⌊
p
q
〈a, s〉

⌉)
∈ Znq × Zp for some moduli p and

q. We can interpret such an instance as an LWE instance by multiplying the second
component by q/p and assuming that q/p · b = 〈a, s〉+ e, where e is uniformly chosen
from the interval (−q/2p, q/2p] [BPR12]. The resulting variance of this error term

can then be calculated as (q/p)2−1
12

, following [Ngu18]. Analogously, the same applies
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to RLWR- and MLWR-like instances that use deterministic rounding instead of
adding an error term.

2.3.4 NTRU

The NTRU problem is the foundation of the NTRU encryption scheme [HPS96] and
following encryption (e.g., [SHRS17, BCLvV17a]) and signature (e.g., [ZCHW17b,
PFH+17]) schemes.

Definition 2.7 (NTRU [HPS96]). Let n, q be positive integers, φ ∈ Z[x] be a monic
polynomial of degree n, and Rq = Zq[x]/(φ). Let f ∈ R×q , g ∈ Rq be small polynomials
(i.e., having small coefficients) and h = g · f−1 mod q.

Search-NTRU is the problem of recovering f or g given h.

Remark 2.1. One can exchange the roles of f and g (in the case that g is invertible)
by replacing h with h−1 = f · g−1 mod q, if this leads to a better attack.

The most common ways to choose the polynomials f (or g) are the following.
The first is to choose f to have small coefficients (e.g., ternary). The second is to
choose F to have small coefficients (e.g., ternary) and to set f = pF for some (small)
prime p. The third is to choose F to have small coefficients (e.g., ternary) and to set
f = pF + 1 for some (small) prime p.

The NTRU problem can be reduced to solving (a variant1 of) the uSVP in the
NTRU lattice Λ(B) generated by the columns of

B =

(
qIn H
0 In

)
,

where H is the rotation matrix of h, see for example [CS97, HPS98]. Indeed, Λ(B)
contains the short vector (f |g), since hf = g mod q and hence (f |g) = B(w |g)
for some w ∈ Zn. Furthermore, it can be assumed that the vector (f |g)t and
its rotations (and theirs additive inverses) are uniquely short vectors in Λ(B). In
addition, if f = pF or f = pF + 1 for some small polynomial F one can construct a
similar uSVP lattice that contains (F |g), see for example [Sch15]. Similar to LWE,
in order to improve this attack, rescaling (see Section 3.3.1 for more details) and
dimension reducing techniques can be applied [MS01]. Dimension reducing techniques
resemble choosing the number of samples in LWE. Note that the dimension of the
lattice must be between n and 2n by construction.

1Note that the NTRU lattice contains (f |g)t and all its rotations (fXi |gXi)t, hence possibly n
linearly independent unusually short vectors, which is not the case in the standard definition of
uSVP and can possibly be exploited.
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2.4 Lattice Algorithms

In this section, we summarize the lattice algorithms that are relevant for this
work and their behavior. We start by giving a short exposition about heuristic
runtime estimates and their relevance in lattice-based cryptography compared to
mathematically rigorous statements.

2.4.1 Runtime Estimates

This work is concerned with the security of lattice-based schemes and for that matter
with the concrete hardness of lattice problems, in particular (variants of) the uSVP.
To that end, we aim at determining the runtime or cost of lattice algorithms to solve
such problems and we are particularly interested in the average-case or expected
behavior of those algorithms. There are two kinds of results that can be derived,
namely mathematically rigorous or heuristic statements. Often, mathematically
rigorous statements can be used to derive (upper) bounds on the runtime of lattice
algorithms, while heuristic statements are used to predict the average-case behavior.
The latter is arguably of greater interest in a cryptanalytic setting as it can be used
to estimate concrete security levels of cryptographic schemes. In this spirit, many
of our results are based on common heuristics which are standard assumptions in
lattice-based cryptography, for example about the lengths of shortest non-zero vectors
in random lattices, the shape of reduced lattice bases, or the lengths of orthogonal
projections of vectors. Such heuristics are typically supported by theoretical and/or
experimental evidence indicating that under plausible assumptions they constitute
reliable predictors. Many of our results are therefore also of a heuristic nature and
provide good estimates for the practical behavior of lattice algorithms. One could
attempt to formulate these results as mathematically rigorous theorems by stating
that all of the heuristics hold exactly in the theorem requirements. However, we
refrain from doing so as, in our opinion, it deceives the reader.

2.4.2 Lattice Reduction

Informally, lattice reduction (also called lattice basis reduction or basis reduction) is
the process of improving the quality of a lattice basis. To express the output quality
of a lattice reduction, we may relate the shortest vector in the output basis to the
determinant of the lattice in the Hermite-factor regime or to the shortest vector in
the lattice, in the approximation-factor regime. Note that any algorithm finding a
vector with approximation-factor α in some lattice Λ, i.e., a vector of length at most
αλ1(Λ), can be used to solve the uSVP with a gap λ2(Λ)/λ1(Λ) > α.

The best known theoretical bound for lattice reduction is attained by Slide reduc-
tion [GN08a]. In this work, however, we consider the Block-wise Korkine-Zolotarev
(BKZ) [SE94] algorithm, more precisely BKZ 2.0 [CN11, Che13], which performs
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better in practice. We may simply use the term BKZ to refer to BKZ and BKZ 2.0.
BKZ is specified by a block size β, which is upper-bounded by the rank of the lattice.
The BKZ-β algorithm repeatedly calls an SVP oracle for finding (approximate)
shortest non-zero vectors in projected lattices (also called local blocks) of dimension
β. A pseudocode for the BKZ 2.0 algorithm is provided in Chapter 3 in Algorithm 3.
It has been shown that after polynomially many calls to the SVP oracle, the basis
does not change much more [HPS11].

For the rest of this subsection, let B = {b1, . . . ,bd} ⊂ Rd be a basis of some
lattice Λ. After BKZ-β reduction, we call the basis BKZ-β reduced and in the
Hermite-factor regime assume [Che13] that this basis contains a vector of length

‖b1‖ = δd · det(Λ)1/d, where

δ =

(
β · (πβ)

1
β

2πe

) 1
2(β−1)

is called the root Hermite factor. Throughout this work, we implicitly assume that
this relation between β and δ holds without explicitly mentioning it. Furthermore, we
generally assume that for a BKZ-β reduced basis the Geometric Series Assumption
(GSA) holds.

Definition 2.8 (Geometric Series Assumption [Sch03]). The norms of the Gram-
Schmidt vectors after lattice reduction satisfy

‖b∗i ‖ = αi−1 · ‖b1‖ for some 0 < α < 1.

Combining the GSA with the root Hermite factor ‖b1‖ = δd·det(Λ)1/d and det(Λ) =∏d
i=1 ‖b∗i ‖, we get α = δ−2d/(d−1) ≈ δ−2 for the GSA. While the GSA is widely relied

upon in lattice-based cryptography (see, e.g., [APS15, ADPS16, AWHT16, CN11,
MW16, HG07]), we emphasize that it does not offer precise estimates, in particular
for the last indices of highly reduced bases, see, e.g., [Che13].

Runtime estimates for BKZ. In the following, we summarize the most common
ways to estimate the cost of BKZ. Note that currently there is no consensus in the
cryptographic community as to which approach to use. BKZ proceeds in several
tours (also called rounds). Let d be the lattice dimension, β be the applied block
size, and k be the required number of tours in BKZ. Each tour of BKZ consists of d
SVP calls, d− β + 1 of which are in dimension β and β − 1 of which are in smaller
dimensions. One typically estimates the cost TBKZ(d, β, k) of BKZ by predicting
the number of SVP oracle calls and multiplying this number by the estimated cost
TSVP(β) for one SVP oracle call in dimension β. This can for instance be done via

TBKZ(d, β, k) = dk · TSVP(β)
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or
TBKZ(d, β, k) = (d− β + 1)k · TSVP(β).

The first estimate assumes that all of the SVP calls of one tour are in dimension β,
while the latter estimate accounts for the fact that the last SVP calls in each tour
are performed in dimension smaller than β and ignores their cost. An alternative
(conservative) estimate, commonly referred to as the core-SVP estimate [ADPS16],
is to estimate the cost of BKZ to be the cost of one SVP call, i.e.,

TBKZ(d, β, k) = TSVP(β).

How to estimate TSVP(β) is discussed in Section 2.4.3. It remains to estimate the
number of tours k required by BKZ. The most common approaches are to either use
the BKZ 2.0 simulator of [Che13, CN11] to determine k or to heuristically set k = 8,
see, e.g., [APS15].

2.4.3 SVP Algorithms

As mentioned above, lattice reduction algorithms make heavy use of SVP solvers.
The two most commonly used types of such SVP algorithms for security estimates
are enumeration algorithms [Kan83, FP85, MW15] and sieving algorithms [AKS01,
LMvdP15, BDGL16]. Sieving algorithms offer a better asymptotic runtime complexity
than enumeration algorithms, but the exact cross-over point is unknown (see e.g. the
discussion in [Laa15b]). However, sieving algorithms require access to exponentially
large memory, while enumeration only requires polynomial memory, which may render
sieving algorithms less practical in high dimensions. Both sieving and enumeration
algorithms benifit from quantum speedups [LMvdP15, ANS18]. For more details
on those algorithms, we refer to the respective works. In this work, we are mainly
concerned with runtime estimates for those algorithms in order to estimate the
runtime of lattice reduction algorithms. Unfortunately, different estimates exist
throughout the literature. The most common ones are the following. A list of more
estimates (for SVP and BKZ) that exist in the literature can be found in Section 8.3.

For enumeration algorithms in dimension β, the most common cost estimate is
given by an interpolation by Albrecht et al. [APS15] based on experiments of Chen
and Nguyen [CN11]:

TSVPβ ≈ 20.187β log2(β)−1.019β+16.1 ≈ 20.270β ln(β)−1.019β+16.1.

Classical sieving algorithms in dimension β are often assumed [BDGL16, Alb17] to
require a cost of

TSVPβ ≈ 20.292β+16.4,

while quantum sieving [LMvdP15] algorithms are assumed to cost

TSVPβ ≈ 20.265β+16.4.
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We note that the different cost models diverge on the unit of operations they
are using. In the enumeration models, the unit is “number of nodes visited during
enumeration”. It is typically assumed that processing one node costs about 100 CPU
cycles [CN11]. For classical sieving algorithms the elementary operation is typically
an operation on integers or floating point numbers, costing about one CPU cycle.
For quantum SVP algorithms the unit is typically the number of Grover iterations
required. It is not clear how this translates to traditional CPU cycles. Of course,
for models which suppress lower order terms, the unit of computation considered is
immaterial.

More details on various methods to cost SVP and BKZ are provided in Section 8.3,
where we discuss the cost models applied in the submissions to NIST’s standardization
process [Nat16].

2.4.4 Kannan’s Embedding Technique

One of the most common approaches to solve LWE is Kannan’s embedding ap-
proach [Kan87], which views LWE as a BDD problem and then embeds it into a
uSVP instance. It can be described as follows. Let

L(A,q) = {v ∈ Zmq | v ≡ Ax (mod q) for some x ∈ Zn}

be the q-ary lattice generated by A and B be some basis of L(A,q). Then it holds
that b ∈ L(A,q) + e, since b = As + e mod q. Hence e can be recovered by solving a
BDD problem in L(A,q) with target vector b. In order to solve this BDD problem, it
is embedded into a uSVP instance(

e
M

)
∈ Λ(B′) with B′ =

(
B b
0 M

)
∈ Z(m+1)×(m+1),

where M is the so-called embedding factor. Typical choices of M are discussed
in, e.g., [LM09, AFG14, APS15], and include M = 1 or M = ‖e‖. As pointed
out in [APS15], M = 1 is typically more efficient and therefore often used in
practice, including this work, see also [WAT18]. The dimension of the obtained
uSVP lattice is m+ 1 and with high probability, its determinant is M · qm−n, see for
example [AFG14]. This uSVP instance is then solved by running lattice reduction on
the basis B′. Embedding LWE into uSVP and solving it via lattice reduction is also
referred to as the primal attack. A simplified pseudocode of Kannan’s embedding
approach is given in Algorithm 2.

2.4.5 Babai’s Nearest Plane

Babai’s Nearest Plane algorithm [Bab86] (denoted by NP in the following) is a BDD
algorithm and an important building block of several attacks or algorithms. For more
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Algorithm 2: Kannan’s embedding approach

Input : An LWE instance (A,b = As + e mod q) ∈ Zm×nq ×Zmq , embedding
factor M

1 Construct a lattice basis B ∈ Zm×m of the lattice
L(A,q) = {v ∈ Zmq | v ≡ Ax (mod q) for some x ∈ Zn} ;

2 Set B′ =

(
B b
0 M

)
∈ Z(m+1)×(m+1);

3 Recover ±
(

e
M

)
by solving uSVP in Λ(B′) using lattice reduction;

4 return e;

details on the algorithm we refer to Babai’s original work [Bab86] or Lindner and
Peikert’s work [LP11]. We use the Nearest Plane algorithm in a black box manner
and the following is sufficient to know. The input for the Nearest Plane algorithm
is a lattice basis B ⊂ Zd of a full-rank lattice and a target vector t ∈ Rd and the
corresponding output is a vector e ∈ Rd such that t − e ∈ Λ(B). We denote the
output by NPB(t) = e. If there is no risk of confusion, we may omit the basis in
the notation, writing NP(t) instead of NPB(t). The output of the Nearest Plane
algorithm satisfies the following condition, as shown in [Bab86].

Lemma 2.1. Let B ⊂ Zd be a basis of a full-rank lattice and t ∈ Rd be a target
vector. Then NPB(t) is the unique vector e ∈ P(B∗) that satisfies t − e ∈ Λ(B),
where B∗ is the Gram-Schmidt basis of B.

In [HHHGW09], Hirschhorn et al. experimentally verify the number of bit op-
erations (defined as in [LV01]) of one Nearest Plane call in dimension d to be
approximately d2/21.06. Furthermore, they conservatively assume that using precom-
putation the number of operations might possibly be decreased to d/21.06. However,
this speedup has not yet been confirmed in practice.

2.4.6 Other Lattice Algorithms and Attacks

Besides the algorithms to solve lattice problems discussed in this work, there also
exist other algorithms or attacks. We briefly discuss the most common ones in the
following.

The dual attack on LWE solves the Decision-LWE problem by reducing it to the
short integer solution problem [Ajt96]. This problem is then solved by finding short
vectors in the lattice {x ∈ Zm | xtA ≡ 0 mod q}, where A is the LWE matrix and
q the LWE modulus. In the case of small or sparse secret distributions, the dual
attack can further be improved [Alb17]. Note that there is a computational overhead
if one wants to convert this attack into an attack on Search-LWE.

17



2 Background

The decoding attack [LP11] on LWE solves the Search-LWE problem by viewing
it as a BDD problem. This BDD problem can then for instance be solved by Babai’s
Nearest Plane algorithm, see Section 2.4.5. In the case of small or sparse secret
vectors, the hybrid attack as discussed in Chapters 5, 6, and 7 can also be seen as
an improvement of the decoding attack.

The BKW attack [BKW00] and its improvements [AFFP14, GJS15, KF15, GJMS17]
are combinatorial approaches to solve the Search-LWE problem. The main prac-
tical downside of these attacks is that they require access to exponentially many
LWE sample and exponentially large memory. However, the first problem can be
circumvented by producing more samples.

There also exist algebraic attacks on LWE [AG11, ACF+15]. However, similar to
the BKZ-style attacks, these attacks require a large number of LWE samples (or
are less efficient in the case of few samples), which is typically not provided in a
cryptographic context.

In addition to algorithms that solve lattice problems for standard lattices, there
also exists a line of work which aims at solving the ring-variants of lattice problems
more efficiently. For instance, these works include the discovery of polynomial-
time quantum algorithms that recover short vectors in principal ideal lattices over
cyclotomic number fields of prime-power degree [CDPR16, BS16]. These results can
be used to obtain better approximation fectors for approximate SVP in general ideal
lattices over certain number fields, e.g., [CDW17, Bia17]. In addition, there have
been recent discoveries of some alleged weak instances of Ring-LWE, e.g., [EHL14,
ELOS16, ELOS15] which, however, may be explained by an unfortunate choice in the
LWE error distribution as detailed in [CIV16, Pei16b]. In the case of NTRU, subfield
and other attacks on overstretched NTRU assumptions [ABD16, CJL16, KF17]
have been presented, which have consequences for instance on NTRU-based fully
homomorphic encryption. The author of this thesis contributed to this line of work
with the joint publication [9] by extending the results of [CDPR16] to cyclotomic
number fields whose conductor is a product of two prime-powers, which is not part
of this thesis.
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3 On the Expected Cost of Solving
uSVP via Lattice Reduction

One of the currently most common and efficient approaches to solve lattice problems
such as LWE or the NTRU problem is to embed them into a uSVP instance and then
solve the resulting uSVP instance using the BKZ [SE94] (or BKZ 2.0 [CN11, Che13])
lattice reduction algorithm. It is therefore an important cryptanalytic task to
predict the cost of solving uSVP using BKZ. This cost is mainly determined by the
applied block size, which size specifies the BKZ algorithm, where a bigger block
size yields a higher cost. However, if the block size is not sufficiently large, BKZ
will not succeed in solving uSVP, begging the question about the minimal block
size that guarantees success. In the current literature there exist two different
estimates for this minimal block size: the 2008 estimate introduced in [GN08b],
developed in [AFG14, APS15, Göp16, HKM17], and applied in, e.g., [BG14a, CHK+17,
CKLS16a, CLP17, ABB+17], and the recently introduced [ADPS16] 2016 estimate
applied in, e.g., [BCD+16, BDK+18]. However, the two estimates predict vastly
different costs. For example, considering an LWE instance with n = 1024, q ≈ 215,
and a discrete Gaussian LWE error distribution with standard deviation σ = 3.2, the
former predicts a cost of roughly 2355 operations, whereas the latter predicts a cost
of roughly 2287 operations to solve the problem.2 This begs the question whether
the 2016 estimate should replace the 2008 estimate. So far, the 2008 estimate has
been experimentally studied only for small parameters and block sizes, while the
2016 estimate has not been subject to a theoretical or experimental analysis, thus
the question remains open.

Contribution. In this chapter, we provide the first theoretical and experimental
validation of the 2016 estimate. Our theoretical analysis is based on standard lattice
assumptions such as the Geometric Series Assumption (GSA) and the assumption that
the unique shortest non-zero vector is distributed in a random direction relative to the
rest of the basis. Under these assumptions we show that, using a block size satisfying
the 2016 estimate, BKZ eventually recovers a projection of the unique shortest

2Assuming the same cost model for BKZ with block size β, where an SVP oracle call in dimension
β costs 20.292 β+16.4 [BDGL16, APS15, Laa15b].
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3 On the Expected Cost of Solving uSVP via Lattice Reduction

non-zero vector and with high probability the so-called size reduction subroutine
immediately recovers the uSVP solution from its projection. For our experiments we
employ the widely-used fplll 5.1.0 [FPL17] and fpylll 0.2.4dev [FPY17] libraries
and use medium to larger block sizes. Our results confirm that the behavior of
BKZ largely follows the 2016 estimates. Finally, we demonstrate the cryptographic
relevance of our work by giving reduced attack costs for some lattice-based schemes.
In particular, we give reduced costs for solving the LWE instances underlying
TESLA [ABB+17] and the somewhat homomorphic encryption scheme in [BCIV17].
We also show that under the revised, corrected estimate, the primal attack performs
about as well on SEAL v2.1 parameter sets as the dual attack from [Alb17].

Organization. In Section 3.1, we recall the two competing estimates from the
literature. Our analysis of the 2016 estimate is presented in Section 3.2. The
theoretical aspects are presented in Sections 3.2.1 and 3.2.3. In Section 3.2.2, we
provide our experimental setup and results. Both theory and practice confirm the
2016 estimate. Finally, using the 2016 estimate, in Section 3.3 we show that some
proposed parameters from the literature need to be updated to maintain the currently
claimed level of security.

Publications. This chapter is based on the publication [4] presented at ASIACRYPT
2017.

3.1 Estimates

As highlighted above, two competing estimates, the 2008 and the 2016 estimate,
exist in the literature for when block-wise lattice reduction succeeds in solving uSVP
instances. However, the predicted costs under these two estimates differ greatly as
illustrated in Figure 3.1.

3.1.1 2008 Estimate

A first systematic experimental investigation into the behavior of the lattice reduction
algorithms LLL, DEEP and BKZ was provided in [GN08b]. In particular, [GN08b]
investigates the behavior of these algorithms for solving uSVP for families of lattices
arising in cryptography.

For uSVP, the authors performed experiments in small block sizes on two classes
of semi-orthogonal lattices and on Lagarias-Odlyzko lattices [LO83], which permit to
estimate the gap λ2(Λ)/λ1(Λ) between the first and second minimum of the lattice.
The authors of [GN08b] observed that LLL and BKZ seem to recover a unique
shortest non-zero vector with high probability whenever λ2(Λ)/λ1(Λ) ≥ τδd, where δ
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Figure 3.1: Required block size β according to the estimates given in [AFG14]
and [ADPS16] for solving LWE with modulus q = 215, an error distri-
bution with standard deviation σ = 3.2 and increasing secret dimension
n. For [AFG14] we set τ = 0.3 and use the embedding factor 1. Lattice
reduction runs in time 2Ω(β).

is the root Hermite factor of the reduced basis and τ < 1 is an empirically determined
constant that depends on the lattice family and algorithm used.

In [AFG14] an experimental analysis of solving an LWE instance (A,b = As +
e mod q) ∈ Zm×nq × Zmq based on the same estimate was carried out for lattices
using Kannan’s embedding (see Section 2.4.4). The embedding lattice contains an
unusually short vector v = (e | M) of squared norm λ1(Λ)2 = ‖v‖2 = ‖e‖2 + M2.
Thus, when M = ‖e‖ resp. M = 1 this implies λ1(Λ) ≈

√
2mσ resp. λ1(Λ) ≈

√
mσ,

where σ is the standard deviation of the LWE error distribution χ, i.e., ei←$χ.
The second minimum λ2(Λ) is assumed to correspond to the Gaussian Heuristic for
the lattice. Experiments in [AFG14] using LLL and BKZ (with block sizes 5 and
10) confirmed the 2008 estimate, providing constant values for τ for such lattices,
depending on the chosen algorithm, for a 10% success rate. Overall, τ was found to
lie between 0.3 and 0.4 when using BKZ.

Still focusing on LWE, in [APS15] a closed formula for δ is given as a function
of n, σ, q, and τ , which implicitly assumes M = ‖e‖. In [Göp16], a bound for δ in
the [GN08b] model for the case of M = 1, which is mainly used in practice, is given.
In [HKM17], a related closed formula is given, directly expressing the asymptotic
running time for solving LWE using this approach.
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3 On the Expected Cost of Solving uSVP via Lattice Reduction

3.1.2 2016 Estimate

In [ADPS16], an alternative estimate is outlined. Let (A,b = As + e mod q) ∈
Zm×nq × Zmq be an LWE instance, σ be the standard deviation of the LWE error dis-
tribution, B be a basis of the corresponding uSVP lattice using Kannan’s embedding,
and d = m+ 1. The 2016 estimate predicts that e can be found if3√

β/d ‖(e | 1)‖ ≈
√
βσ ≤ δ2β−d det(Λ(B))1/d, (3.1)

under the assumption that the Geometric Series Assumption holds (until a projection
of the unusually short vector is found). In the general case of uSVP in some full-rank
lattice of dimension d with unique shortest non-zero vector v, this can be generalized
to √

β/d λ1(Λ) =
√
β/d ‖v‖ ≤ δ2β−d det(Λ)1/d. (3.2)

The brief justification for this estimate given in [ADPS16] notes that this condition
ensures that the projection of e orthogonally to the first d − β (Gram-Schmidt)
vectors is shorter than the expectation for b∗d−β+1 under the GSA. This brief note
can be extended as follows. As the projection of e is shorter than the expectation for
b∗d−β+1, it would be found by the SVP oracle when called on the last block of size
β. Hence, for any β satisfying (3.1), the actual behavior would deviate from that
predicted by the GSA. Finally, the argument can be completed by appealing to the
intuition that a deviation from expected behavior on random instances — such as
the GSA — leads to a revelation of the underlying structural, secret information.4

3.2 Solving uSVP

Given the significant differences in expected solving time under the two estimates,
cf. Figure 3.1, and recent progress in publicly available lattice reduction libraries
enabling experiments in larger block sizes [FPL17, FPY17], we conduct a more
detailed examination of BKZ’s behavior on uSVP instances. For this, we first
explicate the outline from [ADPS16] to establish the expected behavior, which we
then experimentally investigate in Section 3.2.2. Overall, our experiments confirm
the expectation of the 2016 estimate. However, the algorithm behaves somewhat
better than expected, which we then explain in Section 3.2.3.

For the rest of this chapter, let v be a shortest non-zero vector in some d-dimensional
full-rank uSVP lattice Λ. Furthermore, in the case of solving LWE via Kannan’s
embedding, let d = m + 1 and v = (e | 1) ∈ Zdq , where m is the number of LWE
samples, q the modulus, and e the LWE error vector.

3[ADPS16] has 2β − d− 1 in the exponent, which seems to be an error.
4We note that observing such a deviation implies solving Decision-LWE.
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3.2 Solving uSVP

3.2.1 Prediction

Projected norm.

In what follows, we assume the unique shortest non-zero vector v is drawn from a
spherical distribution or is at least “not too skewed” with respect to the current basis.
As a consequence, following [ADPS16], we assume that all orthogonal projections
of v onto a k-dimensional subspace of Rd have expected norm (

√
k/
√
d) ‖v‖. Note

that this assumption can be dropped by adapting (3.2) to ‖v‖ ≤ δ2β−d det(Λ)
1
d since

‖πd−β+1(v)‖ ≤ ‖v‖.

Finding a projection of the short vector.

Assume that β is chosen minimally such that (3.2) holds. When running BKZ,
the length of the Gram-Schmidt basis vectors of the current basis converge to the
lengths predicted by the GSA. Therefore, at some point BKZ will find a basis
B = {b1, . . . ,bd} of Λ for which we can assume that the GSA holds with root
Hermite factor δ. Now, consider the stage of BKZ where the SVP oracle is called on
the last full projected block of size β with respect to this basis B. Note that the
projection πd−β+1(v) of the shortest non-zero vector is contained in the lattice

Λd−β+1 := Λ (πd−β+1(bd−β+1), . . . , πd−β+1(bd)) ,

since

πd−β+1(v) =
d∑

i=d−β+1

νiπd−β+1(bi) ∈ Λd−β+1, where νi ∈ Z with v =
d∑
i=1

νibi.

By (3.2), the projection πd−β+1(v) is in fact expected to be the shortest non-zero
vector in Λd−β+1, since it is shorter than the GSA’s estimate for λ1(Λd−β+1), i.e.

‖πd−β+1(v)‖ ≈
√
β√
d
‖v‖ ≤ δ−2(d−β)+ddet(Λ)

1
d .

Hence the SVP oracle will find ±πd−β+1(v) and BKZ inserts

bnew
d−β+1 = ±

d∑
i=d−β+1

νibi

into the basis B at position d− β + 1. In other words, by finding ±πd−β+1(v), BKZ
recovers the last β coefficients νd−β+1, . . . , νd of v with respect to the basis B.
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3 On the Expected Cost of Solving uSVP via Lattice Reduction

Finding the short vector.

The above argument can be extended to an argument for the full recovery of v.
Consider the case that in some tour of BKZ-β, a projection of v was found at index
d− β + 1. Then in the following tour, by arguments analogous to the ones above, a
projection of v will likely be found at index d− 2β + 2, since now it holds that

πd−2β+2(v) ∈ Λd−2β+2 := Λ
(
πd−2β+2(bd−2β+2), . . . , πd−2β+2(bnew

d−β+1)
)
.

Repeating this argument for smaller indices shows that after a few tours v will be
recovered. Furthermore, noting that BKZ calls LLL which in turn calls size reduction,
i.e., Babai’s Nearest Plane [Bab86], at some index i > 1 size reduction will recover
v from πi(v). In particular, it is well-known that size reduction (Algorithm 1) will
succeed in recovering v whenever

v ∈ bnew
d−β+1 +

{
d−β∑
i=1

ci · b∗i : ci ∈
[
−1

2
,
1

2

]}
. (3.3)

3.2.2 Observation

The above discussion naturally suggests a strategy to verify the expected behavior.
We have to verify that the projected norms ‖πi(v)‖ = ‖πi(e | 1)‖ do indeed behave
as expected and that πd−β+1(v) is recovered by BKZ-β for the minimal β ∈ N
satisfying (3.1). Finally, we have to measure when and how v = (e | 1) is eventually
recovered.

Thus, we ran lattice reduction on many lattices constructed from LWE instances
(A,b = As + e mod q) ∈ Zn×mq × Zmq using Kannan’s embedding. In more detail,
we picked the entries of s and A uniformly at random from Zq, the entries of e
from a discrete Gaussian distribution with standard deviation σ = 8/

√
2π, and

we constructed our basis as in Section 2.4.4 with embedding factor M = 1. For
parameters (n, q, σ), we then estimated the minimal pair (in lexicographical order)
(β,m) to satisfy (3.1).

Implementation.

To perform our experiments, we used SageMath 7.5.1 [S+17] in combination with
the fplll 5.1.0 [FPL17] and fpylll 0.2.4dev [FPY17] libraries. All experiments
were run on a machine with Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz cores
(“strombenzin”) resp. Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz (“atomkohle”).
Each instance was reduced on a single core, with no parallelization.

Our BKZ implementation inherits from the implementation in fplll and fpylll

of BKZ 2.0 [Che13, CN11] algorithm. As in BKZ 2.0, we restricted the enumeration
radius to be approximately the size of the Gaussian Heuristic for the projected
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3.2 Solving uSVP

sublattice, apply recursive BKZ-β′ preprocessing with a block size β′ < β, make
use of extreme pruning [GNR10] and terminate the algorithm when it stops making
significant progress. We give simplified pseudo-code of our BKZ implementation in
Algorithm 3. We ran BKZ for at most 20 tours using fplll’s default pruning and
preprocessing strategies and, using fplll’s default auto abort strategy, terminated
the algorithm whenever the slope of the Gram Schmidt vectors did not improve for
five consecutive tours. Additionally, we aborted if a vector of length ≈ ‖v‖ was
found in the basis (in line 14 of Algorithm 3).

Algorithm 3: Simplified BKZ 2.0 Algorithm

Input : LLL-reduced lattice basis B, block size β, preprocessing block size β′

1 repeat // tour

2 for κ← 1 to d do // stepκ
3 size reduction from index 1 to κ (inclusive);
4 `← ‖b∗κ‖;

// extreme pruning + recursive preprocessing

5 repeat until termination condition met
6 rerandomize πκ(bκ+1, . . . ,bκ+β−1);
7 LLL on πκ(bκ, . . . ,bκ+β−1);
8 BKZ-β′ on πκ(bκ, . . . ,bκ+β−1);
9 v← SVP on πκ(bκ, . . . ,bκ+β−1);

10 if v 6= ⊥ then
11 extend B by inserting v into B at index κ+ β;
12 LLL on πκ(bκ, . . . ,bκ+β) to remove linear dependencies;
13 drop row with all zero entries;

14 size reduction from index 1 to κ (inclusive);
15 if ` = ‖b∗κ‖ then
16 yield >;
17 else
18 yield ⊥;

19 if > for all κ then
20 return;

Implementations of block-wise lattice reduction algorithms such as BKZ make
heavy use of LLL [LLL82] and size reduction. This is to remove linear dependencies
introduced during the algorithm, to avoid numerical stability issues and to improve
the performance of the algorithm by moving short vectors to the front earlier. The
main modification in our implementation is that calls to LLL during preprocessing
and postprocessing are restricted to the current block, not touching any other vector,
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3 On the Expected Cost of Solving uSVP via Lattice Reduction

to aid analysis. That is, in Algorithm 3, LLL is called in lines 7 and 12 and we
modified these LLL calls not to touch any row with index smaller than κ, not even
to perform size reduction.

As a consequence, we only make use of vectors with index smaller than κ in lines 3
and 14. Following the implementations in [FPL17, FPY17], we call size reduction
from index 1 to κ before (line 3) and after (line 14) the innermost loop with calls
to the SVP oracle. These calls do not appear in the original description of BKZ.
However, since the innermost loop re-randomizes the basis when using extreme
pruning, the success condition of the original BKZ algorithm needs to be altered.
That is, the algorithm cannot break the outer loop once it makes no more changes
as originally specified. Instead, the algorithm terminates if it does not find a shorter
vector at any index κ. Now, the calls to size reduction ensure that the comparison
at the beginning and end of each step κ is meaningful even when the Gram-Schmidt
vectors are only updated lazily in the underlying implementation. That is, the call
to size reduction triggers an internal update of the underlying Gram-Schmidt vectors
and are hence implementation artifacts. The reader may think of these size reduction
calls as explicating calls otherwise hidden behind calls to LLL and we stress that our
analysis applies to BKZ as commonly implemented, our changes merely enable us to
more easily predict and experimentally verify the behavior.

We note that the break condition for the innermost loop at line 5 depends on the
pruning parameters chosen, which control the success probability of enumeration.
Since it does not play a material role in our analysis, we simply state that some
condition will lead to a termination of the innermost loop.

Finally, we recorded the following information. At the end of each step κ during lat-
tice reduction, we recorded the minimal index i such that πi(v) is in span(b1, . . . ,bi)
and whether ±v itself is in the basis. In particular, to find the index i in the basis
B of πi(v) given v, we compute the coefficients of v in basis B (at the current step)
and pick the first index i such that all coefficients with larger indices are zero. Then,
we have πi(bi) = c · πi(v) for some c ∈ R. From the algorithm, we expect to have
found ±πi(bi) = πi(v) and call i the index of the projection of v.

Results.

In Figure 3.2, we plot the average norms of πi(v) and the expectation
√
d− i+ 1σ ≈√

d−i+1
d

√
m · σ2 + 1, indicating that

√
d− i+ 1σ is a close approximation of the

expected lengths except perhaps for the last few indices.

Recall that, as illustrated in Figure 3.3, we expect to find the projection πd−β+1(v)
when (β, d) satisfy (3.1), eventually leading to a recovery of v, say, by an extension
of the argument for the recovery of πd−β+1(v). Our experiments, summarized in
Table 3.1, show a related, albeit not identical behavior. Defining a cut-off index
c = d− 0.9β+ 1 and considering πκ(v) for κ < c, we observe that the BKZ algorithm
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Figure 3.2: Expected and average observed norms ‖πi(v)‖ for 16 bases (LLL-reduced)
and vectors v of dimension d = m+ 1 and determinant qm−n with LWE
parameters n = 65,m = 182, q = 521 and standard deviation σ = 8/

√
2π.

typically first recovers πκ(v) which is immediately followed by the recovery of v
in the same step. In more detail, in Figure 3.4 we show the measured probability
distribution of the index κ such that v is recovered from πκ(v) in the same step.
Note that the mean of this distribution is smaller than d− β + 1. We explain this
bias in Section 3.2.3.

The recovery of v from πκ(v) can be effected by one of three subroutines: either
by a call to LLL, by a call to size reduction, or by a call to enumeration that recovers
v directly. Since LLL itself contains many calls to size reduction, and enumeration
being lucky is rather unlikely, size reduction is a good place to start the investigation.
Indeed, restricting the LLL calls in Algorithm 3 as outlined in Section 2.4.2, identifies
that size reduction suffices. That is, to measure the success rate of size reduction
recovering v from πκ(v), we observe size reduction acting on πκ(v). Here, we consider
size reduction to fail in recovering v if it does not recover v given πκ(v) for κ < c
with c = d− 0.9β + 1, regardless of whether v is finally recovered at a later point
either by size reduction on a new projection, or by some other call in the algorithm
such as an SVP oracle call at a smaller index. As shown in Table 3.1, size reduction’s
success rate is close to 1. Note that the cut-off index c serves to limit underestimating
the success rate: intuitively we do not expect size reduction to succeed when starting
from a projection with larger index, such as πd−γ+1(v) with γ < 10. We discuss this
in Section 3.2.3.
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Figure 3.3: Expected and observed norms for lattices of dimension d = m+ 1 = 183
and determinant qm−n after BKZ-β reduction for LWE parameters n =
65,m = 182, q = 521 and standard deviation σ = 8/
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2π and β = 56

(minimal (β,m) such that (3.1) holds). Average of Gram-Schmidt lengths
is taken over 16 BKZ-β reduced bases of random q-ary lattices, i.e. without
an unusually short vector.
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Figure 3.4: Probability mass function of the index κ from which size reduction
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using β = 56. The mean of the distribution is ≈ 124.76 while d−β+ 1 =
128.
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n q β2016 m2016 β # v same step time
κ < c κ = d− β + 1

65 521 56 182 56 10000 93.3% 99.7% 99.7% 1,131.4
51 52.8% 98.8% 97.3% 1,359.3
46 4.8% 96.4% 85.7% 1,541.2

100 2053 67 243 67 500 88.8% 99.8% 100.0% 28,803.7
62 39.6% 99.5% 100.0% 19,341.9
57 5.8% 100.0% 100.0% 7,882.2
52 0.2% 0.0% — 3,227.0

108 2053 77 261 77 5 100.0% 100.0% 100.0% 351,094.2

Table 3.1: Overall success rate (“v”) and success rate of size reduction (“same
step”) for solving LWE instances characterised by n, σ, q with m sam-
ples, standard deviation σ = 8/

√
2π, minimal (β2016,m2016) such that√

b2016 σ ≤ δ
2β2016−(m2016+1)
0 q(m2016−n)/(m2016+1) with δ0 in function of β2016.

The column “β” gives the actual block size used in experiments. The
“same step” rate is calculated over all successful instances where v is found
before the cut-off point c and for the instances where exactly πd−b+1(v)
is found (if no such instance is found, we do not report a value). In the
second case, the sample size is smaller, since not all instances recover v
from exactly κ = d − β + 1. The column “time” lists average solving
CPU time for one instance, in seconds. Note that our changes to the
algorithm and our extensive record keeping lead to an increased running
time of the BKZ algorithm compared to [FPL17, FPY17]. Furthermore,
the occasional longer running time for smaller block sizes is explained by
the absence of early termination when v is found.
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Overall, Table 3.1 confirms the prediction from [ADPS16]: picking β = β2016 to be
the block size predicted by the 2016 estimate leads to a successful recovery of v with
high probability. Note that the observed success probability may even be increased
by increasing the success probability of the enumeration routine from 0.5 (default)
to a value close to 1.

3.2.3 Explaining Observation

As noted above, our experiments indicate that the algorithm behaves better than
expected by (3.2). Firstly, the BKZ algorithm does not necessarily recover a projection
of v at index d− β + 1. Instead, the index κ at which we recover a projection πκ(v)
follows a distribution with a center below d− β + 1, cf. Figure 3.4. Secondly, size
reduction usually immediately recovers v from its projection πκ(v) at that index.
This is somewhat unexpected, since we do not have the guarantee that |ci| ≤ 1/2 as
required in the success condition of size reduction given in (3.3).

Finding the projection.

To explain the bias towards a recovery of πκ(v) for some κ < d− β + 1, note that
if (3.2) holds then for the parameter sets in our experiments the lines for ‖πi(v)‖
and ‖b∗i ‖ intersect twice (cf. Figure 3.3). Let d− γ + 1 be the index of the second
intersection. Thus, there is a good chance that ‖πd−γ+1(v)‖ is a shortest vector in
the lattice spanned by the last projected block of some small rank γ and will be
placed at index d− γ + 1. As a consequence, all projections πi(v) with i > d− γ + 1
will be zero and πd−β−γ+1(v) will be contained in the β-dimensional lattice

Λd−β−γ+1 := Λ (πd−β−γ+1(bd−β−γ+1), . . . , πd−β−γ+1(bd−γ+1)) ,

enabling it to be recovered by BKZ-β at an index d− β − γ + 1 < d− β + 1. Thus,
BKZ in our experiments behaves better than predicted by (3.2). We note that
another effect of this second intersection is that, for very few instances, it directly
leads to a recovery of v from πd−β−γ+1(v).

Giving a closed formula incorporating this effect akin to (3.2) would entail to
predict the index γ and then replace β with β+ γ in (3.2). However, as illustrated in
Figure 3.3, neither does the GSA hold for the last 50 or so indices of the basis [Che13]
nor does the prediction

√
d− i+ 1σ for ‖πd−1+1(v)‖.

We stress that while the second intersection often occurs for parameter sets within
reach of practical experiments, it does not always occur for all parameter sets. That
is, for many large parameter sets, e.g. those in [ADPS16], a choice of β satisfy (3.2)
does not lead to a predicted second intersection at some larger index. Thus, this
effect may highlight the pitfalls of extrapolating experimental lattice reduction data
from small instances to large instances.
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3 On the Expected Cost of Solving uSVP via Lattice Reduction

Finding the short vector.

In what follows, we assume that the projected norm ‖πd−k(v)‖ is indeed equal to
the expected norm (cf. Figure 3.2). We further assume that πi(v) is distributed
in a random direction with respect to the rest of the basis. This assumption holds
for LWE where the vector e is sampled from a (near) spherical distribution. We
also note that we can rerandomize the basis and thus the relative directions. Under
this assumption, we show that size reduction recovers the short vector v with high
probability. More precisely, we show:

Heuristic 3.1. Let v ∈ Λ ⊂ Rd be a shortest non-zero vector as assumed in this
section and β ∈ N be a block size. Assume that (3.2) holds, the current basis
B = {b1, . . . ,bd} is such that b∗κ = πκ(v) for κ = d− β + 1 and

v = bk +
k−1∑
i=1

νibi

for some νi ∈ Z, and the GSA holds for B until index κ. If the size reduction step
of BKZ-β is called on bκ, it recovers v with high probability over the randomness of
the basis.

Note that if BKZ has just found a projection of v at index κ, the current basis is
as required by Heuristic 3.1. Now, let νi ∈ Z denote the coefficients of v with respect
to the basis B, i.e.,

v = bd−β+1 +

d−β∑
i=1

νibi.

Let b
(d−β+1)
d−β+1 = bd−β+1, where the superscript denotes a step during size reduction.

For i = d− β, d− β − 1, . . . , 1 size reduction successively finds µi ∈ Z such that

wi = µiπi(bi) + πi(b
(i+1)
d−β+1) = µib

∗
i + πi(b

(i+1)
d−β+1)

is the shortest element in the coset

Li := {µb∗i + πi(b
(i+1)
d−β+1)|µ ∈ Z}

and sets
b

(i)
d−β+1 := µibi + b

(i+1)
d−β+1.

Note that if b
(i+1)
d−β+1 = bd−β+1 +

∑d−β
j=i+1 νjbj, as in the first step i = d− β, then we

have that
πi(v) = νib

∗
i + πi(b

(i+1)
d−β+1) ∈ Li

is contained in Li and hence

Li = πi(v) + Zb∗i .
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3.2 Solving uSVP

If the projection πi(v) is in fact the shortest element in Li, for the newly defined

vector b
(i)
d−β+1 it also holds that

b
(i)
d−β+1 = νibi + b

(i+1)
d−β+1 = bd−β+1 +

d−β∑
j=i

νjbj.

Hence, if πi(v) is the shortest element in Li for all i, size reduction finds the shortest
vector

v = b
(1)
d−β+1

and inserts it into the basis at position d− β + 1, replacing bd−β+1.
It remains to argue that with high probability p for every i we have that the

projection πi(v) is the shortest element in Li. Assuming independence, the success
probability p is given by

p =

d−β∏
i=1

pi,

where the probabilities pi are defined as

pi = Pr [πi(v) is the shortest element in πi(v) + Zb∗i ] .

For each i the probability pi is equal to the probability that

‖πi(v)‖ < min{‖πi(v) + b∗i ‖ , ‖πi(v)− b∗i ‖}

as illustrated in Figure 3.5. To approximate the probabilities pi, we model them as

0

Li

πi(v)
πi(b

(i+1)
d−β+1)b∗i

Figure 3.5: Illustration of a case such that πi(v) is the shortest element on Li.

follows. By assumption, we have

ri := ‖πi(v)‖ = (
√
d− i+ 1/

√
d) ‖v‖ and Ri := ‖b∗i ‖ = δ−2(i−1)+ddet(Λ)

1
d ,

and that πi(v) is uniformly distributed with norm ri. We can therefore model pi as
described in the following and illustrated in Figure 3.6.
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3 On the Expected Cost of Solving uSVP via Lattice Reduction

0

w

b∗i

−b∗i

hi

Ri

ri

ri

ri

Figure 3.6: Illustration of the success probability pi in R2. If w is on the thick part
of the circle, step i of size reduction is successful.

Pick a point w with norm ri uniformly at random. Then the probability pi is
approximately the probability that w is closer to 0 than it is to b∗i and to −b∗i , i.e.

ri < min{‖w − b∗i ‖ , ‖w + b∗i ‖}.

Calculating this probability leads to the following approximation of pi

pi ≈

{
1− 2Ad−i+1(ri,hi)

Ad−i+1(ri)
if Ri < 2ri

1 if Ri ≥ 2ri
,

where Ad−i+1(ri) is the surface area of the sphere in Rd−i+1 with radius ri and
Ad−i+1(ri, hi) is the surface area of the hyperspherical cap of the sphere in Rd−i+1

with radius ri of height hi with hi = ri−Ri/2. Using the formulas provided in [Li11],
an easy calculation leads to

pi ≈

1−
∫ 2

hi
ri
−(hiri )

2

0 t((d−i)/2)−1(1−t)−1/2dt

B( d−i
2
, 1
2

)
if Ri < 2ri

1 if Ri ≥ 2ri

,

where B(·, ·) denotes the Euler beta function. Note that Ri ≥ 2ri corresponds
to (3.3).

Estimated success probabilities p for different block sizes β are plotted in Figure 3.7.
Note that if we assume equality holds in (3.2), the success probability p only depends
on the block size β and not on the specific lattice dimension, determinant of the
lattice, or the length of the unique short vector, since then the ratios between the
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3.3 Applications

predicted norms ‖πd−β+1−k(v)‖ and
∥∥b∗d−β+1−k

∥∥ only depend on β for all k = 1, 2, . . .,
since

‖πd−β+1−k(v)‖∥∥b∗d−β+1−k
∥∥ =

√
β
√
β+k√

β
√
d
‖v‖

δ2(β+k)−d det(Λ)
1
d

=

√
β+k√
β
δ2β−d det(Λ)

1
d

δ2(β+k)−d det(Λ)
1
d

=

√
β + k√
β

δ−2k

and the estimated success probability only depends on these ratios.
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0.85
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Figure 3.7: Estimated success probability p for varying block sizes β, assuming β is
chosen minimal such that (3.2) holds.

The prediction given in Figure 3.7 is in line with the measured probability of
finding v in the same step when its projection πd−β+1(v) is found as reported in
Table 3.1 for β = β2016 and m = m2016. Finally, note that by the above analysis we
do not expect to recover v from a projection πd−γ+1(v) for some small γ � β except
with small probability.

3.3 Applications

Section 3.2 indicates that (3.2) is a reliable condition for when lattice reduction will
succeed in solving uSVP. Furthermore, as illustrated in Figure 3.1, applying (3.2)
lowers the required block sizes compared to the 2008 model which is heavily relied
upon in the literature. Thus, in this section we evaluate the impact of applying the
revised 2016 estimate to various parameter sets from the literature. Indeed, for many
schemes we find that their parameters need to be adapted to maintain the currently
claimed level of security.
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3 On the Expected Cost of Solving uSVP via Lattice Reduction

Many of the schemes considered below feature an unusually short LWE secret
vector s, where si←$ {−B, . . . , B} for some small B ∈ Zq. Furthermore, some
schemes pick the secret to also be sparse such that most components of s are zero.
Thus, before we apply the revised 2016 estimate, we briefly recall the alternative
embedding due to Bai and Galbraith [BG14b] which takes these small (and sparse)
secrets into account.

3.3.1 Bai and Galbraith’s embedding

Consider an LWE instance in matrix form (A,b) ≡ (A,As+e mod q) ∈ Zm×nq ×Zmq .
It holds that the vector (ν s | e | 1), for some ν 6= 0, is contained in the lattice Λ

Λ =

{
x ∈ (νZ)n × Zm+1 |

(
1

ν
A | Im | −b

)
· x ≡ 0 mod q

}
, (3.4)

where ν allows to balance the size of the secret and the noise by rescaling the secret.
An (n+m+ 1)× (n+m+ 1) basis M for Λ can be constructed as

M =

 νIn 0 0
−A qIm b
0 0 1

 .

Indeed, M is full-rank, |det(M)| = det(Λ), and the integer span of M is contained
in Λ, as can be seen by(

1

ν
A | Im | −b

)
·

 νIn 0 0
−A qIm b
0 0 1

 = (A−A | qIm | b− b) ≡ 0 mod q.

Finally, note that M · (s | x | 1) = (ν s | e | 1) for some vector of x. If s
is small and/or sparse, choosing ν = 1, the vector (s | e | 1) is unbalanced,

i.e., ‖s‖√
n
� ‖e‖√

m
≈ σ, where σ is the standard deviation of the LWE error distribution.

We may then want to rebalance it by choosing an appropriate value of ν such that
‖(ν s | e | 1)‖ ≈ σ

√
n+m. Rebalancing preserves (ν s | e | 1) as the unique shortest

non-zero vector in the lattice, while at the same time increasing the determinant of
the lattice being reduced, reducing the block size required by (3.2).

If s
$←− {−1, 0, 1}n we expect ‖ν s‖2 ≈ 2

3
ν2n. Therefore, we can chose ν =

√
3
2
σ to

obtain ‖ν s‖ ≈ σ
√
n, so that ‖(s | e | 1)‖ ≈ σ

√
n+m. Similarly, if exactly w < n

entries of s are non-zero and chosen from {−1, 1}, we have ‖ν s‖2 = w ν2. Choosing
ν =

√
n
w
σ, we obtain a vector ν s of length σ

√
n.

In the case of sparse secrets, combinatorial techniques can also be applied, see
Chapters 5, 6, and 7. In the following, we describe a more naive approach. Given
a secret s with at most w < n non-zero entries, we guess k entries of s to be 0,
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3.4 Security Estimates

therefore decreasing the dimension of the lattice to consider. For each guess, we
then apply lattice reduction to recover the remaining components of the vector
(s | e | 1). Therefore, when estimating the overall cost for solving such instances,
we find min

k
{1/pk · C(n− k)} where C(n) is the cost of running BKZ on a lattice of

dimension n and pk is the probability of guessing correctly.

3.4 Security Estimates

In what follows, we assume that the geometry of Bai-Galbraith’s embedding lattice
is sufficiently close to that of Kannan’s embedding lattice so that we transfer the
analysis as is. Furthermore, in the provided tables we will denote applying (3.2)
using Kannan’s embedding for our estimates as “Our(K)” and applying (3.2) using
Bai and Galbraith’s embedding [BG14b] as “Our(BG)”. Unless stated otherwise, we
will assume that calling BKZ with block size β in dimension d costs 8d 20.292β+16.4

operations [BDGL16, Alb17], in particular that sieving is used as the SVP subroutine.

3.4.1 Lizard

Lizard [CKLS16b, CKLS16a] is a public-key encryption scheme based on the Learning
With Rounding problem, using a small, sparse secret. The authors provide a reduction
to LWE, and security parameters against classic and quantum adversaries, following
their analysis. In particular, they cost BKZ by a single call to sieving on a block of
size β. They estimate this call to cost β 2c β operations where c = 0.292 for classical
adversaries, c = 0.265 for quantum ones and c = 0.2075 as a lower bound for sieving
(“paranoid”). Applying the revised 2016 cost estimate for the primal attack to the
parameters suggested in [CKLS16b] (using their sieving cost model as described
above) reduces the expected costs, as shown in Table 3.2. We note that in the
meantime the authors of Lizard have updated their parameters in [CKLS16a].

3.4.2 HElib

HElib [GHS12a, GHS12b] is a fully homomorphic encryption library implementing
the BGV scheme [BGH13]. A recent work [Alb17] provides revised security estimates
for HELib by employing a dual attack exploiting the small and sparse secret, using the
same cost estimate for BKZ as given at the beginning of this section. In Table 3.3 we
provide costs for a primal attack using Kannan’s and Bai and Galbraith’s embeddings.
Primal attacks perform worse than the algorithm described ind [Alb17], but, as
expected, under the 2016 estimate the gap narrows.
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3 On the Expected Cost of Solving uSVP via Lattice Reduction

Classical Quantum Paranoid
n, log2 q, σ 386, 11, 2.04 414, 11, 2.09 504, 12, 4.20
Cost β d λ β d λ β d λ

[CKLS16b] 418 — 130.8 456 — 129.7 590 — 131.6

Our(K) 372 805 117.2 400 873 114.6 567 1120 126.8
Our(BG) 270 646 88.5 297 692 86.9 372 833 85.9

Table 3.2: Cost estimates λ for solving Lizard PKE [CKLS16b] as given in [CKLS16b]
and using Kannan’s resp. Bai and Galbraith’s embedding under the 2016
estimate. The dimension of the LWE secret is n. In all cases, BKZ-β is
estimated to cost β 2c β operations.

3.4.3 SEAL

SEAL [CLP17] is a fully homomorphic encryption library by Microsoft based on the
FV scheme [FV12]. Up to date parameters are given in [CLP17], using the same
cost model for BKZ as mentioned at the beginning of this section. In Table 3.4, we
provide cost estimates for Kannan’s and Bai and Galbraith’s embeddings under the
2016 estimate. Note that the gap in solving time between the dual and primal attack
reported in [Alb17] is closed for SEAL v2.1 parameters.

3.4.4 TESLA

TESLA [BG14a, ABBD15] is a signature scheme based on LWE. Post-quantum
secure parameters in the quantum random oracle model were recently proposed
in [ABB+17]. In Table 3.5, we show that these parameters need to be increased
to maintain the currently claimed level of security under the 2016 estimate. Note
that [ABB+17] maintains a gap of roughly log2 n bits of security between the best
known attack on LWE and claimed security to account for a loss of security in the
reduction.

3.4.5 BCIV17

[BCIV17] is a somewhat homomorphic encryption scheme obtained as a simplification
of the FV scheme [FV12] and proposed as a candidate for enabling privacy friendly
energy consumption forecast computation in smart grid settings. The authors propose
parameters for obtaining 80 bits of security, derived using the estimator from [APS15]
available at the time of publication. As a consequence of applying (3.2), we observe
a moderate loss of security, as reported in Table 3.6.
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TESLA-0 TESLA-1 TESLA-2
n, log2 q, σ 644, 31, 55 804, 31, 57 1300, 35, 73
Cost β d λ β d λ β d λ

Classical

[ABB+17] — — 110.0 — — 142.0 — — 204.0
[ABB+17]+ 255 — 110.0 358 — 140.4 563 — 200.9

Our(K) 248 1514 102.4 339 1954 129.3 525 3014 184.3

Post-Quantum

[ABB+17] — — 71.0 — — 94.0 — — 142.0
[ABB+17]+ 255 — 68.5 358 — 90.7 563 — 136.4

Our(K) 248 1415 61.5 339 1954 81.1 525 3014 122.4

Table 3.5: Cost estimates for solving TESLA parameter sets [ABB+17]. The entry
“[ABB+17]+” refers to reproducing the estimates from [ABB+17] using a
current copy of the estimator from [APS15] which uses the embedding
factor M = 1 instead of M = ‖e‖, as a consequence the values in
the respective rows are slightly lower than in [ABB+17]. We compare
with Kannan’s embedding under the 2016 estimate. Classically, BKZ-β is
estimated to cost 8d 20.292β+16.4 operations; quantumly BKZ-β is estimated
to cost 8d

√
β0.0225β · 20.4574β/2β/4 operations in [ABB+17].

80 bit security
n = 4096, log2 q = 186, σ = 102

Attack β d λ Attack β d λ

Our(K) 156 8105 77.9 Our(BG) 147 7818 75.3

Table 3.6: Solving costs for proposed Ring-LWE parameters in [BCIV17] using Kan-
nan’s resp. Bai and Galbraith’s embedding under the 2016 estimate. In
both cases, BKZ-β is estimated to cost 8d 20.292β+16.4 operations.
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4 On the Use of Sparsification when
Embedding BDD into uSVP

Kannan’s embedding attack [Kan87] to solve LWE (see Section 2.4.4) corresponds
to a deterministic reduction from BDDα to uSVPγ with γ = 1

2α
, or more refined,

with α = (2 bγc)/(2γ2 + bγc bγ + 1c), see [BSW16, LM09, LWXZ14]. In 2016, Bai et
al. [BSW16] presented a probabilistic reduction from BDDα to uSVPγ with γ = 1√

2α
,

improving the relation between the factors α and γ.5 To achieve this improvement,
so-called sparsification techniques [Kho03, Kho04, DK13, DRS14, SD16] are used
prior to the embedding into uSVP, which is then solved using lattice reduction.
Informally, sparsification chooses a random sublattice of the BDD lattice. With a
certain probability, the BDD solution is contained in this sublattice, and in this
case, BDD in the sublattice is potentially easier to solve than in the original one. So
far, the implications of this improved reduction and the use of sparsification to the
concrete hardness of LWE and BDD have not been studied.

Contribution. In this chapter, we consider a sparsified embedding attack on LWE
(or BDD) which is deduced from the reduction presented in [BSW16]. We provide
a detailed theoretical performance analysis of the sparsified embedding attack in
practice and compare it to Kannan’s embedding approach. Our analysis is based on
the 2016 estimate [ADPS16] analyzed in Chapter 3 and common heuristics used in
lattice-based cryptography. Our results show that, in general, using the sparsified
embedding approach does not lead to a better attack on LWE compared to Kannan’s
embedding approach. This is due to the fact that the decrease in success probability
introduced by sparsification in general is not compensated for or exceeded by the
obtained speedup in the success case.

Organization. The details of the sparsified embedding attack are described in
Section 4.1. Our performance analysis based on the 2016 estimate and a comparison
to Kannan’s embedding attack are provided in Section 4.2.

5BDDα is easier for smaller values of α, while uSVPγ is easier for larger values of γ.
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Publications. This chapter is based on the publication [6], which will be presented
at ISPEC 2018.

4.1 The Sparsified Embedding Attack

In the following we describe a sparsified embedding attack on LWE which can be
deduced from [BSW16]. The sparsified embedding approach is similar to Kannan’s
embedding (see Section 2.4.4). The main difference is that the BDD lattice Λ(A,q) =
{v ∈ Zmq | v ≡ Ax (mod q) for some x ∈ Zn} is sparsified prior to embedding it into
a uSVP lattice. The sparsification technique was first introduced by Khot [Kho03,
Kho04], and specified in [DK13, DRS14, SD16]. Roughly speaking, sparsifying a
lattice means choosing a random sublattice of some index p. In more detail, let p be the
desired index and B be a basis of Λ(A,q). Sample z and u uniformly and independently

from Zmp and set w = Bu. If ‖b + w‖ < (m + 1)l0/
√

2, where the parameter l0 is

chosen as described in [BSW16], resample u until ‖b + w‖ ≥ (m + 1)l0/
√

2. The
vector z is used to sparsify the lattice Λ(A,q) and w is used to offset the target vector
b. The sparsified lattice Λp,z of Λ(A,q) is now defined as

Λp,z = {v ∈ Λ(B) | 〈z,B−1v〉 = 0 mod p}.

If z 6= 0 then Λp,z is a sublattice of Λ(A,q) of index p as shown in the following lemma.

Lemma 4.1. Let Λ be a d-dimensional full-rank lattice, B be a basis of Λ, p be some
prime, z ∈ Znp \ {0} and Λp,z = {v ∈ Λ(B) | 〈z,B−1v〉 = 0 mod p}. Then for the
index of the subgroup Λp,z of Λ it holds that [Λ : Λp,z] = p.

Proof. Consider the homomorphism

ϕ : Λ→ (Zp,+), v 7→ 〈z,B−1v〉 mod p.

We first show that ϕ is surjective. Let j be an index with zj 6= 0. Let a be some
arbitrary element in Zp. Then for v = Bx, where x ∈ Zn with xi = 0 for i 6= j
and xj = (z−1

j mod p)a, it holds that ϕ(v) = a. Hence ϕ is surjective and by the
isomorphism theorem we have

Λ/Λp,z = Λ/ ker(ϕ) ' im(ϕ) = Zp and [Λ : Λp,z] = p.

A basis Bp,z of Λp,z is constructed (as described in Lemma 9 of [BSW16]) and
then embedded into

B′ =

(
Bp,z b + w
0 M

)
∈ Z(m+1)×(m+1)
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using the target vector b + w. How to choose the embedding factor M for the
proof of the reduction is described in [BSW16]. However, as typical for Kannan’s
embedding approach, we choose M = 1. Finally, a shortest non-zero vector v of Λ(B′)
is recovered by lattice reduction and the vector consisting of its first m components
is returned. Note that the output is not necessarily given by ±e, hence the attack
is not always successful. This is the case because the attack can only succeed in
recovering e if the vector closest to b + w in Λ(A,q), namely b + w − e, is also
contained in Λp,z. If the sparsified lattice Λp,z is chosen randomly as described above,
the success probability of the attack is roughly 1/p, see Corollary 2.17 in [SD16] and
Lemma 13 in [BSW16]. For more details on sparsification, we refer to [BSW16]. The
pseudocode for a simple version of the sparsified embedding attack on LWE is given
in Algorithm 4.

Algorithm 4: The sparsified embedding approach

Input : An LWE instance (A,b = As + e mod q) ∈ Zm×nq × Zmq , a prime p,
and l0 > 0, embedding factor M

1 Construct a lattice basis B ∈ Zm×m of the lattice
Λ(A,q) = {v ∈ Zmq | v ≡ Ax (mod q) for some x ∈ Zn} ;

2 Sample z and u uniformly and independently from Zmp and set w = Bu until

‖b + w‖ ≥ (m+ 1)l0/
√

2;
3 Construct a lattice basis Bp,z of the sparsified lattice

Λp,z = {v ∈ Λ(B) |〈z,B−1v〉 = 0 mod p};

4 Set B′ =

(
Bp,z b + w
0 M

)
∈ Z(m+1)×(m+1);

5 Recover v =

(
x
y

)
by solving (u)SVP in Λ(B′) using lattice reduction;

6 return x;

4.2 Analysis

In [BSW16], it is shown that the sparsified embedding yields an improved reduction
from BDDα to uSVPγ compared to Kannan’s embedding in the sense that it gives
better gaps (γ = 1√

2α
instead of γ = 1

2α
). This improvement, however, comes at

the cost of a probabilistic reduction instead of a deterministic one. In this section,
we theoretically analyze and compare the practical behavior of both embedding
approaches under common heuristics used in lattice-based cryptography. Note that
the practical behavior substantially differs from the provable reductions, since in
those reductions “worst cases” that can occur need to be taken into account while
the practical behavior is determined by the average case. Let Λs be the embedded
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4 On the Use of Sparsification when Embedding BDD into uSVP

sparsified lattice of dimension d. From the 2016 estimate (cf. Chapter 3), it can
be deduced that the sparsified embedding attack succeeds if the unique shortest
non-zero vector is contained in Λs and the block size β satisfies√

β/dλ1(Λs) ≤ δ2β−ddet(Λs)
1/d.

In the following, we elaborate on this assumption by analyzing how to solve BDD
using the two embedding approaches (the results carry over to LWE if viewed as an
instance of BDD as described in Section 2.4.4).

4.2.1 Heuristics for Kannan’s Embedding

For Kannan’s embedding, most works considered with the practicality of the attack
implicitly assume that there is no reduction loss in practice, i.e., that γ = 1

α
instead of

γ = 1
2α

. In the following, we elaborate on this assumption. For simplicity, we ignore
the extra dimension induced by the embedding. Let Λ be the BDD lattice, d be the
dimension of Λ, and Λ′ be the uSVP lattice obtained by using Kannan’s technique
for the BDD lattice Λ and the BDD target vector t as described in Section 4.1.
Let α = dist(t,Λ)/λ1(Λ) be the factor of the BDD instance and γ = λ2(Λ′)/λ1(Λ′)
be the gap of the resulting uSVP instance. In practice, it is common (see for
example [APS15, AGVW17]) to make the following heuristic assumptions.

1. Under the assumption that Λ is a random lattice, λ1(Λ) corresponds to the
Gaussian heuristic for Λ.

2. As Kannan’s embedding adds the uniquely distance short vector from t to the
nearest lattice point to the lattice, we can assume that λ1(Λ′) corresponds to
dist(t,Λ) = αλ1(Λ), i.e., λ1(Λ′) = αλ1(Λ).

3. Under the assumption that except for this uniquely short vector Λ′ behaves as a
random lattice, we can assume that λ2(Λ′) corresponds to the Gaussian heuristic
for Λ′, which is the same as the Gaussian heuristic for Λ, i.e., λ2(Λ′) = λ1(Λ).

4. In conclusion, we obtain 1
α

= λ1(Λ)
λ1(Λ′)

= λ2(Λ′)
λ1(Λ′)

= γ.

This shows that heuristically, Kannan’s embedding approach performs much better
in practice than guaranteed by the theoretical reduction, which only guarantees the
gap 1

2α
.

It remains to determine the necessary block size for BKZ to solve such an instance.
According to the 2016 estimate (see Chapter 3), the Gaussian heuristic, and γ = 1

α
,

we get that the required block size β is the minimal β that satisfies

α =
1

γ
≤
√

2πe

β
δ2β−d =

√
2πe

β

(
(((πβ)1/ββ)/(2πe))

1/(2(β−1))
)2β−d

.
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In the LWE case, parameterized by the secret dimension n, the number of samples
m, the modulus q, and the standard deviation σ of the error distribution, we may
instead use the condition √

βσ ≤ δ2β−(m+1)(qm−n)1/(m+1),

since according to the Gaussian heuristic the gap can be estimated as

α =
λ1(Λ)

λ2(Λ)
=

σ
√
d√

d/(2πe) det(Λ)1/d
=

σ
√

2πe

(qm−n)1/d
.

This condition takes the extra dimension introduced by the embedding into account
(i.e., d = m+ 1) and corresponds to the 2016 estimate for LWE (cf. Chapter 3).

4.2.2 Heuristics for the Sparsified Embedding

In this section, we analyze how the sparsified embedding approach performs in
practice, assuming that the heuristics presented in Section 4.2.1 are reasonable. Let
Λ, Λ′, d, α, t, and γ be as in Section 4.2.1. Let p be the prime number used for the
sparsification of Λ and Λs ⊂ Λ be some sparsified sublattice of Λ with [Λ : Λs] = p.
Then it holds that det(Λs) = p · det(Λ). If the sparsification is random (as described
in the reduction), then the probability to keep the closest vector in Λ to the target
t in the sparsified lattice Λs is roughly 1/p. So the probability that one can solve
the BDD problem at all in the sparsified lattice is close to 1/p. Assume that we are
in the success case, i.e., the closest lattice vector in Λ to the target t is kept in the
sparsified lattice Λs. Let Λ′s be the embedded lattice of Λs. Again, for simplicity, we
ignore the additional dimension of Λ′s. Then, similarly to Section 4.2.1, we can apply
the following heuristics.

1. λ1(Λs) corresponds to the Gaussian heuristic for Λs which yields λ1(Λs) =
p1/dλ1(Λ).

2. λ1(Λ′s) corresponds to dist(t,Λs) = dist(t,Λ) = αλ1(Λ), i.e., λ1(Λ′s) = αλ1(Λ) =
λ1(Λ′).

3. λ2(Λ′s) corresponds to the Gaussian heuristic for Λ′s, which is the same as the
Gaussian heuristic for Λs, i.e., λ2(Λ′s) = λ1(Λs) = p1/dλ1(Λ) = p1/dλ2(Λ′).

4. Let γs be the uSVP gap in Λ′s. Then we get γs = λ2(Λ′s)
λ1(Λ′s)

= p1/dλ2(Λ′)
λ1(Λ′)

= p1/dγ =

p1/d 1
α

.

In conclusion, heuristically the gap of the sparsified embedding technique γs = p1/d 1
α

improves by a factor of p1/d compared to Kannan’s embedding, and of course it
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4 On the Use of Sparsification when Embedding BDD into uSVP

improves the gap 1√
2α

guaranteed by the theoretical reduction. Note however, that

this improvement comes at the cost of a success probability of (roughly) 1
p
.

It remains to determine the necessary block size for BKZ to solve such an instance
according to the 2016 estimate. Similar as above, for the success case with γs = p1/d 1

α
,

we get that the required block size β is the minimal β that satisfies

α =
1

γ
≤ p1/d

√
2πe

β
δ2β−d = p1/d

√
2πe

β

(
(((πβ)1/ββ)/(2πe))

1/(2(β−1))
)2β−d

.

In the LWE case parameterized by n, m, q, and σ as above we may instead use the
condition √

βσ ≤ δ2β−(m+1)(pqm−n)1/(m+1).

4.2.3 Comparison

As shown in Sections 4.2.1 and 4.2.2, the heuristic improvement of using sparsification
in the embedding approach is a factor of p1/d in the uSVP gap which results in
a smaller necessary block size for BKZ to solve the resulting uSVP problem. In
the following, we further analyze this improvement. First, note that if p = p(d) is
chosen to be polynomial in the lattice dimension d, the improvement factor p1/d

tends to 1 as d increases, i.e., asymptotically, the improvement vanishes. On the
other hand, if p = p(d) is chosen to be exponential in d, the success probability of
roughly 1/p is negligible. Therefore, to possibly achieve an overall improvement in
practice, taking the success probability into account, p must be chosen carefully for
the specific instance.

In Table 4.1, we show the predicted minimal block sizes for BKZ according to
the 2016 estimate required by Kannan’s and the sparsified embedding approach
for BDD instances of various parameter sets. As indicated by these examples, the
benefit of using sparsification depends on different parameters. In Table 4.2, we
show the same for the LWE instances analyzed in Chapter 3. The results show
that, for the analyzed instances, one needs to considerably increase p in order to
get a moderate decrease of the required block size. This, however, implies, that
getting a moderate speed up in the success case comes at the price of a low success
probability of roughly 1/p. For the analyzed instances, one can therefore predict
that the sparsified embedding approach performs worse than Kannan’s (assuming a
reasonable cost model for BKZ).
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n = 65, m = 182, q = 521, σ = 8/
√

2π
1 ≤ p ≤ 23 29 ≤ p ≤ 887 907 ≤ p ≤ 27953
β = 56 β = 55 β = 54

n = 100, m = 243, q = 2053, σ = 8/
√

2π
1 ≤ p ≤ 113 127 ≤ p ≤ 21859 21863 ≤ p ≤ 4141603
β = 67 β = 66 β = 65

n = 108, m = 261, q = 2053, σ = 8/
√

2π
1 ≤ p ≤ 163 167 ≤ p ≤ 36523 36527 ≤ p ≤ 8485031
β = 77 β = 76 β = 75

Table 4.2: Minimal block sizes β according to the 2016 estimate for various LWE
instances parameterized by the secret dimension n, the number of samples
m, the modulus q, and the standard deviation σ of the error distribu-
tion and for various primes p. The exception p = 1 indicates that no
sparsification is used.
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5 Revisiting the Hybrid Lattice Reduc-
tion and Meet-in-the-Middle Attack

Over the recent years, several cryptographic schemes based on lattice problems
with particularly small (e.g., binary) and/or sparse vectors have been proposed,
e.g., [HPS98, BCLvV17b, BGG+16, DDLL13, GLP12]. In order to evaluate the
security of such schemes, it is not sufficient to estimate the runtimes of general
lattice attacks (such as the ones discussed in Chapters 3 and 4), but in addition it
is important to consider attacks that are specifically designed to solve such special
instances of lattice problems. One such attack is the “hybrid lattice reduction and
meet-in-the-middle attack” [HG07] (referred to as the hybrid attack in the following)
against the NTRU encryption scheme [HPS98] proposed by Howgrave-Graham in
2007. Several works [HG07, HHGP+07, HHHGW09, HPS+17, Sch15] claim that the
hybrid attack is by far the best known attack on NTRUEncrypt. In the following
years, numerous cryptographers have applied the hybrid attack to their schemes
in order to estimate their security. These considerations include more variants of
the NTRU encryption scheme [HHHGW09, HPS+17, Sch15], the recently proposed
encryption scheme NTRU prime [BCLvV17b, BCLvV16], and the signature schemes
BLISS [DDLL13] and GLP [GLP12, DDLL13]. However, so far a framework to apply
the hybrid attack to a larger class of lattice problems with small or sparse secret
vectors, in particular LWE with small or sparse error distributions, has not been
proposed. In addition, all of the analyses of the hybrid attack mentioned above suffer
from the use of over-simplifying assumptions which may distort the accuracy of the
security estimates, as pointed out in [Sch15]. Therefore, an important challenge is to
provide a detailed analysis of the hybrid attack in a framework which is applicable
to a large class of lattice problems.

Contribution. In this chapter, we address this challenge in the following way.
We present a generalized framework for the hybrid attack applied to the uSVP.
This general framework for the hybrid attack can naturally be applied to many
lattice-based cryptocraphic constructions. We provide a detailed analysis of the
generalized version of the hybrid attack, improving on previous considerations in
the literature. Our improvements include explicit calculations of the probability of
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5 Revisiting the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

finding collisions in the meet-in-the-middle search. Finally, we apply our improved
analysis to reevaluate the security of the following cryptographic schemes against
the hybrid attack: the NTRU [HPS+17], NTRU prime [BCLvV17b, BCLvV16],
and R-BinLWEEnc [BGG+16] encryption schemes and the BLISS [DDLL13] and
GLP [GLP12] signature schemes. Our results show that there exist both security
over- and underestimates against the hybrid attack across the literature. We fur-
ther compare our results to security estimates derived from the 2016 estimate (cf.
Chapter 3) to showcase the improvement of the hybrid attack over a pure lattice
reduction attack on uSVP with small and/or sparse secret vectors.

Organization. In Section 5.1, we provide some useful tools for q-ary lattices. Our
uSVP framework for the hybrid attack is presented in Section 5.2. In Section 5.3,
we provide our improved analysis of the hybrid attack in the generalized framework.
We apply our new analysis of the hybrid attack to various cryptographic schemes
to derive updated security estimates and compare our results to the primal attack
under the 2016 estimate in Section 5.4.

Publications. This chapter is based on the publications [1], which was presented
at AFRICACRYPT 2016, and [2], which will appear in the Journal of Mathematical
Cryptology.

5.1 Tools for q-ary Lattices

In this section, we provide some useful tools for q-ary lattices.

5.1.1 Constructing a Suitable Basis for the Hybrid Attack

The hybrid attack requires a lattice of the form

B′ =

(
B C
0 Ir

)
∈ Zm×m

for some dimensions m and r. In the following lemma we show that for q-ary lattices,
where q is prime, there always exists a basis of this form for a suitable r depending
on the determinant of the lattice. In the proof we also show how to construct such a
basis.

Lemma 5.1. Let q be prime, m ∈ N, and Λ ⊂ Zm a q-ary lattice.

1. There exists some k ∈ Z, 0 ≤ n ≤ m such that det(Λ) = qk.

2. Let det(Λ) = qk. Then there is a matrix A ∈ Zm×(m−k)
q of rank m− k (over

Zq) such that Λ = Λq(A).
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3. Let det(Λ) = qk and A =

(
A1

A2

)
with A1 ∈ Zk×(m−k)

q ,A2 ∈ Z(m−k)×(m−k)
q be a

matrix of rank m− k (over Zq) such that Λ = Λq(A). If A2 is invertible over
Zq, then the columns of the matrix

B′ =

(
qIk A1A

−1
2

0 Im−k

)
∈ Zm×m (5.1)

form a basis of the lattice Λ.

Proof. 1. As qZm ⊂ Λ it holds that det(Λ) | det(qZm) = qm and therefore det(Λ)
is some non-negative power of q, because q is prime.

2. For the group index [Λ : qZm] we have [Λ : qZm] = det(qZm)/det(Λ) = qm−k.
Let A′ ∈ Zm×mq be some lattice basis of Λ. Since Λ/qZm is in one-to-one
correspondence to the Zq–vector space spanned by A′, this vector space has
to be of dimension m − k and therefore A′ has rank m − k over Zq. This
implies that there is some matrix A consisting of m− k columns of A′ such
that Λ = Λ(qIm | A) = Λq(A).

3. By assumption A2 is invertible and thus we have

Λ =
{
v ∈ Zm | ∃w ∈ Z(m−k) : v = Aw mod q

}
=

{
v ∈ Zm | ∃w ∈ Z(m−k) : v =

(
A1

A2

)
A−1

2 w mod q

}
=

{(
A1A

−1
2

Im−k

)
w | w ∈ Z(m−k)

}
+ qZm.

Therefore the columns of the matrix(
qIm
∣∣ A1A

−1
2

Im−k

)
∈ Zm×(m+(m−k))

form a generating set of the lattice Λ, which can be reduced to the basis B′.

5.1.2 Modifying the GSA for q-ary Lattices

Typically, the Gram-Schmidt lengths of a lattice basis obtained after performing BKZ
with a certain block size (or root Hermite factor) can be approximated the Geometric
Series Assumption (GSA), see Chapter 2. However, for bases of q-ary lattices of the
form as constructed in Lemma 5.1, this assumption can be modified to give better
predictions. This has already been considered and confirmed with experimental
results in previous works, see for example [HG07, HHHGW09, HPS+17, Sch15]. In
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this section, we derive simple formulas predicting the Gram-Schmidt lengths of a
reduced basis for q-ary lattices, given a basis of a certain form. We begin by sketching
the reason why the unmodified GSA should be modified for q-ary lattices, given an
input basis B of the form

B =

(
qIa ?
0 Ib

)
∈ Zd×d,

where d = a + b. How to construct such a basis for a q-ary lattice is shown in
Section 5.1.1. For a relatively small block size (equivalently a large root Hermite
factor) the GSA predicts that the first Gram-Schmidt vectors of the reduced basis
have norm bigger than q. However, in practice this will not happen, since in this
case the first vectors will simply not be modified by the reduction. This means, that
instead of reducing the whole basis B, one can just consider reducing the last vectors
that will actually be reduced. Let k denote the (so far unknown) number of the last
vectors that are actually reduced (i.e., their corresponding Gram-Schmidt vectors
according to the GSA have norm smaller than q). In the following, we assume that
the applied block size is small enough such that k < d but sufficiently large such
that k > b. We write B in the form

B =

(
qId−k D

0 B1

)
for some B1 ∈ Zk×k and D ∈ Z(d−k)×k. Now instead of B we only reduce B1 to
B′1 = B1U for some unimodular matrix U ∈ Zk×k. This yields a reduced basis

B′ =

(
qId−k DU

0 B′1

)
of B. The Gram-Schmidt basis of this new basis B′ is given by

(B′)∗ =

(
qId−k 0

0 (B′1)∗

)
.

Therefore, the lengths of the Gram-Schmidt basis vectors (B′)∗ are q for the first
d− k vectors and then equal to the lengths of the Gram-Schmidt basis vectors (B′1)∗,
which are smaller than q. In order to predict the lengths of (B′)∗ we can apply the
GSA to the lengths of the Gram-Schmidt basis vectors (B′1)∗. What remains is to
determine k. Assume applying BKZ on B1 with the given block size results in a
reduced basis B′1 of root Hermite factor δ. By our construction we can assume that
the first Gram-Schmidt basis vector of (B′1)

∗ has norm roughly equal to q, so the
GSA implies

δk det(Λ(B1))
1
k = q.
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Using the fact that det(Λ(B1)) = qk−b and k < d, we can solve for k and obtain

k = min

(⌊√
b

logq(δ)

⌋
, d

)
. (5.2)

Summarizing, we expect that after lattice reduction our Gram-Schmidt basis (B′1)∗

has lengths ‖b∗1‖ , . . . , ‖b∗d‖, where

‖b∗i ‖ =

{
q, if i ≤ d− k

δ−2(i−(d−k)−1)+kq
k−b
k , else

(5.3)

and k is given as in Equation 5.2.
Note that it might also happen that the last Gram-Schmidt lengths are predicted to

be smaller than 1. In this case, these last vectors may also not be reduced in practice,
since the basis matrix has the identity in the bottom right corner. Therefore, in this
case the GSA can be further modified. However, for realistic attack parameters this
phenomenon never occurred in our considerations and therefore we do not include it
in our formulas and leave it to the reader to perform the calculations if needed.

5.2 The Hybrid Attack

In this section, we present a generalized version of the hybrid attack to solve unique
shortest vector problems. Our framework for the hybrid attack is the following: the
task is to find a (unique) shortest non-zero vector v in a lattice Λ, given a basis of Λ
of the form

B′ =

(
B C
0 Ir

)
∈ Zm×m,

where 0 < r < m is the meet-in-the-middle dimension, B ∈ Z(m−r)×(m−r), and
C ∈ Z(m−r)×r. In Section, 5.1.1, it was shown that for q-ary lattices, where q is prime,
one can always construct a basis of this form, provided that the determinant of the
lattice is at most qm−r. Additionally, in Section 5.4, we show that our framework
can be applied to many lattice-based cryptographic schemes.

The main idea of the attack is the following. Let v be a shortest non-zero vector
contained in the lattice Λ. We split the short vector v into two parts v = (vl,vg)
with vl ∈ Zm−r and vg ∈ Zr. The second part vg represents the part of v that is
recovered by guessing (meet-in-the-middle) during the attack, while the first part vl
is recovered with lattice techniques (solving BDD problems). Because of the special
form of the basis B′, we have that

v =

(
vl
vg

)
= B′

(
x
vg

)
=

(
Bx + Cvg

vg

)
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5 Revisiting the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

for some vector x ∈ Zm−r, hence Cvg = −Bx + vl. This means Cvg is close to
the lattice Λ(B), since it only differs from the lattice by the short vector vl, and
therefore vl can be recovered solving a BDD problem if vg is know. The idea now is
that if we can correctly guess the vector vg, we can hope to find vl using the Nearest
Plane algorithm (see Chapter 2) via NPB(Cvg) = vl, which is the case if the basis B
is sufficiently reduced. Solving the BDD problem using Nearest Plane is the lattice
part of the attack. The lattice Λ(B) in which we need to solve BDD has the same
determinant as the lattice Λ(B′) in which we want to solve uSVP, but it has smaller
dimension, i.e., m− r instead of m. Therefore, the newly obtained BDD problem is
potentially easier to solve than the original uSVP instance.

In the following, we explain how one can speed up the guessing part of the attack
by Odlyzko’s meet-in-the-middle approach. Using this technique one is able to reduce
the number of necessary guesses to the square root of the number of guesses needed
in a naive brute-force approach. Odlyzko’s meet-in-the-middle attack on NTRU
was first described in [HGSW] and applied in the hybrid attack against NTRU
in [HG07]. The idea is that instead of guessing vg directly in a large set M of possible
vectors, we guess sparser vectors v′g and v′′g in a smaller set N of vectors such that
v′g + v′′g = vg. In our attack the larger set M will be the set of all vectors with a
fixed number 2ci of the non-zero entries equal to i for all i ∈ {±1, . . . ,±k}, where
k = ‖vg‖∞. The smaller set N will be the set of all vectors with only half as many,
i.e., only ci, of the non-zero entries equal to i for all i ∈ {±1, . . . ,±k}. Assume
that NPB(Cvg) = vl. First, we guess vectors v′g and v′′g in the smaller set N . We
then compute v′l = NPB(Cv′g) and v′′l = NPB(Cv′′g). We hope that if v′g + v′′g = vg,
then also v′l + v′′l = vl, i.e., that Nearest Plane is additively homomorphic on those
inputs. The probability that this additive property holds is one crucial element in the
runtime analysis of the attack. We further need to detect when this property holds
during the attack, i.e., we need to be able to recognize matching vectors v′g and v′′g
with v′g + v′′g = vg and v′l + v′′l = vl, which we call a collision. In order to do so, we
store v′g and v′′g in (hash) boxes whose addresses depend on v′l and v′′l , respectively,
such that they collide in at least one box. To define those addresses properly, note
that in case of a collision we have v′l = −v′′l + vl. Thus v′l and −v′′l differ only by a
vector of infinity norm y = ‖vl‖∞. Therefore, the addresses must be crafted such
that for any x ∈ Zm and z ∈ Zm with ‖z‖∞ ≤ y it holds that the intersection of the

addresses of x and x + z is non-empty, i.e., A(m,y)
x ∩ A(m,y)

x+z 6= ∅. Furthermore, the
set of addresses should not be unnecessarily large so the hash tables do not grow too
big and unwanted collisions are unlikely to happen. The following definition satisfies
these properties.

Definition 5.1. Let m, y ∈ N. For a vector x ∈ Zm the set A(m,y)
x ⊂ {0, 1}m is

defined as

A(m,y)
x =

{
a ∈ {0, 1}m

∣∣∣∣ (a)i = 1 if (x)i > dy2 − 1e for i ∈ {1, . . . ,m},
(a)i = 0 if (x)i < −by2c for i ∈ {1, . . . ,m}

}
.
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5.2 The Hybrid Attack

Algorithm 5: The hybrid attack on uSVP without lattice reduction

Input : m, r ∈ N with r < m, y, k ∈ N, c−k, . . . , ck ∈ N0 with r =
∑k

i=−k 2ci,

B′ =

(
B C
0 Ir

)
∈ Zm×m, where B ∈ Z(m−r)×(m−r) and

C ∈ Z(m−r)×r

1 while true do
2 guess v′g ∈ {−k, . . . , k}r with exactly ci entries equal to i for all

i ∈ {−k, . . . , k};
3 calculate v′l = NPB(Cv′g) ∈ Zm−r ;

4 store v′g in all the boxes addressed by A(m−r,y)

v′l
∪ A(m−r,y)

−v′l
;

5 for all v′′g 6= v′g in all the boxes addressed by A(m−r,y)

v′l
∪ A(m−r,y)

−v′l
do

6 set vg = v′g + v′′g and calculate vl = NPB(Cvg) ∈ Zm−r;

7 if v =

(
vl
vg

)
∈ Λ(B′) and ‖vl‖∞ ≤ y and ‖vg‖∞ ≤ k then

8 return v;

We illustrate Definition 5.1 with some examples.

Example. Let m = 5 be fixed. For varying bounds y and input vectors x we have

A(5,1)
(7,0,−1,1,−5) = {(1, 0, 0, 1, 0), (1, 1, 0, 1, 0)}

A(5,2)
(8,0,−1,1,−2) = {(1, 0, 0, 1, 0), (1, 1, 0, 1, 0), (1, 0, 1, 1, 0), (1, 1, 1, 1, 0)}

A(5,3)
(2,−1,9,1,−2) = {(1, 0, 1, 0, 0), (1, 0, 1, 1, 0), (1, 1, 1, 0, 0), (1, 1, 1, 1, 0)}

A(5,4)
(2,−5,0,7,−2) = {(1, 0, 0, 1, 0), (1, 0, 0, 1, 1), (1, 0, 1, 1, 0), (1, 0, 1, 1, 1)}

The hybrid attack on uSVP without precomputation is presented in Algorithm 5.
A list of the attack parameters and the parameters used in the runtime analysis
of the attack and their meaning is given in Table 5.1. In order to increase the
chance of Algorithm 5 being successful one performs a lattice reduction step as
precomputation. Therefore, the complete hybrid attack, presented in Algorithm 6, is
in fact a combination of a lattice reduction step and Algorithm 5.

The Hybrid Attack on BDD

The hybrid attack can also be applied to BDD instead of uSVP by rewriting a BDD
instance into a uSVP instance via Kannan’s embedding, see Section 2.4.4. The
embedded uSVP lattice has the same determinant as the BDD lattice and dimension
m+ 1 instead of m. However, the additional dimension can be ignored, since the last
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5 Revisiting the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

Algorithm 6: The hybrid attack on uSVP including lattice reduction

Input : m, r ∈ N with r < m, β, y, k ∈ N, c−k, . . . , c−1, c1, . . . , ck ∈ N0 with
r =

∑k
i=−k 2ci,

B′ =

(
B C
0 Ir

)
∈ Zm×m, where B ∈ Z(m−r)×(m−r) and

C ∈ Z(m−r)×r

1 BKZ-β reduce B to some basis B̃;

2 run Algorithm 5 on input m, r, y, k, c−k, . . . , c−1, c1, . . . , ck,

(
B̃ C
0 Ir

)
;

Parameter Meaning
m lattice dimension
r meet-in-the-middle dimension
β block size used for lattice reduction
δ root Hermite factor corresponding to β
B′ lattice basis of the whole lattice
B partially reduced lattice basis of the sublattice
ci number of i-entries guessed during attack
y infinity norm bound on vl
k infinity norm bound on vg
Y expected Euclidean norm of vl
‖b∗i ‖ Gram-Schmidt lengths corresponding to B
ri scaled Gram-Schmidt lengths corresponding to B

Table 5.1: Attack parameters and parameters in the runtime analysis

entry of the short vector v is known to be the embedding factor and therefore we do
not have to guess it during the meet-in-the-middle phase. Note that by definition of
BDD it is very likely that ±v are the only short vectors in the lattice Λ(B′′). By
fixing the last coordinate to be the embedding factor, only v can be found by the
attack.

5.3 Analysis

In this section, we analyze the runtime of the hybrid attack. First, in Heuristic 5.1
in Section 5.3.1, we estimate the runtime of the attack in case sufficient success
conditions are satisfied. In Section 5.3.2, we then show how to determine the
probability that those success conditions are satisfied, i.e., how to determine (a
lower bound on) the success probability. We conclude the runtime analysis of the
attack by showing how to optimize the attack parameters to minimize its runtime in
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Section 5.3.3. We end the section by highlighting our improvements over previous
analyses of the hybrid attack, see Section 5.3.3.

5.3.1 Runtime Analysis

We now present our main result about the runtime of the generalized hybrid attack.
It shows that under sufficient conditions the attack is successful and estimates the
expected runtime in the success case. We provide “over”- and “under”-estimates,
where the under-estimates account for possible improvements which have not yet
shown to be applicable. Not the they are not intended to be strict upper or lower
bounds on the runtime of the attack.

Heuristic 5.1. Let m, r ∈ N with r < m, β, y, k ∈ N, c−k, . . . , c−1, c1, . . . , ck ∈ N0

with r =
∑k

i=−k 2ci, and B′ =

(
B C
0 Ir

)
∈ Zm×m with B ∈ Z(m−r)×(m−r) and C ∈

Z(m−r)×r be the inputs of Algorithm 5. Further let Y ∈ R≥0 and let ‖b∗1‖ , . . . ,
∥∥b∗m−r∥∥

denote the lengths of the Gram-Schmidt basis vectors of the basis B. Further let
S ⊂ Λ(B′) denote the set of all non-zero lattice vectors v = (vl,vg)

t ∈ Λ(B′), where
vl ∈ Zm−r and vg ∈ Zr with ‖vl‖∞ ≤ y, ‖vl‖ ≈ Y , ‖vg‖∞ ≤ k, exactly 2ci entries
of vg are equal to i for all i ∈ {±1, . . .± k}, and NPB(Cvg) = vl. Assume that the
set S is non-empty.

Then Algorithm 5 is successful and the expected number of loops can be estimated
by

L =

(
r

c−k, . . . , ck

)p · |S| · ∏
i∈{±1,...,±k}

(
2ci
ci

)− 1
2

,

where

p =
m−r∏
i=1

(
1− 1

riB( (m−r)−1
2

, 1
2
)

∫ −ri
−ri−1

∫ z+ri

max(−1,z−ri)
(1− t2)

(m−r)−3
2 dtdz

)
,

B(·, ·) denotes the Euler beta function (see [Olv10]), and

ri =
‖b∗i ‖
2Y

for all i ∈ {1, . . . ,m− r}.

Furthermore, the expected number of operations of Algorithm 5 for security under-
and overestimates can be estimated by

Thyb,under = (m− r)/21.06L and Thyb,over = (m− r)2/21.06L.

In the following remark we explain the meaning of the (attack) parameters that
appear in Heuristic 5.1 in more detail.
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5 Revisiting the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

Remark 5.1. 1) The main attack parameters of the hybrid attack are the meet-
in-the-middle dimension r and the BKZ block size β used in the precomputation
phase (see Algorithm 6). While r determines the dimensions of the search space
and the BDD lattice, β determines the Gram-Schmidt lengths ‖b∗1‖ , . . . ,

∥∥b∗m−r∥∥
of the BKZ-β reduced basis of the BDD lattice. The Gram-Schmidt lengths
achieved by lattice reduction can be estimated by the GSA (see Chapter 2) or its
modified version for q-ary lattices presented in Section 5.1.2. Note that spending
more time on lattice reduction increases the probability p in Heuristic 5.1 as
well as the probability that the condition NPB(Cvg) = vl holds, as can be seen
later in this section and Section 5.3.2.

2) In order to obtain a high success probability of the attack, the parameters y, k,
c−k, . . . , ck must be chosen in such a way that the requirements of Heuristic 5.1
are likely to be fulfilled. Choosing those parameters depends heavily on the
distribution of the short vectors v ∈ S. In order to obtain more flexibility, this
distribution is not specified in Heuristic 5.1. However, in Section 5.4, we show
how one can choose the attack parameters and calculate the success probability
for several distributions arising in various cryptographic schemes. At this point
we only remark that y should be a (tight) upper bound on ‖vl‖∞, k a (tight)
upper bound on ‖vg‖∞, and 2ci the (expected) number of entries of vg that is
equal to i for i ∈ {±1, . . . ,±k}.

3) As indicated in the first remark, the complete attack (presented in Algorithm 6)
is in fact a combination of precomputation (lattice reduction) and Algorithm 5.
Therefore, the runtime of both phases must be considered when estimating the
total runtime of the attack. Furthermore, to minimize the overall cost (up to a
factor of at most 2), the runtimes of both individual phases have to be balanced.
In particular, the block size for the BKZ algorithm must be chosen such that
the precomputed basis offers the best trade-off between its quality with respect
to the hybrid attack (i.e., amplifying the success probability and decreasing the
number of operations) and the cost to compute such a basis. In addition, the
dimension r must be chosen such that the cost of the meet-in-the-middle phase
roughly matches the precomputation cost. More details on optimizing the total
runtime are presented in Section 5.3.3.

In the following, we show how Heuristic 5.1 can be derived. For the rest of this
section let all notations be as in Heuristic 5.1. We further assume in the following
that the assumption of Heuristic 5.1, i.e., S 6= ∅, is satisfied. We first provide the
following useful definition already given in [HG07], however with a slightly different
notation.

Definition 5.2. Let n ∈ N. A vector x ∈ Rn is called y-admissible (with respect to
the basis B) for some vector y ∈ Rn if NPB(x) = NPB(x− y) + y.
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This means, that if x is y-admissible then NPB(x) and NPB(x−y) yield the same
lattice vector. The following lemma about Definition 5.2 showcases the relevance
of the definition by relating it to the equation NPB(t1) + NPB(t2) = NPB(t1 + t2),
which is necessary to hold for our attack to work.

Lemma 5.2. Let t1 ∈ Rn, t2 ∈ Rn be two arbitrary target vectors. Then the following
are equivalent.

1. NPB(t1) + NPB(t2) = NPB(t1 + t2).

2. t1 is NPB(t1 + t2)-admissible.

3. t2 is NPB(t1 + t2)-admissible.

Proof. Let t = t1 + t2 and y = NP(t). By symmetry it suffices to show

NP(t1) + NP(t2) = y ⇔ NP(t1) = NP(t1 − y) + y,

which is equivalent to showing

−NP(t2) = NP(t1 − y).

By definition, t− y is a lattice vector and therefore NP(x− (t− y)) = NP(x) for all
x ∈ Rm. This leads to

NP(t1 − y) = NP(t1 − y − (t− y)) = NP(t1 − t) = NP(−t2) = −NP(t2).

Success of the Attack and Number of Loops

We now estimate the expected number of loops in case Algorithm 5 terminates.
In the following, we use the subscript B for probabilities to indicate that the
probability is taken over the randomness of the basis (with Gram-Schmidt length
‖b∗1‖ , . . . ,

∥∥b∗m−r∥∥). In each loop of the algorithm we sample a vector v′g in the set

W = {w ∈ Zr | exactly ci entries of w are equal to i ∀i ∈ {−k, . . . , k}}.

The attack succeeds if v′g ∈ W and v′′g ∈ W such that v′g + v′′g = vg and NPB(Cv′g) +
NPB(Cv′′g) = NPB(Cv′g + Cv′′g) = vl for some vector v = (vl,vg) ∈ S are sampled
in different loops of the algorithm. By Lemma 5.2 the second condition is equivalent
to the fact that Cv′g is vl-admissible. We assume that the algorithm only succeeds
in this case. We are therefore interested in the following subset of W :

V =

{
w ∈ W vg −w ∈ W and Cw is vl-admissible

for some v = (vl,vg) ∈ S

}
.
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5 Revisiting the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

For all v = (vl,vg) ∈ S, with vl ∈ Zm−r and vg ∈ Zr let p(v) denote the probability

p(v) = Pr
B,w←W

[Cw is vl-admissible]

and p1(v) denote the probability

p1(v) = Pr
w←W

[vg −w ∈ W ] =

∏
i∈{±1,...,±k}

(
2ci
ci

)
|W |

, where |W | =
(

r
c−k, . . . , ck

)
.

By construction we have that p1(v) is constant for all v ∈ S, so we can simply write
p1 instead of p1(v). It is reasonable to assume that Cw is randomly distributed
modulo the parallelepiped P(B∗), or without loss of generality in P(B∗), and that
vl (which is of length Y ) is distributed in a random direction relative to basis. We
can therefore make the following reasonable assumption on p(v).

Assumption 5.1. For all v ∈ S we assume that

p(v) ≈ p := Pr
B,x←P(B∗),y←Sm−r(Y )

[x is y-admissible],

where

Sm−r(Y ) = {x ∈ Rm−r | ‖x‖ = Y }

is the surface of a sphere with radius Y centered around the origin.

Assuming independence of p and p1 and disjoint events for the elements of S,
we can make the following reasonable assumption (analogously to Lemma 6 and
Theorem 3 of [HG07]).

Assumption 5.2. We assume that

|V |
|W |
≈ Pr

B,w←W
[w ∈ V ] ≈ p1p |S| .

From Assumption 5.2 it follows that |V | ≈ p1p |W | |S|. As long as the product
p1p is not too small, we can therefore assume that V 6= ∅, which we do in the
following. In this case the attack is successful, since by Lemma 5.2 if v′g ∈ V then
also v′′g = vg − v′g ∈ V for all v = (vl,vg) ∈ S. Such two vectors v′g and v′′g in V will
eventually be guessed in two separate loops of the algorithm and they are recognized
as a collision, since by the assumption ‖vl‖∞ ≤ y of Heuristic 5.1 they share at
least one common address. By Assumption 5.2 we expect that during the algorithm
we sample in V every 1

p1p|S| loops and by the birthday paradox we expect to find
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a collision v′g ∈ V and v′′g ∈ V with v′′g + v′g = vg after L ≈ 1
p1p|S|

√
|V | loops. In

conclusion, we can estimate the expected number of loops by

L ≈
√
|V |

p1p |S|
=

√
|W |√
p1p |S|

=

(
r

c−k, . . . , ck

)p |S| ∏
i∈{±1,...,±k}

(
2ci
ci

)− 1
2

.

In order to conclude the estimation for the necessary number of loops, it remains
to calculate the probability p, which is done in the following.

Heuristic 5.2. The probability p is approximately

p ≈
m−r∏
i=1

(
1− 1

riB( (m−r)−1
2

, 1
2
)

∫ −ri
−ri−1

∫ z+ri

max(−1,z−ri)
(1− t2)

(m−r)−3
2 dtdz

)
,

where B(·, ·) and r1, . . . , rm−r are defined as in Heuristic 5.1.

In order to calculate p one needs to estimate the lengths ri, as discussed in the
following remark.

Remark 5.2. Note that the probability p depends on the scaled Gram-Schmidt lengths
ri and therefore on the quality of the basis, i.e., its root Hermite factor δ. For the
scaling factor one needs to estimate ‖vl‖. The Gram-Schmidt lengths obtained after
performing lattice reduction can be predicted by the GSA (see Chapter 2) or its
modified version for q-ary lattices (see Section 5.1.2).

In the following, we justify Heuristic 5.2. Let x and y be as in Assumption 5.2.
By Lemma 2.1 there exist unique lattice vectors u1,u2 ∈ Λ(B) such that NPB(x) =
x − u1 ∈ P(B∗) and NPB(x − y) + y = x − u2 ∈ y + P(B∗). As without loss
of generality we assume x ∈ P(B∗), we have u1 = 0. Then by definition x is
y-admissible if and only if u2 = u1 = 0, which is equivalent to y−NPB(x) ∈ P(B∗).
Therefore, p is equal to the probability

p = Pr
B,x←P(B∗),y←Sm−r(Y )

[y − NPB(x) ∈ P(B∗)],

which we determine in the following.
There exists some orthonormal transformation that aligns P(B∗) along the standard

axes of Rm−r. By applying this transformation, we may therefore assume that P(B∗)
is aligned along the standard axes of Rm−r (and still that y is a uniformly random
vector of length Y ). We can therefore approximate the probability p by

p ≈ Pr
t

$←R,y $←Sm−r(Y )

[t + y ∈ R], (5.4)
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where

R =

{
x ∈ Rm−r | ∀i ∈ {1, . . . ,m− r} : −‖b

∗
i ‖

2
≤ xi <

‖b∗i ‖
2

}
is the rectangular parallelepiped centered around zero with edge lengths ‖b∗i ‖. We
continue calculating this approximation of p. We can rewrite (5.4) as

p ≈ Pr

ti
$←
[
−
‖b∗i‖

2
,
‖b∗i‖

2

]
,y

$←Sm−r(Y )

[
∀i ∈ {1, . . . ,m− r} : ti + (y)i ∈

[
−‖b

∗
i ‖

2
,
‖b∗i ‖

2

]]
.

Rescaling everything by a factor of 1/Y leads to

p ≈ Pr
ti

$←[−ri,ri],y
$←Sm−r(1)

[∀i ∈ {1, . . . ,m− r} : ti + (y)i ∈ [−ri, ri]],

where ri are as defined in Heuristic 5.1.
In theory, the distributions of the coordinates of y are not independent, which

makes calculating p very cumbersome. In practice, however, the probability that
ti + (y)i ∈ [−ri, ri] is big for all but the last few indices i. This is due to the fact that
according to the GSA typically only the last values ri are small. Consequently, we
expect the dependence of the remaining entries not to be strong. This assumption
was already established by Howgrave-Graham [HG07] and appears to hold for typical
values of ri appearing in practice. It is therefore reasonable to assume that

p ≈
m−r∏
i=1

Pr
ti

$←[−ri,ri],(y)i
$←Pm−r

[ti + (y)i ∈ [−ri, ri]],

where Pm−r denotes the probability distribution on the interval [−1, 1] obtained by
the following experiment: sample a vector y uniformly at random on the unit sphere
in R(m−r) and then output the first (equivalently, any arbitrary but fixed) coordinate
of y.

Next we explore the density function of Pm−r. The probability that (y)i ≤ x for

some −1 < x < 0, where (y)i
$← Pm−r, is given by the ratio of the surface area of

a hyperspherical cap of the unit sphere in R(m−r) with height h = 1 + x and the
surface area of the unit sphere. This is illustrated in Figure 5.1 for m− r = 2. The
surface area of a hyperspherical cap of the unit sphere in Rm−r with height h < 1 is
given by (see [Li11])

Am−r(h) =
1

2
Am−rI2h−h2

(
(m− r)− 1

2
,
1

2

)
,

where Am−r = 2π(m−r)/2/Γ((m− r)/2) is the surface area of the unit sphere and

Ix(a, b) =

∫ x
0
ta−1(1− t)b−1dt

B(a, b)
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Figure 5.1: Two-dimensional hyperspherical cap

is the regularized incomplete beta function (see [Olv10]) and B(a, b) is the Euler
beta function.

Consequently, for −1 < x < 0, we have

Pr
(y)i

$←Pm−r
[(y)i ≤ x] =

Am−r(1 + x)

Am−r

=
1

2
I2(1+x)−(1+x)2

(
(m− r)− 1

2
,
1

2

)
=

1

2
I1−x2

(
(m− r)− 1

2
,
1

2

)
=

1

2B( (m−r)−1
2

, 1
2
)

∫ 1−x2

0

t
(m−r)−3

2 (1− t)−1/2dt

=
1

2B( (m−r)−1
2

, 1
2
)

∫ x

−1

(1− t2)
(m−r)−3

2 (1− (1− t2))−1/2(−2t)dt

= − 1

B( (m−r)−1
2

, 1
2
)

∫ x

−1

(1− t2)
(m−r)−3

2 |t|−1 |t| dt

=
1

B( (m−r)−1
2

, 1
2
)

∫ x

−1

(1− t2)
(m−r)−3

2 dt. (5.5)

Together with

Pr
ti

$←[−ri,ri]
[ti ≤ x] =

∫ x

−ri

1

2ri
dt,

we can use a convolution to obtain

Pr
ti

$←[−ri,ri],(y)i
$←Pm−r

[ti+(y)i ≤ x] =
1

2riB( (m−r)−1
2

, 1
2
)

∫ x

−ri−1

∫ min(1,z+ri)

max(−1,z−ri)
(1−t2)

(m−r)−3
2 dtdz.
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Using the fact that

Pr
ti

$←[−ri,ri],(y)i
$←Pm−r

[ti + (y)i ∈ [−ri, ri]] = 1− 2

(
Pr

ti
$←[−ri,ri],(y)i

$←Pm−r
[ti + (y)i < −ri]

)
,

concludes our calculation of the probability p. All integrals can be calculated for
instance using SageMath [S+17].

Number of Operations

We now estimate the expected total number of operations of the hybrid attack under
the conditions of Heuristic 5.1. In order to do so we need to estimate the runtime of
one inner loop and multiply it by the expected number of loops. As in [HG07] we
make the following assumption, which is plausible as long the sets of addresses are
not extremely large.

Assumption 5.3. We assume that the number of operations of one inner loop of
Algorithm 5 is dominated by the number of operations of one Nearest Plane call.

Note that Assumption 5.3 does not hold for all parameter choices6, but it is
reasonable to believe that it holds for many relevant parameter sets, as claimed
in [HG07]. However, the claim in [HG07] is based on the observation that for random
vectors in Zmq it is highly unlikely that adding a binary vector will flip the sign of
many coordinates (i.e., that a random vector in Zmq has many minus one coordinates).
While this is true, the vectors in question are in fact not random vectors in Zmq but
outputs of a Nearest Plane call, and thus potentially shorter than typical vectors
in Zmq . Therefore it can be expected that adding a binary vector will flip more
signs. Additionally, in general it is not only a binary vector that is added, but a
vector of infinity norm at most y, which makes flipping signs more likely. However,
it is reasonable to believe that Assumption 5.3 is still plausible for most relevant
parameter sets and small y, and in the worst case the assumption leads to more
conservative security estimates.

In [HHHGW09], Hirschhorn et al. give an experimentally verified number of bit
operations (defined as in [LV01]) of one Nearest Plane call and state a conjecture on
the runtime of Nearest Plane using precomputation. Based on their results, we make
the following assumption for our security estimates (over and under).

Assumption 5.4. Let d ∈ N be the lattice dimension. For our security overestimates,
we assume that the number of bit operations of one Nearest Plane call is approximately
d2/21.06. For our security underestimates, we assume that the number of bit operations
of one Nearest Plane call is approximately d/21.06.

6For instance, if the infinity norm y is too big, it is likely to have exponentially many addresses
per vector and storing a vector at all addresses takes more time than a Nearest Plane call.
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In conclusion, under the conditions of Heuristic 5.1 the expected number of
operations of Algorithm 5 for security under- and overestimates is approximately

Thyb,under = (m− r)/21.06L and Thyb,over = (m− r)2/21.06L.

5.3.2 Determining the Success Probability.

In Heuristic 5.1 it is guaranteed that Algorithm 5 is successful if the lattice Λ contains
a non-empty set S of short vectors of the form v = (vl,vg), where vl ∈ Zm−r and
vg ∈ Zr, with ‖vl‖ ≈ Y , ‖vl‖∞ ≤ y, ‖vg‖∞ ≤ k, exactly 2ci entries of vg are equal
to i for all i ∈ {±1, . . . ± k}, and NPB(Cvg) = vl. In order to determine a lower
bound on the success probability, one must calculate the probability that the set S
of such vectors is non-empty, since

psucc ≥ Pr[S 6= ∅].

However, this probability depends heavily on the distribution of the short vectors
contained in Λ and is therefore not done in Heuristic 5.1, allowing for more flexibility.
In consequence, this analysis must be performed for the specific distribution at hand
originating from the cryptographic scheme that is to be analyzed. The most involved
part in calculating the success probability is typically calculating the probability pNP

that NPB(Cvg) = vl. From Equation 5.5, we can deduce that the probability pNP is
approximately

pNP ≈
m−r∏
i=1

(
1− 2

B( (m−r)−1
2

, 1
2
)

∫ max(−ri,−1)

−1

(1− t2)
(m−r)−3

2 dt

)
, (5.6)

where ri are defined as in Heuristic 5.1 and obtained as in Remark 5.2.
In [LP11], Lindner and Peikert calculated the success probability of the Nearest

Plane(s) algorithm for the case that the difference vector is drawn from a discrete
Gaussian distribution with standard deviation σ (as typical for, e.g., an LWE error
distribution). In our case, this would result in the formula

pNP = Pr [NPB (Cvg) ≈ v`] =
m−r∏
i=1

erf

(
‖b∗i ‖

√
2

σ

)
. (5.7)

In the following, we compare our formula (5.6) to (5.7) in the case of discrete
Gaussian distributions with standard deviation σ. To this end, we evaluated both
formulas for a lattice of dimension d = m − r = 200 of determinant 128100 for
different standard deviations. For our formulas, we assumed that the norm of vl
is σ
√

200 as expected and that the basis follows the GSA with root Hermite factor
1.008. Our results, presented in Table 5.2, show that both formulas virtually give the
same results for the analyzed instances. This indicates that our formula is a good
generalization of the one provided in [LP11].
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Gaussian parameter s = 1 s = 2 s = 4 s = 8 s = 16
pNP according to (5.6) 2−0.033 2−3.658 2−27.775 2−87.506 2−188.445

pNP according to (5.7) 2−0.036 2−3.669 2−27.680 2−87.217 2−187.932

Table 5.2: Comparison of (5.6) and (5.7) for standard deviation σ = s/
√

2π and
varying Gaussian parameter s.

5.3.3 Optimizing the Runtime

The final step in our analysis is to determine the runtime of the complete hybrid
attack (Algorithm 6) including precomputation, which involves the runtime of lattice
reduction Tred, the runtime of the actual attack Thyb, and the success probability
psucc. All these quantities depend on the attack parameter r and the quality of the
basis B, i.e., its root Hermite factor δ corresponding to the applied block size β (cf.
Chapter 2). In order to unfold the full potential of the attack, one must minimize the
runtime over all possible attack parameters r and β (or the corresponding δ instead
of β). For our security overestimates, we assume that the total runtime (which is to
be minimized) is given by

Ttotal,over(β, r) =
Tred,over(β, r) + Thyb,over(β, r)

psucc(β, r)
.

For our security underestimates, we conservatively assume that given a reduced basis
with quality δ it is significantly easier (i.e., requires a smaller block size) to find
another reduced basis with same quality δ (e.g., by randomizing and reducing an
already reduced basis) than it is to find one given an arbitrary non-reduced basis. A
similar assumption, however resulting in a basis with (slightly) worse quality δ′ > δ
is made in [Alb17]. In the spirit of providing underestimates, however, we assume
that δ′ = δ. We therefore assume that even if the attack is not successful and needs
to be run again, the large precomputation cost for lattice reduction only needs to be
paid once, and hence

Ttotal,under(β, r) = Tred,under(β, r) +
Thyb,under(β, r)

psucc(β, r)
.

In order to calculate Ttotal,under(β, r) and Ttotal,over(β, r) one has to determine
Thyb,under(β, r), Thyb,over(β, r), Tred,under(β, r), Tred,over(β, r), and psucc(β, r). How to
calculate Thyb,under(β, r) and Thyb,over(β, r) is shown in Heuristic 5.1. The success
probability psucc(β, r) is calculated in Section 5.3.2. Different approaches how to
estimate the cost for BKZ-β depending on the assumed cost of the SVP oracle and
the number of tours are discussed in Chapter 2. Since there is not yet a consensus
in the cryptographic community as to which estimate to choose, our framework for
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analyzing the hybrid attack is designed such that the cost model for lattice reduction
can be replaced by a different one while the rest of the analysis remains intact. Thus,
if future research shows significant improvements in estimating the cost of lattice
reduction, these cost models can be applied in our framework. For our security
estimates in Section 5.4 we use the enumeration-based cost estimate for the SVP
oracle in block size β provided in [APS15]

TSVP(β) = 20.187281β log2(β)−1.0192β+16.1.

For our security overestimates we use the BKZ 2.0 simulator7 of [Che13, CN11] to
determine the corresponding necessary number of rounds k and set

Tred,over(β, r) = (m− r)k · TSVP(β).

For our security underestimates we assume that only one tour with block size β
is needed (e.g., by reducing the basis with smaller block sizes first, see [Che13,
AWHT16]), ignore the cost of SVP calls in smaller dimensions than β, and use

Tred,under(β, r) = (m− r − β + 1) · TSVP(β).

Runtime optimization. The optimization of the total runtime Ttotal(β, r) is per-
formed in the following way. For each possible r we find the optimal βr that
minimizes the runtime Ttotal(β, r). Consequently, the optimal runtime is given by
min{Ttotal(βr, r)}, the smallest of those minimized runtimes. Note that for fixed r
the optimal βr for our security underestimates can easily be found in the following
way. For fixed r the function Tred,under(β, r) is monotonically increasing in β and

the function
Thyb,under(β,r)

psucc(β,r)
is monotonically decreasing in β. Therefore Ttotal,under(β, r)

is (close to) optimal (up to a factor of at most 2) when both those functions are
balanced, i.e., take the same value. Thus the optimal βr can for example be found
by a simple binary search.

For our security overestimates, we assume the function
Tred,over(β,r)

psucc(β,r)
is monotonically

increasing in β in the relevant range. Hence the (near) optimal Ttotal,over(β, r) can be

found by balancing the functions
Tred,over(β,r)

psucc(β,r)
and

Thyb,over(β,r)

psucc(β,r)
as above. Note that this

assumption may note be true, but it surely leads to upper bounds on the optimal
runtime of the attack.

Improvements Compared to Previous Analyses of the Hybrid Attack

We end this section by highlighting our two main improvements of the analysis
of the hybrid attack and compare them to previous approaches which suffer from

7For our implementations we used the publicly available code from https://github.com/

NTRUOpenSourceProject/ntru-params.
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inaccuracies. We remark that some of those inaccuracies of previous analyses lead
to overestimating the security of the schemes and others to underestimating it. In
some analyses, both types occurred at the same time and somewhat magically almost
canceled out each others effect on the security estimates for some parameter sets.
Even though the security estimates in those cases are not necessarily wrong, they
can not be relied upon, since without further analysis it is not clear if the security
estimates are correct, over-, or underestimates. We straighten out this unsatisfying
state of affairs by providing updated security estimates for various cryptographic
schemes using our improved analysis of the hybrid attack, see Section 5.4.

Calculating the probability p One of the most frequently encountered problems
that appeared in several works is the lack of a (correct) calculation of the probability
p defined in Assumption 5.1. As can be seen in Heuristic 5.1, this probability
plays a crucial role in the runtime analysis of the attack. Nevertheless, in several
works [HHGP+07, DDLL13, HPS+17, Sch15, BCLvV17b, BCLvV16] the authors
ignore the presence of this probability by setting p = 1 for the sake of simplicity.
However, when analyzing the security of several lattice-based schemes in Section 5.4,
even for the optimized attack parameters the probability p was sometimes as low as
2−80, see Table 5.4. Note that the incorrect assumption p = 1 gives more power to
the attacker, since it assumes that collisions can always be detected by the attacker
although this is not the case, resulting in security underestimates. We also remark
that in some works the probability p is not completely ignored but determined
in a purely experimental way [HG07] or calculated using additional unnecessary
assumptions [HHHGW09], introducing inaccuracies into the analysis. In our analysis,
we explicitly calculate p under some reasonable assumptions.

Considering the success probability of Nearest Plane In most works [HG07,
HHGP+07, HHHGW09, DDLL13, HPS+17, Sch15, BCLvV17b, BCLvV16], the
authors demand a sufficiently good lattice reduction such that the Nearest Plane
algorithm is guaranteed to unveil the searched short vector (or at least with very
high probability). To be more precise, Lemma 1 of [HG07] is used to determine
what sufficiently good exactly means. In our opinion, this demand is unrealistic, and
instead we account for the probability of this event in the success probability, which
reflects the attacker’s power in a more accurate way. In particular we note that in
most cases Lemma 1 of [HG07] is not applicable the way it is claimed in several
works. We briefly sketch way this is the case. Often, Lemma 1 of [HG07] is applied
to determine the necessary quality of a reduced basis such that Nearest Plane (on
correct input) unveils a vector v of infinity norm at most y. However, this lemma
is only applicable if the basis matrix is in triangular form, which is not the case is
general. Therefore, one needs to transform the basis with an orthonormal matrix Y
in order to obtain a triangular basis. This basis, however, does not span the same
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lattice but one that contains the transformed vector vY, but (in general) not the
vector v. While the transformation Y preserves the Euclidean norm of the vector
v, it does not preserve its infinity norm. Therefore, the lemma can not be applied
in a straight-forward manner with the same infinity norm bound y, which is done
in most works. In fact, in the worst case the new infinity norm bound can be up
to
√
dy, where d is the lattice dimension. In consequence one would have to apply

Lemma 1 of [HG07] with infinity norm bound
√
dy instead of y in order to get a

rigorous statement, which demands a much better lattice reduction. This problem
is already mentioned – but not solve – in [Sch15]. Note that the worst case, where
(i) the vector v has Euclidean norm

√
dy and (ii) all the weight of the transformed

vector is on one coordinate such that
√
dy is a tight bound on the infinity norm after

transformation, is highly unlikely. Nevertheless, simply applying Lemma 1 of [HG07]
with infinity norm bound y is overly conservative and no longer necessary in our
analysis. In the following, we give an example to illustrate the different success
conditions for the Nearest Plane algorithm.

Example. Let d = 512 and q = 1024. We consider Nearest Plane on a BDD
instance t ∈ Λ + e in a d-dimensional lattice Λ of determinant qd/2, where e is
a random binary vector. Naivly applying Lemma 1 of [HG07] with infinity norm
bound 1 would suggest that lattice reduction of quality δ1 ≈ 1.0068 is sufficient to
recover e. Applying the cost model used for our security underestimates described in
Section 5.3.3, lattice reduction of that quality would cost roughly T1 ≈ 291 operations.
However, as described above, the lemma can not be applied with that naive bound.
Instead, using the worst case bound

√
dy on the infinity norm and applying Lemma 1

of [HG07] would lead to lattice reduction of quality δ2 ≈ 1.0007, taking roughly
T2 ≈ 2357 operations, to guarantee the success of Nearest Plane. This shows the
impracticality of this approach. Using our approach instead, assuming that that the
Euclidean norm of a random binary vector is roughly ‖e‖ ≈

√
d/2, one can balance

the quality of lattice reduction and the success probability of Nearest Plane to obtain
the optimal trade-off δ3 ≈ 1.0067, taking roughly T3 ≈ 294 operations, with a success
probability of roughly 2−31.

5.4 Security Estimates Against the Hybrid Attack

In the recent years, the hybrid attack has been applied to various lattice-based
cryptographic schemes in order to estimate their security. However, the claimed
security levels are unreliable due to simplifications in their analysis of the hybrid
attack. Therefore, in this section, we apply our improved analysis of the hybrid
attack provided in Section 5.3 to several schemes in order to reevaluate their security.

This section is structures as follows. Each scheme is analyzed in a separate
subsection. We begin with the encryption schemes NTRU, NTRU prime and R-
BinLWEEnc and end with the signature schemes BLISS and GLP. In each subsection,

71



5 Revisiting the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

we first give a brief introduction to the scheme and summarize the inaccuracies in
its previous security analysis against the hybrid attack. We then apply the hybrid
attack to the scheme and analyze its cost according to Section 5.3. This analysis is
performed the following four steps steps.

1) Constructing the lattice. We first construct a lattice of the required form
which contains the secret key as a short vector.

2) Determining the attack parameters. We find suitable attack parameters
ci (depending on the meet-in-the-middle dimension r), infinity norm bounds y
and k, and estimate the Euclidean norm Y .

3) Determining the success probability. We determine the success probabil-
ity of the attack according to Section 5.3.2.

4) Optimizing the runtime. We optimize the runtime of the attack for our
security under- and overestimate according to Section 5.3.3.

We end each subsection by providing a table of updated security estimates against
the hybrid attack obtained by our analysis. In the tables we also provide the optimal
attack parameters r, δr, βr derived by our optimization process and the corresponding
probability p with whom collisions can be detected. For comparison, we further
provide the security estimates of the previous works. To showcase the improvement
of the hybrid attack over solving uSVP with small or sparse secrets using lattice
reduction only, we also provide security estimates that can be derived from the 2016
estimate (cf. Chapter 3). In our runtime optimization of the attack we optimized
with a precision of up to one bit. As a result there may not be one unique optimal
set of attack parameters r, δr, βr and for the table we arbitrarily pick one of them.

5.4.1 NTRU

The NTRU encryption scheme was officially introduced in [HPS98] and is one of
the best known lattice-based encryption schemes today due to its high efficiency.
The hybrid attack was first developed to attack NTRU [HG07] and has been applied
to various proposed parameter sets since [HG07, HHGP+07, HHHGW09, HPS+17,
Sch15]. In this section, we restrict our studies to the recent NTRU parameters
presented in [HPS+17]. As the analysis in [HPS+17] makes simplifying assumptions
such as setting the probability p equal to one or simplifying the structure of the
private keys, we conclude that these security estimates are not reliable. We therefore
reevaluate the security of the NTRU EESS # 1 parameter sets given in Table 3
of [HPS+17].
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Constructing the Lattice

The NTRU cryptosystem is defined over the ring Rq = Zq[X]/(XN − 1), where
N, q ∈ N and N is prime. The parameters N and q are public. Furthermore
there exist public parameters d1, d2, d3, dg ∈ Z. For the parameter sets considered
in [HPS+17], the private key is a pair of polynomials (f, g) ∈ R2

q . The polynomial
g has coefficients in {−1, 0, 1} with exactly dg + 1 ones and dg minus ones. The
polynomial f = 1+3F is invertible in Rq, where F = A1A2 +A3 for some polynomials
Ai with coefficients in {−1, 0, 1} of which exactly di are equal to one and di equal to
minus one. The corresponding public key is (1, h), where h = f−1g. In the following
we assume that h and 3 are invertible in Rq. We further identify polynomials with
their coefficient vectors. We can recover the private key by finding the secret vector
v = (F,g).8 Since h = (1 + 3F )−1g we have 3−1h−1g = F + 3−1 and therefore it
holds that

v +

(
3−1

0

)
=

(
3−1h−1g + qw

g

)
=

(
qIn 3−1H
0 In

)(
w
g

)
for some w ∈ Zn, where H is the rotation matrix of h−1. Hence v can be recovered
by solving BDD on input (−3−1,0) in the q-ary lattice

Λ = Λ

((
qIn 3−1H
0 In

))
,

since (−3−1,0) − v ∈ Λ.9 A similar way to recover the private key was already
mentioned in [Sch15]. The lattice Λ has dimension 2n and determinant qn. Since
we take the BDD approach for the hybrid attack, we assume that only v, not its
rotations or additive inverse, can be found by the attack, see Section 5.2. Hence we
assume that the set S, as defined in Heuristic 5.1, contains of at most one element.

Determining the Attack Parameters

Let v = (F,g) = (vl,vg) with vl ∈ Z2n−r and vg ∈ Zr. Since g is a ternary vector,
we can set the infinity norm bound k on vg equal to one. In contrast, determining
an infinity norm bound on the vector vl is not that trivial, since F is not ternary but
of product form. For a specific parameter set this can either be done theoretically or
experimentally. The same holds for estimating the Euclidean norm of vl. For our

8Note that we put g in the half of the vector v that is guessed in the meet-in-the-middle part of
the attack. The reason for this choice is that we exactly know the structure of g but not the
structure of the product form polynomial F.

9It is also possible to construct a lattice that contains (f ,g) as a short vector instead. However,
since f = 1 + 3F has norm larger than F , this leads to a less efficient attack.
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runtime estimates we determined the expected Euclidean norm of F experimentally
and set the expected Euclidean norm of vl to

‖vl‖ ≈
√
‖F‖2 +

n− r
n
· (2dg + 1).

We set 2c−1 = r
n
· (dg + 1) and 2c1 = r

n
· dg to be equal to the expected number of

minus one entries and one entries, respectively, in g.10 For simplicity we assume that
c−1 and c1 are integers in the following in order to avoid writing down the rounding
operates.

Determining the Success Probability

The next step is to determine the success probability psucc, i.e., the probability
that v has exactly 2c−1 entries equal to minus one, 2c1 entries equal to one, and
NPB(Cvg) = vl holds, where B is as given in Heuristic 5.1. Assuming independence,
the success probability is approximately

psucc = pc · pNP,

where pc is the probability that v has exactly 2c−1 entries equal to minus one and
2c1 entries equal to one and pNP is defined and calculated as in Section 5.3.2. The
probability pc is given by

pc =

(
r

2c̃0, 2c−1, 2c1

)(
n− r

d0 − 2c̃0, dg − 2c−1, dg + 1− 2c1

)
(

n
d0, dg, dg + 1

) ,

where 2c̃0 = r − 2c−1 − 2c1 and d0 = n− (dg + 1)− dg. As explained earlier, since
we use the BDD approach of the hybrid attack, we assume that |S| = 1 in case the
attack is successful.

Optimizing the Runtime

We determined the optimal attack parameters to estimate the minimal runtime
of the hybrid attack for the NTRU EESS # 1 parameter sets given in Table 3
of [HPS+17]. The results, including the optimal r, corresponding δr and βr, and
resulting probability p that collisions can be found, are presented in Table 5.3. Our
analysis shows that the security levels against the hybrid attack claimed in [HPS+17]
are lower than the actual security levels for all parameter sets. In addition, our results

10Note that this must not necessarily be the optimal choice for the ci. However, we expect that
this choice comes very close to the optimal one and therefore restrict our studies to this case.
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show that while for all of the analyzed parameter sets the hybrid attack outperforms
a pure lattice reduction attack (cf. Chapter 3), it does not perform better than a
purely combinatorial meet-in-the-middle search, see Table 3 of [HPS+17]. Our results
therefore do not support the common claim that the hybrid attack is necessarily the
best attack on NTRU.

Parameter set n = 401 n = 439 n = 593 n = 743
Optimal runder/rover 104/122 122/140 206/219 290/308

Optimal δr,under 1.00544 1.00509 1.00412 1.00352
Optimal δr,over 1.00552 1.00518 1.00420 1.00357
Optimal βr,under 252 279 381 477
Optimal βr,over 246 271 371 468

Corresp. p under/over 2−70/2−43 2−56/2−47 2−67/2−62 2−78/2−69

Security under/over in bits 145/162 165/182 249/267 335/354

In [HPS+17] 116 133 201 272
r, β used in [HPS+17] 154, 197 174, 221 261, 316 350, 407

2016 est. under/over 168/175 196/202 322/328 459/466
β2016 283 318 463 608

Table 5.3: Optimal attack parameters and security levels against the hybrid attack
and the primal attack under the 2016 estimate for the NTRU EESS # 1
parameter sets.

5.4.2 NTRU prime

The NTRU prime encryption scheme was recently introduced [BCLvV17b, BCLvV16]
in order to eliminate worrisome algebraic structures that exist within NTRU [HPS98]
or Ring-LWE based encryption schemes such as [LPR10, ADPS16]. The authors
considered the application of the hybrid attack to their scheme to derive their
security estimates. However, their analysis follows the methodology of [HPS+17] and
therefore makes the same simplifying assumptions, leading to unreliable estimates,
see Section 5.4.1. We therefore reevaluate the security of NTRU prime.

Constructing the Lattice

The Streamlined NTRU prime family of cryptosystems is parameterized by three
integers (n, q, t) ∈ N3, where n and q are odd primes. The base ring for Streamlined
NTRU prime is Rq = Zq[X]/(Xn −X − 1). The private key is (essentially) a pair of
polynomials (g, f) ∈ R2

q , where g is drawn uniformly at random from the set of all
ternary polynomials and f is drawn uniformly at random from the set of all ternary
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polynomials with exactly 2t non-zero coefficients. The corresponding public key is
h = g(3f)−1 ∈ Rq. In the following we identify polynomials with their coefficient
vectors. As described in [BCLvV17b, BCLvV16], the secret vector v = (g, f) is
contained in the q-ary lattice

Λ = Λ

((
qIn 3H
0 In

))
,

where H is the rotation matrix of h, since(
qIn 3H
0 In

)(
w
f

)
=

(
qw + 3hf

f

)
=

(
g
f

)
= v

for some w ∈ Zn. The determinant of the lattice Λ is given by qn and its dimension
is equal to 2n. Note that in the case of Streamlined NTRU prime the rotations of a
ternary polynomial are not necessarily ternary due to the structure of the ring, but it
is likely the some of them are. The authors of [BCLvV17b, BCLvV16] conservatively
assume that the maximum number of good rotations of v that can be utilized by
the attack is n− t, which we also assume in the following. Counting their additive
inverses leaves us 2(n− t) short vectors that can be found by the attack.

Determining the Attack Parameters

Let v = (f ,g) = (vl,vg) with vl ∈ Z2n−r and vg ∈ Zr. Since v is ternary, we can set
the infinity norm bounds y and k equal to one. The expected Euclidean norm of vl
is given by

‖vl‖ ≈
√

2

3
n+

n− r
n

2t.

We set 2c1 = 2c−1 = r
n
· t

2
equal to the expected number of one entries (or minus one

entries, respectively) in f . For simplicity, in the following we assume that c1 is an
integer.

Determining the Success Probability

Next, we determine the success probability psucc = Pr[S 6= ∅], where S denotes the
following subset of the lattice Λ:

S =

w ∈ Λ |
w = (wl,wg) with wl ∈ {0,±1}2n−r,wg ∈ {0,±1}r,
exactly 2ci entries of wg equal to i ∀i ∈ {−1, 1},
NPB(Cwg) = wl

 ,

and B is as defined in Heuristic 5.1. We assume that S is a subset of all the rotations
of v that can be utilized by the attack and their additive inverses. In particular,
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we assume that S has at most 2(n − t) elements. Note that if some vector w is
contained in S, then we also have −w ∈ S. Assuming independence, the probability
pS that v ∈ S is approximately given by

pS ≈

(
r

2c̃0, 2c−1, 2c1

)(
n− r

2t− 4c1

)
22t−4c1(

n
2t

)
22t

· pNP,

where d0 = n − 2t and 2c̃0 = r − 4c1 and pNP is defined and calculated as in
Section 5.3.2. Assuming independence, all of the n − t good rotations of v are
contained in S with probability pS as well. Therefore, the probability psucc that we
have at least one good rotation is approximately

psucc = Pr[S 6= ∅] ≈ 1− (1− pS)n−t.

Next, we estimate the size of the set S in the case S 6= ∅, i.e., Algorithm 5 is
successful. In that case, at least one rotation is contained in S. Then also its additive
inverse is contained in S, hence |S| ≥ 2. We can estimate the size of S in case of
success to be

|S| ≈ 2 + 2(n− t− 1)pS,

where pS is defined as above.

Optimizing the Runtime

We applied our new techniques to estimate the minimal runtimes for several NTRU
prime parameter sets proposed in the Appendix of [BCLvV16]. Besides the “case
study parameter set”, for our analysis we picked one parameter set that offers
the lowest security level and one that offers the highest according to the analysis
of [BCLvV16]. Our resulting security estimates and corresponding attack parameters
are presented in Table 5.4. The table further provides a comparison to the primal
attack under the 2016 estimate (cf. Chapter 3). Our analysis shows that the authors
of [BCLvV17b, BCLvV16] underestimate the security of their scheme and that the
hybrid attack outperforms the primal attack for all parameter sets we evaluated.

5.4.3 R-BinLWEEnc

In [BGG+16], Buchmann et al. presented R-BinLWEEnc, a lightweight public-key
encryption scheme based on binary Ring-LWE. To determine the security of their
scheme the authors evaluate the hardness of binary LWE against the hybrid attack.
They use a simplified version of the methodology presented in this chapter, which
ignores the success probability of the Nearest Planes algorithm and uses the simplified
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Parameter set
n = 607 n = 739 n = 929

q = 18749 q = 9829 q = 12953
Optimal runder/rover 148/162 235/257 328/353

Optimal δr,under 1.00466 1.00405 1.00346
Optimal δr,over 1.00466 1.00407 1.00346
Optimal βr,under 318 391 489
Optimal βr,over 318 388 489

Corresponding p under/over 2−63/2−54 2−73/2−60 2−80/2−65

Security under/over in bits 197/211 258/273 346/363

In [BCLvV16] 128 228 310

2016 est. under/over 235/241 344/350 478/485
β2016 364 487 627

Table 5.4: Optimal attack parameters and security levels against the hybrid attack
and the primal attack under the 2016 estimate for NTRU prime.

formulas of [LP11] to estimate the runtime for lattice reduction and Nearest Plane.
Therefore we reevaluate the security of binary LWE against the hybrid attack in
order to obtain updated security estimates for R-BinLWEEnc.

Constructing the Lattice

Let m,n, q ∈ Z with m > n and (A,b′ = As + e′ mod q) be a binary LWE instance
with A ∈ Zm×nq , s ∈ Znq , and binary error e′ ∈ {0, 1}.11 To obtain a more efficient
attack, we first subtract the vector (0.5, . . . , 0.5, 0, . . . , 0) with m− r non-zero and r
zero entries from both sides of the equation b′ = As + e′ mod q to obtain a new
LWE instance (A,b = As + e mod q), where e ∈ {±0.5}m−r × {0, 1}r. This way,
the expected norm of the first m− r entries is reduced while the last r entries, which
are guessed during the attack, remain unchanged. In the following, we only consider
this transformed LWE instance with smaller error. We use Kannan’s embedding
with embedding factor 1 to transform this LWE instance into an instance of the
uSVP. Ignoring the additional component introduced by the embedding (as we know
it is equal to the embedding factor and hence does not need to be guessed), the
dimension of the uSVP lattice is m and its determinant is qm−n. In the [BGG+16]
encryption scheme, m = 2n samples are provided, which we use in our attack.

11Note that with our approach we only need that error vector e′ is binary, and not also that the
secret vector s is binary, as demanded in [BGG+16].
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Determining the Attack Parameters

Let v = e = (vl,vg) with vl ∈ {±0.5}m−r and vg ∈ {0, 1}r. We set the infinity norm
bound y on vl to be 0.5. Since vl is a uniformly random vector in {±0.5}m−r, the
expected Euclidean norm of vl is

‖vl‖ ≈
√
m− r

4
.

We set 2c0 = 2c1 = r
2

to be the expected number of 0 and 1 entries of vg. In the
following, we assume that c0 = c1 is an integer in order to not have to deal with
rounding operators.

Determining the Success Probability

We can approximate the success probability psucc by psucc ≈ pc · pNP, where pc is the
probability that vg has exactly 2c0 entries equal to 0 and 2c1 entries equal to 1 and
pNP is defined as in Section 5.3.2. Using the fact that 2c0 + 2c1 = r, we therefore
obtain

psucc ≈ pc · pNP = 2−r
(
r

2c0

)
pNP.

We assume that if the attack is successful then |S| = 1, where S is defined as in
Heuristic 5.1, since e and is assumed to be the only vector that can be found by the
attack.

Optimizing the Runtime

We reevaluated the security of the R-BinLWEEnc parameter sets of [BGG+16]. Our
security estimates, the optimal attack parameters r, δr and βr, and the corresponding
probability p are presented in Table 5.5. The table also provides a comparison to
the primal attack under the 2016 estimate (cf. Chapter 3). The results show that
the original security estimates given in [BGG+16] are within the security range
we determined and that the hybrid attack outperforms the primal attack for the
analyzed binary LWE instances.

5.4.4 BLISS

In the following, we analyze the signature scheme BLISS introduced in [DDLL13].
In the original paper, the authors considered the hybrid attack on their signature
scheme for their security estimates, but the analysis is rather vague and simplified.
For instance, the authors assume that collisions will always be detected and do not
optimize the attack parameters, which ignores the fact that there is a non-trivial
trade-off between lattice reduction and the meet-in-the-middle phase. We therefore
provide updated security for the BLISS signature scheme.
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Parameter set Set-I Set-II Set-III
Optimal runder/rover 112/108 88/100 264/272

Optimal δr,under 1.00688 1.00731 1.00481
Optimal δr,over 1.00706 1.00738 1.00485
Optimal βr,under 173 156 304
Optimal βr,over 165 153 300

Corresponding p under/over 2−28/2−31 2−31/2−25 2−43/2−29

Security under/over in bits 89/99 79/89 186/197

In [BGG+16] 94 84 190

2016 est. under/over 122/128 101/108 316/323
β2016 222 189 458

Table 5.5: Optimal attack parameters and security levels against the hybrid attack
and the primal attack under the 2016 estimate for R-BinLWEEnc.

Constructing the Lattice

In the BLISS signature scheme the setup is as follows. Let n be a power of two,
d1, d2 ∈ N such that d1 + d2 ≤ n holds, q a prime modulus with q ≡ 1 mod 2n, and
Rq = Zq[x]/(xn + 1). The signing key is of the form (s1, s2) = (f, 2g + 1), where
f ∈ R×q , g ∈ Rq, each with d1 coefficients in {±1} and d2 coefficients in {±2}, and
the remaining coefficients equal to 0. The public key is essentially a = s2/s1 ∈ Rq.
We assume that a is invertible in Rq, which is the case with very high probability.
Hence we obtain the equation s1 = s2a

−1 ∈ Rq, or equivalently f = 2ga−1 + a−1

mod q. In the following, we identify polynomials with their coefficient vectors.

In order to recover the signing key, it is sufficient to find the vector v = (f ,g).
Similar to our previous analysis of NTRU in Section 5.4.1 we have that

v +

(
−a−1

0

)
=

(
2ga−1 + qw

g

)
=

(
qIn 2A
0 In

)(
w
g

)

for some w ∈ Zn, where A is the rotation matrix of a−1. Hence v can be recovered
by solving BDD on input (a−1,0) in the q-ary lattice

Λ = Λ

((
qIn 2A
0 In

))
,

since (a−1,0)− v ∈ Λ. The determinant of the lattice Λ is qn and its dimension is
equal to 2n.
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Determining the Attack Parameters

In the following, let v = (f ,g) = (vl,vg) with vl ∈ Zm−r and vg ∈ Zr. Since we
are using the hybrid attack to solve a BDD problem, it is not known how to utilize
the rotations of v within the attack, see Section 5.2. We therefore assume that v
is the only rotation useful in the attack, i.e., that the set the set of good rotations
S contains at most v. The first step is to determine proper bounds y on ‖vl‖∞
and k on ‖vg‖∞ and find suitable guessing parameters ci. By construction we have
‖v‖∞ ≤ 2, thus we can set the infinity norm bounds y = k = 2. The expected
Euclidean norm of vl is given by

‖vl‖ ≈
√
d1 + 4d2 +

n− r
n

(1d1 + 4d2).

We set 2ci equal to the expected number of i-entries in vg, i.e., c−2 = c2 = r
n
· 1

4
d2

and c−1 = c1 = r
n
· 1

4
d1. For simplicity we assume that c1 and c2 are integers in the

following.

Determining the Success Probability

Next, we determine the success probability psucc, which is the probability that
NPB(Cvg) = vl and exactly 2ci entries of vg are equal to i for i ∈ {±1, . . . ,±k}.
The probability pc that exactly 2ci entries of the vector vg are equal to i for all
i ∈ {±1, . . . ,±k} is given by(

r
2c̃0, 2c−2, 2c2, 2c−4, 2c4

)(
n− r

d0 − 2c̃0, d1 − 4c2, d2 − 4c4

)
2d1+d2−4(c2+c4)(

n
d0, d1, d2

)
2d1+d2

,

where d0 = n− d1− d2 and 2c̃0 = r− 2(c−2 + c2 + c−4 + c4). Assuming independence,
the success probability is approximately given by

psucc ≈ pc · pNP,

where pNP is defined as in Section 5.3.2. As explained earlier, we assume that
S ⊂ {v}, so if Algorithm 5 is successful we have |S| = 1.

Optimizing the Runtime

We performed the optimization process for the BLISS parameter sets proposed
in [DDLL13]. The results are presented in Table 5.6. Besides the security levels
against the hybrid attack, we provide the optimal attack parameters r, δr, and βr
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Parameter set BLISS-I,II BLISS-III BLISS-IV
Optimal runder/rover 152/152 109/144 99/137

Optimal δr,under 1.00588 1.00532 1.00518
Optimal δr,over 1.00600 1.00541 1.00524
Optimal βr,under 223 261 271
Optimal βr,over 216 254 264

Corresp. p under/over 2−35/2−38 2−58/2−40 2−67/2−44

Security under/over in bits 124/139 152/170 160/182

In [DDLL13] 128 160 192
r used in [DDLL13] 194 183 201

2016 est. under/over 159/165 176/182 183/189
β2016 270 292 301

Table 5.6: Optimal attack parameters and security levels against the hybrid attack
and the primal attack under the 2016 estimate for BLISS.

leading to a minimal runtime of the attack as well as the corresponding probability
p. The table further provides a comparison to the primal attack under the 2016
estimate (cf. Chapter 3). Our results show that the security estimates for the
BLISS-I, BLISS-II, and BLISS-III parameter sets given in [DDLL13] are within the
range of security we determined, whereas the BLISS-IV parameter set is less secure
than originally claimed. In addition, the authors of [DDLL13] claim that there are
at least 17 bits of security margins built into their security estimates, which is not
the case for all parameter sets according to our analysis. Furthermore, our results
show the the hybrid attack performs better than the primal attack on BLISS.

5.4.5 GLP

The GLP signature scheme was introduced in [GLP12]. In their original work, the
authors did not consider the hybrid attack when deriving their security estimates.
Later, in [DDLL13], the hybrid attack was also applied to the GLP-I parameter
set. However, the analysis of the hybrid attack against GLP presented in [DDLL13]
is simplified in the same way as the analysis of the BLISS signature scheme, see
Section 5.4.4. Furthermore, the GLP-II parameter set has not been analyzed with
respect to the hybrid attack so far. We therefore reevaluate the security of the
GLP-I parameter set against the hybrid attack and firstly evaluate the hybrid attack
security of the GLP-II parameter set.
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Constructing the Lattice

For the GLP signature scheme the setup is as follows. Let n be a power of two, q
a prime modulus with q ≡ 1 mod 2n, and Rq = Zq[x]/(xn + 1). The signing key
is of the form (s1, s2), where s1 and s1 are sampled uniformly at random among all
polynomials of Rq with coefficients in {−1, 0, 1}. The corresponding public key is
then of the form (a, b = as1 + s2) ∈ R2

q, where a is drawn uniformly at random in Rq.
So we know that 0 = −b+ as1 + s2. Identifying polynomials with their coefficient
vectors we therefore have that

v :=

−1
s1

s2

 ∈ Λ := Λ⊥q (A) = {w ∈ Z2n+1 | Aw ≡ 0 mod q} ⊂ Z2n+1,

where A = (b|rot(a)|In) and rot(a) is the rotation matrix of a (cf. Section 3.3.1). By
construction of the lattice we do not assume that rotations of v can by utilized by the
attack. Therefore, with very high probability v and −v are the only non-zero ternary
vectors contained in Λ, which we assume in the following. For the determinant of
the lattice we have det Λ = qn, see Section 3.3.1.

Determining the Attack Parameters

Ignoring the first −1 coordinate, the short vector v is drawn uniformly from
{−1, 0, 1}2n+1. Let v = (vl,vg) with vl ∈ Zm−r and vg ∈ Zr. Then ‖vl‖∞ ≤ 1
and ‖vg‖∞ ≤ 1 hold, so we can set the infinity norm bounds y and k equal to one.
The expected Euclidean norm of vl is approximately

‖vl‖ ≈
√

2(2n+ 1− r)/3.

We set 2c−1 = 2c1 = r
3

to be the expected number of ones and minus ones. For
simplicity we assume that c−1 = c1 is an integer in the following.

Determining the Success Probability

The success probability psucc of the attack is approximately psucc ≈ pc · pNP, where pc
is the probability that vg hat exactly 2c−1 minus one entries and 2c1 one entries and
pNP is defined as in Section 5.3.2. Calculating pc yields

psucc ≈ pc · pNP = 3−r
(

r
r/3, r/3, r/3

)
pNP.

As previously mentioned, we assume that if the attack is successful then |S| = 2.
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Parameter set GLP-I GLP-II
Optimal runder/rover 30/54 168/192

Optimal δr,under 1.00776 1.00450
Optimal δr,over 1.00769 1.00451
Optimal βr,under 140 335
Optimal βr,over 143 334

Corresponding p under/over 2−41/2−25 2−61/2−49

Security under/over in bits 71/88 212/233

In [DDLL13], [GLP12] 75 to 80 ≥ 256
r used in [DDLL13] 85 —

2016 est. under/over 71/77 237/243
β2016 142 366

Table 5.7: Optimal attack parameters and security levels against the hybrid attack
and the primal attack under the 2016 estimate for GLP.

Optimizing the Runtime

Weoptimized the runtime of the hybrid attack for the GLP parameter sets proposed
in [GLP12]. The results, including the optimal attack parameters r, δr, and βr
and the probability p, are shown in Table 5.7. In addition, the table provides a
comparison to the primal attack under the 2016 estimate (cf. Chapter 3). The
security level of the GLP-I parameter set claimed in [DDLL13] is within the range of
security we determined. Furthermore, for the GLP-I parameter set the hybrid attack
performs similar to the primal attack. In [DDLL13], the authors did not analyze
the hybrid attack for the GLP-II parameter set. Güneysu et al. [GLP12] claimed a
security level of at least 256 bits (not considering the hybrid attack) for the GLP-II
parameter set, whereas we show that it offers at most 233 bits of security against
the hybrid attack and at most 243 bits against the primal attack considering the
2016 estimate.
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6 Parallelizing the Hybrid Lattice Re-
duction and Meet-in-the-Middle At-
tack

The hybrid attack (see Chapter 5) is currently considered the best known attack on
several instances of lattice problems with small or sparse secret vectors. In order
to evaluate the security of certain lattice-based cryptosystems (such as [HPS98,
BCLvV17b, BGG+16, DDLL13, GLP12, CHK+17, HS14]) it is therefore important
to study the practical behavior of the hybrid attack. To reflect the full potential of
the hybrid attack in practice it has to be parallelized.

Contribution. In this chapter, we show how to parallelize the hybrid attack using
three strategies: running the attack on multiple randomized instances in parallel,
parallelizing its meet-in-the-middle phase, and potentially using a parallel version
of the BKZ lattice reduction algorithm. For simplicity, we restrict our studies to
the hybrid attack on binary LWE, where the LWE error distribution is the uniform
distribution on {0, 1}. We provide a theoretical and experimental analysis of our
parallel hybrid attack, which shows that it scales well within reasonable parameter
ranges. Our theoretical analysis depends on the efficiency of a potential parallel BKZ
algorithm and the efficiency of the parallel meet-in-the-middle phase. It shows that
the efficiency of the parallel hybrid attack is at least as good as the worse of these two
efficiencies (as long as the number of nodes employed is within a certain range), but
may in general be better. For our practical implementations, we employ OpenMP
and the Message Passing Interface (MPI). Our experiments show that the parallel
hybrid attack can considerably speed up the attack by running multiple, randomized
instances in parallel with minimized MPI communication. We further analyze the
efficiency of a parallel meet-in-the-middle search within the hybrid attack. Our
meet-in-the-middle phase is shared-memory parallelized and we report an efficiency
of about 90% on our system providing 24 physical cores per node. Our results suggest
that the above-mentioned cryptosystems may in practice be broken significantly
faster using our parallel hybrid attack.
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Organization. In Section 6.1, we specify the serial hybrid attack on binary LWE as
a foundation for our parallel version. In Section 6.2, we show how to parallelize the
hybrid attack and analyze the runtime of the parallel hybrid attack from a theoretic
point of view. Our experimental analysis is presented in Section 6.3.

Publications. This chapter is based on the publication [8], which will be presented
at CSE 2018.

6.1 The Hybrid Attack on Binary LWE

In this section, we specify the serial hybrid attack on binary LWE. We largely
follow the description given in Chapter 5 with slight modifications. Let q ∈ N and
(A,b = As + e mod q) be a binary LWE instance with A ∈ Zm×nq , b ∈ Zmq , s ∈ Znq ,
and e ∈ {0, 1}m. We use Kannan’s embedding (see Section 2.4.4) with embedding
factor 1 to transform LWE into uSVP (containing (e, 1) as short binary vector) and
then run the hybrid attack. Our modification from Chapter 5 are the following. As
we know that the last component of the short binary vector is 1, we set the last entry
of the vectors guessed in the meet-in-the-middle search equal to 0.5. Furthermore,
we use the following sets of addresses for our meet-in-the-middle search.

Ax =

{
a ∈ {0, 1}k

∣∣∣∣ (a)i = 1 if (x)i > 0 for i ∈ {1, . . . , k},
(a)i = 0 if (x)i < 0 for i ∈ {1, . . . , k}

}
. (6.1)

The modified pseudocode for the hybrid attack on binary LWE is given in Algorithm 7.
It takes as input a binary LWE instance, a guessing dimension r, and a block size β,
which determines the quality of the precomputation. The attack aims at finding the
LWE error vector. For simplicity, we assume that r is a multiple of 4 such that we can
guess binary vectors with exactly c = r/4 non-zero entries in the meet-in-the-middle
search of the attack. Lines 1 and 2 describe the precomputation phase of the attack
with BKZ-β being its computational hotspot. Lines 5 to 13 describe the meet-in-
the-middle phase of the attack. Note that the attack might have a low success
probability as detailed in Chapter 5. The success probability (and the runtime of
the attack) depends on the attack parameters r and β, which therefore need to be
chosen carefully. Because of the possibly low success probability, in general, the
attack needs to be randomized and repeated multiple times until successful.

6.2 Parallelizing the Hybrid Attack

In this section, we describe how one can parallelize the hybrid attack and analyze the
resulting theoretical speedup. Throughout this chapter, we focus on the runtime as
a metric for the attack. Our analysis depends on the number of nodes and cores per
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Algorithm 7: The hybrid attack on binary LWE

Input : A modulus q, a binary LWE instance (A,b) ∈ Zm×nq × Zmq , a
guessing dimension r ∈ N with 4 | r < m+ 1, a block size β

1 compute a basis B′ of Λ(A,b,q) of the form

B′ =

(
B C
0 Ir+1

)
∈ Z(m+1)×(m+1),

where B ∈ Z(m−r)×(m−r) and C ∈ Z(m−r)×(r+1);
2 BKZ-β-reduce the upper-left block B;
3 set c = r/4;
4 while true do
5 guess w′ ∈ {0, 1}r with exactly c non-zero entries and set v′g = (w′, 0.5);

6 calculate v′l = NPB(Cv′g) ;

7 store v′g in all the boxes addressed by Av′l
∪ A−v′l ;

8 for all v′′g 6= v′g in all the boxes addressed by Av′l
∪ A−v′l do

9 set vg = v′g + v′′g ;

10 if vg ∈ {0, 1}r+1 then
11 calculate vl = NPB(Cvg) ∈ Zm−r;

12 if v =

(
vl
vg

)
∈ Λ(A,b,q) ∩ {0, 1}m+1 then

13 return v;

node. For the rest of this section, k denotes the number of nodes and l the number
of cores per node, hence in total we have kl cores. We assume that cores on the same
node can communicate and share a common memory, whereas this is not the case
across different nodes. Therefore, cores on the same node play a different role than
cores on different nodes. We are interested in the efficiency of parallel algorithms,
which is measured by

E(X1, . . . , Xh, C) =

(
T (X1,...,Xh,1)
T (X1,...,Xh,C)

)
C

,

where C is the total number of cores, T (X1, . . . , Xh, i) is the runtime of the algorithm
on i cores, and X1, . . . , Xh are the inputs of the algorithm.

Our measures to parallelize the hybrid attack are the following:

1. Running the attack on multiple randomized instances in parallel.

2. Potentially using a parallel version of BKZ.
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3. Performing the meet-in-the-middle search in parallel.

In the following, we discuss these measures in more detail.

6.2.1 Running Multiple Instances in Parallel

The hybrid attack suffers from a possibly low success probability psucc (cf. Chapter 5).
It is therefore expected that the attack needs to be randomized and repeated
approximately 1/psucc times until it is successful. This can be done in parallel on
different cores. As different executions of the attack are independent, these cores
can be located on different nodes.

In the following, we elaborate on how to randomize the instances for the attack.
The two components of the overall success probability are i) the probability that the
last components of the searched vector (in our case the binary LWE error vector)
which are guessed in the meet-in-the-middle phase have a certain structure12 and ii)
the success probability of the Nearest Plane algorithm. The first probability depends
on the structure of the searched vector, while the second depends on the quality of
the reduced basis. Thus, our strategy to randomize the instances is twofold.

First, we permute the LWE samples by permuting the rows of the input LWE
instance (A,b). Then it holds that τ(b) = τ(A)s + τ(e) mod q, where τ is some
permutation of the rows of a matrix or the entries of a vector, respectively. In this
way, we randomize the structure of the last components of the LWE error vector.
It can also be viewed as guessing other entries of the LWE error vector than the
last ones. Note that in this case, the attack potentially finds the permutation τ(e)
instead of the original error vector e.

Second, before BKZ-reducing the upper-left part B of the full basis B′ (Line 2 of
Algorithm 7), we randomize this part by multiplying it with a random unimodular
matrix. This procedure randomizes the BKZ-reduced basis while preserving the
lattice.

The benefit of running multiple randomized instances of the attack in parallel is
experimentally verified in Section 6.3.5.

6.2.2 Using Parallel BKZ

The two most time-consuming steps of the hybrid attack are the BKZ lattice reduction
(precomputation) step (Line 2 of Algorithm 7) and the meet-in-the-middle phase
(Lines 5 to 13 of Algorithm 7). These steps may be parallelized. A summary of the
state-of-the-art regarding a parallel BKZ algorithm is given in [MLC+17]. To the
best of the authors’ knowledge, there are no results published about the performance
and scalability of a parallel BKZ 2.0 algorithm. For this chapter, we assume that the

12For example, if the searched vector is binary, the structure would be a certain number of non-zero
entries.

88



6.2 Parallelizing the Hybrid Attack

BKZ or BKZ 2.0 algorithm may be parallelized (in a black box manner), but assume
that this needs to be done on a single node. We do not analyze the scalability of
parallel BKZ, as this is out of the scope of this work.

6.2.3 Parallel Meet-in-the-Middle Search

Besides lattice reduction, the meet-in-the-middle phase (Lines 5 to 13 of Algorithm 7)
is the most time-consuming part of the hybrid attack. For the meet-in-the-middle
phase, an enormous number of vectors needs to be guessed and checked for possible
collisions that lead to the solution. We propose to perform this guessing and
collision search in parallel. To this end, all guessing and collision search threads (of
one individual randomized instance only) need to operate on a shared hash map.
We therefore assume that the parallel meet-in-the-middle search for one individual
instance needs to be performed on a single node. We investigate the parallel efficiency
of the meet-in-the-middle phase in Section 6.3.4.

Note that a bottleneck of the meet-in-the-middle search is its memory consumption.
A reduced memory version (which comes at the cost of a slower runtime) of a
pure meet-in-the-middle attack [HGSW] on NTRU has been presented in [vV16].
The attack is based on a “golden” collision search which has been parallelized
in [vW96, vW99]. However, it is unclear if the memory reduction techniques of [vV16]
can be applied to the hybrid attack. This is due to the fact that the meet-in-the-
middle search of [vV16] can only find one possible solution, which may be unlikely
to be found within the hybrid attack due to the low collision-finding probability.
In contrast, for the meet-in-the-middle search of the hybrid attack there are many
possible collisions, which makes it very likely that one of them will be found. We
therefore do not consider the above techniques in this chapter.

6.2.4 Runtime Analysis

A detailed runtime analysis of the serial hybrid attack can be found in Chapter 5.
In Chapter 5, over- and underestimates of the runtime of the hybrid attack are
presented. The underestimates represent potential algorithmic improvements which
have not yet been shown to be applicable in practice. Since this chapter is focused
on the practicality of the hybrid attack, we only consider the overestimates.

Let β be the block size used for the lattice reduction step and r be the guessing
dimension used in the hybrid attack. The parameters β and r can be chosen by
the attacker, while the others (n,m, q) are fixed by the given LWE instance and
therefore not mentioned explicitly in the following. Then, according to Chapter 5,
the expected total runtime of the serial hybrid attack can be expressed as

Ttotal(β, r) =
TBKZ(β, r) + Thyb(β, r)

psucc(β, r)
,
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6 Parallelizing the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

where the runtime TBKZ of BKZ, the runtime Thyb of the meet-in-the-middle phase,
and the overall success probability psucc can be estimated as in Chapter 5.13 In
order to minimize the runtime of the serial hybrid attack, the total runtime must be
minimized over all possible choices of β and r as described in Chapter 5.

In the following, we show how to make use of the available cores and determine
the theoretical runtime Ttotal,p(β, r, k, l) of the parallel hybrid attack when using
k nodes with l cores per node. Let TBKZ,p(β, r, k, l) and Thyb,p(β, r, k, l) denote the
runtimes of parallel BKZ and the meet-in-the-middle guessing phase. As described
in Section 6.2.1, we expect to find the solution after about

N(β, r) =
1

psucc(β, r)

repetitions of the attack, which can be performed in parallel. We (optimistically)
expect this to scale optimally until the total number of cores used exceeds N(β, r).
Hence we use approximately min(N(β, r), kl) cores to run about min(N(β, r), kl)
randomized instances in parallel, reducing the time of the parallel hybrid attack to
approximately

Ttotal,p(β, r, k, l) = max

(
1,
N(β, r)

kl

)
· (TBKZ,p(β, r, k, l) + Thyb,p(β, r, k, l)).

Per randomized instance, there remain about

max

(
1,

kl

N(β, r)

)
cores to use for BKZ and the meet-in-the-middle phase, i.e., to reduce the parallel
runtimes TBKZ,p(β, r, k, l) and Thyb,p(β, r, k, l). However, since we assume that BKZ
as well as the meet-in-the-middle phase need to be parallelized on a single node, we
can use at most l of them per instance. Summarizing, this results in the following
heuristic to estimate the runtime of the parallel hybrid attack.

Heuristic 6.1. Let β, r, TBKZ(β, r), Thyb(β, r), psucc(β, r), and N(β, r) = 1/psucc(β, r)
be as above. Then the total runtime Ttotal,p(β, r, k, l) of the parallel hybrid attack on
k nodes with l cores per node is approximately

Ttotal,p(β, r, k, l) = max

(
1,
N(β, r)

kl

)
·
(

TBKZ(β, r)

MBKZ(β, r, k, l)
+

Thyb(β, r)

Mhyb(β, r, k, l)

)
,

where
MBKZ(β, r, k, l) = EBKZ(β, r, C(β, r, k, l)) · C(β, r, k, l),

13Note that in Chapter 5, the estimated number of operations is given instead of the runtime.
However, knowing how many operations can be performed per second, these can be transformed
into each other.
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6.2 Parallelizing the Hybrid Attack

Mhyb(β, r, k, l) = Ehyb(β, r, C(β, r, k, l)) · C(β, r, k, l)

with

C(β, r, k, l) = min

(
l,max

(
1,

kl

N(β, r)

))
,

and EBKZ((β, r, i)) and Ehyb((β, r, i)) are the parallel efficiencies of BKZ and the
meet-in-the-middle phase, respectively.

We make a few remarks regarding Heuristic 6.1.

Remark 6.1. 1. We emphasize that for each combination of k and l, the attack
parameters r and β must be re-optimized, as in general – when focusing on
the runtime – this yields a better attack than naively using the same attack
parameters as for the serial hybrid attack.

2. Note that as long as the total number of cores kl does not exceed the expected
number of repetitions of the serial hybrid attack, i.e., as long as kl ≤ N(β0, r0)
for the optimal attack parameters β0, r0 of the serial hybrid attack, one obtains
100% parallel efficiency of the hybrid attack by choosing β0, r0 as the attack
parameters.

3. According to Heuristic 6.1, the parallel efficiency of the hybrid attack depends
on the parallel efficiency of BKZ and the meet-in-the-middle phase. Note that
the parallel efficiency of the entire attack is at least the minimum of these
two efficiencies as long as the number of nodes does not exceed the expected
number of repetitions of the attack of the serial hybrid attack, i.e., as long
as k ≤ N(β0, r0) for the optimal attack parameters β0, r0 of the serial hybrid
attack. In particular, if BKZ and the meet-in-the-middle phase scale ideally, so
does the parallel hybrid attack as long as k ≤ N(β0, r0).

4. As can be seen in Heuristic 6.1, the runtime of the parallel hybrid attack does
not only depend on the total number of cores kl that are used, but also on
the configuration, i.e., on how many cores l there are per node. In particular,
if k > N(β, r) holds, increasing k may have a worse effect on the parallel
efficiency of the attack than increasing l. As long as k ≤ N(β, r), however,
this phenomenon does not occur, since in this case it holds that kl/N(β, r) ≤ l
and hence we have C(β, r, k, l) = max (1, kl/N(β, r)), which only depends on
the product kl and not on the individual choices of k and l.

5. If there is only one core per node, i.e., l = 1, BKZ and the meet-in-the-middle-
phase for each individual instance are not further parallelized. Hence, in this
case, the efficiency of the hybrid attack is independent of the efficiencies of
BKZ and the meet-in-the-middle phase.

91



6 Parallelizing the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

Examples and Discussion

We illustrate the theoretical efficiency of the parallel hybrid attack with some
examples. We consider the binary LWE instance with parameters n = 256,m =
512, q = 128, which is underlying the first of the proposed instantiations of the
encryption scheme by Buchmann et al. [BGG+16]. For simplicity, we do not shift
the LWE error vector component-wise by 1/2, which leads to a slightly better attack
(serial and parallel) as proposed in Chapter 5. For our examples, we assume that the
efficiency functions EBKZ(β, r, i) and Ehyb(β, r, i) are functions of the form

fE(β, r, i) =

{
1 for i = 1

E for i > 1

with E ∈ {0.1, 0.9}, giving four possible combinations. Note that efficiency functions
of this form are somewhat pathological and not realistic for the practical behavior
of parallel BKZ and a parallel meet-in-the-middle search. However, they allow us
to showcase the effect of the individual efficiencies on the overall efficiency of the
parallel hybrid attack. Furthermore, if the constants are viewed as possible lower
bounds on the efficiency of BKZ and the meet-in-the-middle phase, respectively, our
results can be interpreted as lower bounds on the theoretical efficiency of the parallel
hybrid attack.

We combined the analysis of the serial hybrid attack provided in Chapter 5 with
our analysis of the parallel hybrid attack and optimized the attack parameters for
each individual configuration. For the number of operations required for BKZ-β
in dimension d we use common 8d · 20.270β ln(β)−1.019β+16.1 cost model [APS15] for
enumeration-based BKZ. We use estimates for enumeration-based BKZ, as opposed
to BKZ that uses sieving algorithms as SVP solvers, because enumeration algorithms
currently seem to perform better in practice (as argued for example in [BCLvV17b])
and this chapter is considered with the practicality of the hybrid attack. In addition,
the BKZ implementation used in our practical experiments uses enumeration as SVP
solver. For the number of operations required by Nearest Plane in dimension d we
use d2/(21.06) as for our overestimates in Chapter 5.

Our results assuming efficiency f0.1 for BKZ and the meet-in-the-middle phase are
shown in Table 6.1. Our results assuming efficiency f0.9 for BKZ and the meet-in-
the-middle phase are shown in Table 6.2. Our results assuming efficiency f0.1 for
BKZ and efficiency f0.9 for the meet-in-the-middle phase are shown in Table 6.3. Our
results assuming efficiency f0.9 for BKZ and efficiency f0.1 for the meet-in-the-middle
phase are shown in Table 6.4. According to our analysis, the serial hybrid attack
requires roughly 2108.5 operations (including repetitions of the attack) and has a
success probability of roughly 2−6.97.

In general, all of the above-mentioned tables confirm the behavior of the parallel
hybrid attack described in Remark 6.1 and show that the parallel hybrid attack scales
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well within reasonable parameter ranges. We can make the following observations
from the above mentioned tables.

1. In each case, the efficiency of the parallel hybrid attack is 100% as long as the
total number of cores is at most 27, which is roughly the required number of
repetitions of the serial hybrid attack.

2. The efficiency of the hybrid attack does not drop below the minimum of the
two individual efficiencies of BKZ and the meet-in-the-middle phase as long as
the number of nodes k is at most 27. Note however, that in general we achieve
better efficiencies.

3. We can further observe that increasing the total number of cores by increasing
number of cores per node has either the same or a better effect on the efficiency
than doing so by increasing the number of nodes.

4. All tables indicate that for each number of nodes k there exists a number of
cores per node lk such that when increasing the number l of cores per node
the efficiency remains constant and that this efficiency is gradually approached
when increasing the l to lk.

5. For l = 1, the tables confirm that the efficiency of the hybrid attack is
independent of the efficiencies of BKZ and the meet-in-the-middle phase, i.e.,
the l = 1 column of all of the above-mentioned tables is the same.

6. Comparing Table 6.3 and Table 6.4, we see that having efficiency f0.1 for BKZ
and efficiency f0.9 for the meet-in-the-middle phase has a better effect on the
overall efficiency of the parallel hybrid attack than having efficiency f0.9 for
BKZ and efficiency f0.1 for the meet-in-the-middle phase.

In Figure 6.1, we illustrate the improvement of optimizing the attack parameters
individually for each configuration compared to using the optimal attack parameters
of the serial hybrid attack for the l = 1 case.

6.3 Experiments and Results

In this section, we start by describing our implementation in Section 6.3.1, the test
environment in Section 6.3.2, as well as the test cases employed in Section 6.3.3.
Afterward, we present the results of our practical experiments in Sections 6.3.4, 6.3.5,
and 6.3.6.
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Figure 6.1: Comparing the efficiency of the parallel hybrid attack when optimizing the
attack parameters for each configuration individually to using the optimal
attack parameters of the serial hybrid attack for each configuration for
binary LWE with n = 256, m = 512, q = 128 with varying number of
nodes and one core per node.

6.3.1 Our Implementation

For our implementation for the experiments, we use different MPI processes for
the running randomized instances of the attack in parallel and multiple threads to
parallelize one run of the meet-in-the-middle phase. We employ the ZZ and RR
data types provided by the NTL library for big integer and arbitrary floating point
precision data types, e.g., to store the bases of the lattices. The lattice-related
tasks, namely the Gram-Schmidt orthogonalization and the BKZ reduction are also
performed within NTL and are not parallelized.
We implemented an iterative Nearest Plane algorithm since they in general perform
better than recursive Nearest Plane algorithms. The loop within iterative Nearest
Plane depends on previous iterations thus preventing (an obvious) parallel execution.
Each loop contains two inner product calculations which are performed as basic
operations in NTL on its own data types. The vector dimension is much smaller than
ten thousand and parallelization of this calculation does not pay off. However, since
the NTL functions and types are used as a black box, they may easily be replaced in
the case of more efficient implementations. Our code is available online14.

14https://github.com/MiBu84/Hybrid-Attack-binary-LWE
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6.3 Experiments and Results

Parallel Meet-in-the-Middle Search

To parallelize the meet-in-the-middle phase on a shared-memory node, we employ
the OpenMP standard. Each thread samples new random vectors independently
of the others and executes its Nearest Plane calculations. The random sampling is
based on pseudo-random integral number generation following the C++11 language
standard and employs instances of std :: uniform int distribution which receive a
uniform random number generator as argument. In our case, this generator is a
Mersenne Twister pseudo-random generator of 32-bit numbers of type std :: mt19937.
The required seed is generated by a weighed product of the actual OpenMP thread
id, the number of threads, the id of the executing process, the size of the MPI
communicator and prime numbers. The crucial point for a meet-in-the-middle phase
with multiple threads is the parallel access of the threads to a shared hash map. To
avoid inconsistencies in this map, we use the implementation of the concurrent hash
map (revision 3.4) for the Intel TBB library. Hence, no manual synchronization
is required from outside. As hash function for the concurrent map, we use the
predefined standard specialization std :: hash <bitset> which is a very space efficient
data structure. Its hash function calculation is also very performant. To determine the
corresponding std :: bitset from a vector of NTL’s ZZ type, we apply Definition 6.1.

Parallel Instances

To run multiple instances of the hybrid attack in parallel, we implemented a par-
allelization based on the MPI standard. Each MPI process reads the input data
independently and executes the pre-computation which includes randomizing the
basis through permutation and multiplication with a random unimodular matrix
and lattice reduction with BKZ. To achieve random permutations, we use the
std :: shuffle template function following the C++11 standard which randomly re-
arranges the elements in vectors. As an argument the std :: shuffle also receives a
Mersenne Twister generator of type std :: mt19937. The BKZ reduction is executed
with pruning activated where we set the pruning parameter of the corresponding
NTL::BKZ function to 10. After preparing the basis in the described way, each
process enters the OpenMP parallelized meet-in-the-middle phase as explained in
Section 6.3.1. Each process periodically checks whether one of the other processes
successfully finished through non-blocking communication. The periodicity of those
checks is configured in such a way that the communication overhead is negligible
compared to the calculations of each process. Hence, it may happen that the other
processes still search for a solution for a short time, although one process already
successfully finished the hybrid attack.
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6 Parallelizing the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

High Hybrid Flexibility

Our hybrid parallelization approach allows for a highly flexible execution of the
hybrid attack, depending on the focus of the execution and the hardware available.
The common case is a relatively low success probability of the attack which requires
permutations of the LWE samples and randomizing the bases before BKZ reducing
them.

Hence, a high number of processes is required in that case to amplify the success
probability. Our hybrid implementation allows to run multiple MPI processes for the
randomized instances on a single compute node while still being able to parallelize
the meet-in-the-middle phase where each process spawns a group of threads. The
low costs for the process management and the minimized communication overhead
enable an efficient use of the computational resource.

6.3.2 Test Environment

Most tests are performed on our local high performance computer. The nodes
employed are equipped with two Intel Haswell Xeon E5-2680v3 processors (2×12
= 24 cores, no hyperthreading, max. 3.3 GHz), 30 MB of last-level cache and
64 GB RAM. Nodes are interconnected with Infiniband FDR-14. All nodes are
allocated exclusively to avoid any interference from other calculations. Additionally,
we employed an own compute node, called LARA, with two E5-2698 processors
resulting in 32 physical cores operating at 2.3 GHz. We mention explicitly when
LARA was employed for an experiment. CentOS 7 is the operating system in both
cases. C++ code is compiled with the Intel C++ in version 18.0.0, C++11 language
standard is chosen and the optimization level is set to full optimization (ofast). The
Intel OpenMP implementation and OpenMPI in version 1.10.7 are employed. As
libraries, we use NTL (10.5.0), GMP (6.1.2), boost (1.66.0) and Intel TBB (4.4).

6.3.3 Test Cases

For the experiments for the meet-in-the-middle phase, we created binary LWE
instances that we know could be solved with our attack parameters. To that end,
we created binary LWE instances, where the binary error vector is of the form
e = (0, 1, 0, 1, . . .) to ensure that the last components of the short vector always have
the correct number of non-zero entries. Furthermore, we checked if the Nearest Plane
call in Line 11 of Algorithm 7 for the correct vector vg finds the first components of
the short vector. In contrast, for the experiments on the general number of repetitions
of the attack we used random instances and implemented a check if the solution can
possibly be found in general, i.e., check if the Nearest Plane algorithm succeeds and
if the number of non-zero entries in the last components is correct. In each case,
we investigate the performance of the serial version and the effect of increasing the
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degree of parallelism.

6.3.4 Reducing the Runtime of the Meet-in-the-Middle Phase
of the Attack

To evaluate the quality of our parallelization approach for the meet-in-the-middle
phase, we define the measure of processed vectors per second #v/t within the phase.
The number of vectors which are processed until success of the algorithm is logged
and divided by the overall runtime of the meet-in-the-middle phase. We repeated
our test case with β = 24 and r = 20 ten times while varying the number of threads
between 1, 2, 4, 8, 16 and 24. The binary LWE instance was parameterized by n = 80,
m = 160, and q = 521. Figure 6.2 summarizes the results.
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Figure 6.2: Scaling analysis of the meet-in-the-middle phase.

We show the average number of vectors processed per second for each number
of threads as well as the standard deviations. The values are very stable and
reproducible: For example, for one thread, the standard deviation is three orders of
magnitude lower than the average value. Even in the worst case for four threads, the
quotient of average value and standard deviation is higher than 66. We also see that
the parallel scaling behavior is very good and nearly ideal up to four threads where
efficiency values are above 96%. For a higher number of threads, we still achieve
efficiency rates of more than 87% on our single node.

The second main point of our investigation of the meet-in-the-middle phase is the
development of its overall runtime dependent on the number of OpenMP threads
employed. To that end, we conducted three test suites differing in the values of r
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6 Parallelizing the Hybrid Lattice Reduction and Meet-in-the-Middle Attack

and fixing β = 24, while keeping the LWE parameters from the test above. For each
suite, we ran the meet-in-the-middle phase ten times and measured the time until
success. The results for r = 20, r = 24 and r = 28 are shown in Figure 6.3.
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Figure 6.3: Runtime of meet-in-the-middle phase depending on the number of threads.

We employ box plots for the visualization of the data. The box represents the
values between the 25- and 75-percentile, called Q25 and Q75. This means that
50% of all measurement values lie in this range. Lines at bottom and top of the
boxes represent the so called whiskers. In our case, we employ the definition of
Tukey [Tuk77] meaning that the end of the whiskers indicated the lowest and highest
measurement point, respectively, which lies within 1.5 · (Q75 − Q25) of the lower
and upper quartile, respectively. The median Q50 is shown by the horizontal lines
within the boxes and its value is given in the diagram above the corresponding box.
Outlying measurement points are drawn as filled circles.

First of all, we see that the serial runtime of the meet-in-the-middle phase increases
when increasing the value of r, which is the expected behavior as the size of the
search space increases. Second, in general, the runtime decreases when increasing
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the number of threads employed. We see that the speedup for the median time is
even higher than the speedup in the number of vectors processed. For example, in
the top case and the lower case with r = 20 and r = 28, respectively, of Figure 6.3,
the median decreases by a factor of 28 when employing 24 threads compared to one
thread while the factor is even 44 for r = 24, β = 24. This also results from the more
dense distribution of the measurement values for a higher number of threads. For
one thread, a wide range of possible runtimes is covered, while the region is small for
24 threads in all three cases. There are also no extreme outliers from eight threads
on. Hence, increasing the number of threads also stabilizes the runtime of the attack
phase.

6.3.5 Reducing the Overall Runtime of the Attack

In this section, we experimentally verify how using more processes to run multiple
instances of the attack in parallel decreases the total runtime using our C++ implemen-
tation and its MPI parallelization. To that end, we spawn a varying number of MPI
processes and each process randomizes and reduces the basis until one process finds
a good basis, i.e., one for which the meet-in-the-middle phase can succeed. In this
case, the attack will be successful. As the runtime of the meet-in-the-middle phase is
analyzed in Section 6.3.4, we only check if a good basis is found and do not actually
run the meet-in-the-middle search. We take the lowest number of randomization
attempts required, where one attempt means randomizing and reducing one basis
for each process in parallel. The binary LWE parameters are n = 50, m = 100,
and q = 67, while r = 4 and β = 3. This test was repeated 20 times for a fixed
number of MPI processes and the same input was used in all cases. The results are
summarized in Figure 6.4. We again employ box plots with the same properties
as given in Section 6.3.4. Figure 6.4 shows that the number of attempts required
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Figure 6.4: Number of attempts required to find a good basis when increasing the
number of MPI processes.

decreases significantly when employing more processes. While for one thread up to
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286 randomization attempts are performed, the maximum number is only 5 in the
case of 32 processes. The median decreases from 45 to 1.5.

6.3.6 Analysis of the Hybrid Efficiency

The efficiency and flexibility of our hybrid implementation was investigated with
experiments on LARA. The number of processes (#PROC) and threads (#THR)
was varied in such a way that the product is 32. We call these 32 units of execution
workers in the following. We ran our experiments in different configurations on a
single node for binary LWE instances with m = 160, n = 80, and q = 521. All tests
were repeated ten times. Table 6.5 gives an overview of the results.

In Test 1, we use β = 20 and r = 20 and let all processes enter the meet-in-the-
middle phase at the same time on precomputed bases. The test stops when one
thread finds a solution. We log the number of vectors each process processes during
the runtime and calculate the average number of vectors processed per second on the
whole machine by all workers. This number is shown in the third column including
its standard deviation. We see that the number of vectors processed per second is
virtually independent of the configuration. This also shows that sharing the resources
on a single compute node is done efficiently and that our implementation works well
with multiple processes on one node. The fourth column gives the average runtime
tguess (over the processes) in seconds.

Test 1
#PROC #THR #v/s all workers average tguess

1 32 1475± 7.26 7.92± 7.26
2 16 1497± 25.22 13.13± 10.01
4 8 1494± 34.04 21.05± 11.09
8 4 1490± 53.98 24.22± 10.83

Test 2
#PROC #THR #v/s succ. thread average tBKZ

2 16 1557± 3.14 184± 2.23
4 8 716± 33.65 188± 4.66
8 4 297± 46.03 199± 5.51

Table 6.5: Two experiments on parallel configurability. In Test 1 all workers perform
guessing, in Test 2 half of the workers run BKZ the others guess. Runtimes
in seconds.

In Test 2 with β = 24 and r = 28 half of the workers run BKZ while the rest
directly enters the guessing phase. The third column shows the vectors processed per
second by the succeeding thread. Ideally, we would expect that this number is halved
from row to row. From the second to the third row, the speed differs by a factor
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of 2.2, while the factor is 2.4 between row three to four. The increasing number of
BKZ instances has a negative influence on the threads in the meet-in-the-middle
phase, indicating that the memory interface of the system is the bottleneck in this
case. Replacing NTL’s BKZ implementation by a more memory efficient one will
reduce this effect. The fourth column shows the average runtime of the BKZ calls
tBKZ which becomes somewhat slower when increasing the number of simultaneous
runs.

The experiments on LARA demonstrate that our implementation is well prepared
for various high performance computing setups since the increasing number of CPU
cores in future compute nodes can be used to increase the number of randomized
instances that are run in parallel as well as to increase the degree of parallelism per
instance within the meet-in-the-middle phase (and possibly also within BKZ).
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7 The Hybrid Lattice Reduction and
Quantum Search Attack

While the hybrid attack (cf. Chapter 5) is currently considered the most practical
attack on several instances of lattice problems, it has four main drawbacks. First, it is
only practical for lattice problems with highly structured secret vectors such as LWE
with binary or ternary error distribution. Second, the memory requirements of the
meet-in-the-middle search are enormous. Third, the probability that collisions are
detected during the meet-in-the-middle-phase can be extremely small, see Chapter 5.
And finally, it does not take the scenario into account, where the attacker has access
to a large-scale quantum computer. The natural question is therefore whether the
hybrid attack can be improved such that all of the above drawbacks are eliminated.

Contribution. In this chapter, we present an improved quantum version of the
hybrid attack which eliminates all these drawbacks of the classical hybrid attack
and provide a detailed analysis of the attack. Our quantum hybrid attack replaces
the meet-in-the-middle phase of the hybrid attack with a generalization of Grover’s
quantum search algorithm [Gro96] by Brassard et al. [BHMT02]. This quantum
search is sensitive to the underlying distribution on the search space, which makes it
more efficient than Grover’s algorithm if the distribution from which the shortest
non-zero vector is drawn is non-uniform (e.g., in the case of LWE with a discrete
Gaussian error distribution). In addition, our quantum hybrid attack eliminates the
huge memory cost and low collision finding probability caused by the meet-in-the-
middle search of the classical hybrid attack. Our runtime analysis of the quantum
hybrid attack includes optimizing the quantum search algorithm and the search
space. Finally, we apply our quantum attack to various uSVP instances with small
and/or sparse short vectors as well as to instances with short vectors that follow
discrete Gaussian distributions. We compare our results to the classical hybrid attack
and the primal attack under the 2016 estimate (cf. Chapter 3), highlighting the
improvements of the quantum hybrid attack.

Organization. In Section 7.1, we present our new quantum hybrid attack. The
runtime analysis of the attack is provided in Section 7.2. In Section 7.3, we show
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7 The Hybrid Lattice Reduction and Quantum Search Attack

how to further optimize the search space for the attack. Finally, in Section 7.4, we
apply our quantum attack to several uSVP instances.

Publications. This chapter is based on the publication [3], which was presented
at PQCrypto 2017. In addition, the concept of optimizing the search space of the
quantum hybrid attack and the systematic runtime estimates for various discrete
Gaussian and binary or ternary distributions are either part of [7] or novel in this
thesis.

7.1 The Quantum Hybrid Attack

In this section, we introduce our new quantum hybrid attack. The main idea is
to use quantum search algorithms to speed up the guessing part of the classical
hybrid attack. The idea to replace the meet-in-the-middle phase by Grover’s search
algorithm was sketched in Schanck’s thesis [Sch15]. However, an analysis of the
runtime of such an attack is still missing in the literature. Furthermore, by using
a modification of Grover’s algorithm, our quantum hybrid attack is more efficient
if the searched vector is not drawn from a uniform distribution (e.g., in the case of
solving LWE with a discrete Gaussian error distribution).

This section is structured as follows. We give a brief summary of Grover’s
quantum search algorithm [Gro96] and its modified version developed by Brassard et
al. [BHMT02] in Section 7.1.1. In Section 7.1.2, we show how to use this quantum
search algorithm inside the hybrid attack to obtain a new quantum hybrid attack.

7.1.1 Amplitude Amplification

In 1996, Grover presented a quantum algorithm that can speed up the search in
unstructured databases [Gro96]. Given a function f : S → {0, 1} defined on a
finite set S, we call Sf := {x ∈ S | f(x) = 1} the set of marked elements. Grover’s
algorithm allows to find an element x ∈ Sf in approximately π

4
·
√
|S| / |Sf | evaluations

of f (without any further knowledge about f), while classical algorithms require an
average number of evaluations in the order of |S| / |Sf |.

The runtime of Grover’s search algorithm is independent of how the marked
elements have been chosen. The drawback is that additional information about
the choice of the marked elements is not used. A generalization of Grover’s search
algorithm that can utilize the probability distribution on the search space was
presented by Brassard et al. [BHMT02]. Their generalization uses an additional
algorithm A sampling from some distribution on the search space S.

Theorem 7.1 ([BHMT02], Theorem 3). There exists a quantum algorithm QSearch
with the following property. Let A be any quantum algorithm that uses no measure-
ments (i.e., a unitary transformation), and let f : S → {0, 1} be any Boolean function.
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7.1 The Quantum Hybrid Attack

Let a denote the initial success probability of A (i.e., a = Pr[f(x) = 1, x
$← A]). The

algorithm QSearch finds a good solution using an expected number of applications of
A, A−1 and f which is in Θ(1/

√
a) if a > 0, and otherwise runs forever.

The quantum algorithm A can be constructed as follows: Given an arbitrary
(efficient) probabilistic sampling algorithm, it can be transformed into a deterministic
algorithm that gets random bits as input. This algorithm in turn can be transformed
into a quantum algorithm. Instantiating this quantum algorithm with the uniform
distribution as superposition for the input bits leads to the wanted algorithm A.

Note that the complexity of the algorithm QSearch is only given asymptotically.
This is only necessary because the probability a is unknown. However, it can be
shown that the hidden constant is indeed small, and hence we can ignore the Landau
notation in our runtime estimates.

7.1.2 The Attack

In the following, we describe our new quantum hybrid attack (Algorithm 9). As
always, we use the notation NPB(t) to indicate that Nearest Plane is called on the
target vector t and input basis B. The inputs for the quantum hybrid attack are a
basis B′ ∈ Rm×m of a uSVP lattice Λ of the form

B′ =

(
B C
0 Ir

)
,

the distribution De on Zm from which the shortest non-zero vector in Λ is drawn,
an upper bound y on the norm of the shortest non-zero vector, and the attack
parameters r and β. Similar to the classical hybrid attack (cf. Chapter 5), we
use the idea that if v = (v`,vg) ∈ Λ with vg ∈ Rr is a shortest non-zero vector
in Λ and B is sufficiently well reduced, we can guess vg and hope to find v` via
NPB(Cvg) = vl, since Cvg = −Bx + vl. Now, the attack proceeds as follows. After
choosing a suitable distribution for the sampling algorithm A used in the quantum
search algorithm, the attack reduces the upper-left block B of the basis matrix B′.
It then runs QSearch with the function defined by Algorithm 8, which essentially
checks if a guess wg is correct by checking if NPB(Cwg) = vl.

As we show in Section 7.2, in general it is not optimal to use the distribution
De for the sampling algorithm A to find the solution. Instead we use the following
transformed distribution.

Definition 7.1. Let X be an arbitrary distribution with finite support S. We write
T (X) for the distribution defined by

∀a ∈ S : Pr[a = b|b $← T (X)] =
x

2
3
a∑

c∈S x
2
3
c

.
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7 The Hybrid Lattice Reduction and Quantum Search Attack

Our quantum hybrid attack is presented in Algorithm 9. Recall that the attack
parameter r indicates the guessing dimension and the parameter β is the block size
used for lattice reduction algorithms.

Algorithm 8: Function fB,C,y(wg)

1 w` ← NPB (Cwg);
2 Set w = (w`,wg);
3 if ‖w‖ ≤ y then
4 return 1;

5 else
6 return 0;

Algorithm 9: Quantum hybrid attack

Input: A basis B′ ∈ Rm×m of a uSVP lattice Λ of the form B′ =

(
B C
0 Ir

)
,

a distribution De on Zm from which the shortest non-zero vector in
Λ is drawn, a bound y, the attack parameters r, β ∈ N

1 Let D be the distribution of the last r entries of a vector x, where x
$← De;

2 Set A to be a quantum (sampling) algorithm without measuring for the
distribution T (D) as defined in Definition 7.1;

3 BKZ-β reduce B;
4 Let v′g be the result of QSearch (Theorem 7.1) with function fB,C,y

(Algorithm 8) and quantum algorithm A;

5 return (NPB

(
v′g
)
,v′g);

7.2 Analysis

In this section, we analyze the expected runtime of the quantum hybrid attack and
show how to minimize it over all choices of attack parameters.

7.2.1 Success Probability and Number of Function Applications

In the following, we show our main result about the runtime of our quantum hybrid
attack.

Heuristic 7.1. Let Λ, the matrices B,C, the distribution D, the algorithm A, and
the parameters m, y, r be defined as in Section 7.1. Let v = (v`,vg) ∈ Λ with vg ∈ Rr

be a shortest non-zero vector and assume ‖v‖ ≤ y.
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The success probability p of the quantum hybrid attack is approximately

p ≈
m−r∏
i=1

(
1− 2

B( (m−r)−1
2

, 1
2
)

∫ max(−ri,−1)

−1

(1− t2)
(m−r)−3

2 dt

)
,

where B(·, ·) denotes the Euler beta function (see [Olv10]),

ri =
‖b∗i ‖
2 ‖vl‖

for all i ∈ {1, . . . ,m− r},

and ‖b∗1‖ , . . . ,
∥∥b∗m−r∥∥ denote the lengths of the Gram-Schmidt basis vectors corre-

sponding to the basis B.
In case of success, the expected number of applications of fB,C,y, A, and A−1 in

Algorithm 9 is Θ(L), where

L =

 ∑
x∈supp(D)

d
2
3
x

 3
2

.

Furthermore, the choice of the distribution for the sampling algorithm A in Algo-
rithm 7.1 is optimal.

We first determine the success probability of the attack. We then calculate and
optimize the number of applications of f , A, and A−1 and compare our results with
Grover’s search algorithm. In the following, let all notations be as in Heuristic 7.1
and assume that its requirements hold.

Success Probability

If NPB (Cvg) = v`, we have fB,C,y(vg) = 1 with overwhelming probability and
QSearch recovers vg. Using the approximation of the probability that NPB (Cvg) =
v` determined in Chapter 5 yields the success probability given in Heuristic 7.1.

Number of Applications of fB,C,y, A, and A−1

We now calculate the expected number of applications of fB,C,y, A and A−1 (simply
called loops in the following) in the quantum hybrid attack in the case the attack
is successful. We show how the choice of the sampling algorithm A influences the
number of loops, how to minimize this number over all possible choices of A, and
that our choice in Algorithm 9 is in fact optimal. In the following, let S = supp(D)
be a finite set. The support S is the search space of our quantum algorithm. Let
A be the initial sampling algorithm used in the quantum hybrid attack and A be
the distribution with support S corresponding to A. According to Theorem 7.1, for
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7 The Hybrid Lattice Reduction and Quantum Search Attack

a fixed target element x ∈ S the expected number of loops in the quantum hybrid
attack is roughly (

√
ax)
−1. However, since the marked element (and its probability)

is not known, we can only estimate the expected number of loops

L(A) = L ((ax)x∈S) =
∑
x∈S

dx√
ax
. (7.1)

In order to minimize the runtime of the quantum search we must determine the
optimal distribution A that minimizes the number of loops L(A). We emphasize
that minimizing the number of loops is of independent interest for any quantum
search algorithm based on [BHMT02] applied in a similar way as in our attack.

Minimal number of loops. We first minimize the expected number of loops over
all possible choices of A. Without loss of generality we assume S = {1, . . . , k} for
some k ∈ N. We minimize the expected number of loops by minimizing the function

L : (0, 1)k → R, (a1, . . . , ak) 7→
k∑
i=1

di√
ai
, (7.2)

in k variables a1, . . . , ak ∈ (0, 1) under the constraint

a1 + . . .+ ak = 1, (7.3)

where d1, . . . , dk ∈ (0, 1) are fixed. In order to minimize L under the constraints, we
define the Lagrange function corresponding to L and Equation (7.3)

L(λ, a1, . . . , ak) =

(
k∑
i=1

di√
ai

)
+ λ

(
−1 +

k∑
i=1

ai

)
. (7.4)

To find the minimum of L we need to solve the following set of k + 1 equations

[Ei]i∈{1,...,k} 0 = Lai(λ, a1, . . . , ak) = −di
2
a
− 3

2
i + λ

[Ec] a1 + . . .+ ak = 1,

which gives

ai =
d

2
3
i∑k

j=1 d
2
3
j

and λ =

(∑k
j=1 d

2
3
j

) 3
2

2
. (7.5)

It remains to be shown that choosing the ai according to Equation (7.5) leads in
fact to a local minimum of L under the given constraints. If this is the case, this
local minimum must indeed constitute the global minimum satisfying the constraints,
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7.2 Analysis

since it is the only local minimum and L tends to infinity as one of the ai approaches
zero (hence the problem can be restricted to a compact domain). In order to show
that the ai constitute a local minimum, we compute the determinants of the leading
principal minors of the bordered Hessian matrix evaluated in the ai

H =


0 1 1 . . . 1
1 x1 0 . . . 0

1 0 x2
. . .

...
...

...
. . . . . . 0

1 0 . . . 0 xk

 , where xi =
3di

4a2.5
i

> 0.

For j ∈ {1, . . . , k} let

Hj =


0 1 1 . . . 1
1 x1 0 . . . 0

1 0
. . . . . .

...
...

...
. . . . . . 0

1 0 . . . 0 xj


be the leading principal minors. As adding scalar multiples of columns to other
columns does not change the determinant, we can use Gaussian elimination to see
that the determinants of all but the first principal minors of H are given by

det(Hj) = det


x0 1 1 . . . 1
0 x1 0 . . . 0

0 0
. . . . . .

...

0
...

. . . . . . 0
0 0 . . . 0 xj

 where x0 = −

(
j∑
i=0

1

xi

)
< 0.

Hence all determinants of the leading principal minors of H (except the first one) are
negative and thus choosing the ai according to Equation (7.5) leads in fact to a local
minimum of L under the given constraints. Inserting these ai into Equation (7.2)
yields the minimal number of loops

Lmin =
k∑
i=1

di√
ai

=
k∑
i=1

di√
d
2
3
i∑k

j=1 d
2
3
j

=

(
k∑
j=1

d
2
3
j

) 1
2

·
k∑
j=1

d
2
3
j =

(∑
x∈S

d
2
3
x

) 3
2

. (7.6)

An important special case. While Equation (7.6) provides a simple formula for
the minimal number of loops, evaluating it might be a computationally expensive
task for a large support S. In the following we consider the case that the support
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is of the form S = Sr0 for some r ∈ N and smaller set S0 and that D = P r for
some distribution P on S0. Note that this is for instance the case for LWE if the
components of the error vector are drawn independently from the same distribution.
We show how in this case Equation (7.6) can be evaluated by computing a sum of
|S0| summands and raising it to the r-th power instead of computing a sum of |S0|r
summands. This is true since Equation (7.6) can be rewritten and simplified to

Lmin =

(∑
x∈S

d
2
3
x

) 3
2

=

∑
y1∈S0

. . .
∑

yr−1∈S0

∑
yr∈S0

r∏
i=1

p
2
3
yi

 3
2

=

=

∑
y1∈S0

. . .
∑

yr−1∈S0

r−1∏
i=1

p
2
3
yi

(∑
yr∈S0

p
2
3
yr

) 3
2

=

=

∑
y1∈S0

. . .
∑

yr−1∈S0

r−1∏
i=1

p
2
3
yi

(∑
y∈S0

p
2
3
y

) 3
2

=

= . . . =

((∑
y∈S0

p
2
3
y

)r) 3
2

, (7.7)

since each of the dx is exactly the product of r of the py.

Comparison with Grover’s search algorithm. If in our quantum hybrid attack
the distribution D is the uniform distribution, then its number of loops matches the
one of Grover’s search algorithm

Lmin =

(∑
x∈S

d
2
3
x

) 3
2

=

(∑
x∈S

(
1

|S|

) 2
3

) 3
2

=

(
|S| 1

|S|
2
3

) 3
2

=
√
|S|.

For a structured search space, however, QSearch (see Theorem 7.1) may give a
significantly smaller number of loops. As an example we examine the distribution
D on the set S = {−16, . . . , 16}r used in the New Hope [ADPS16] key exchange
scheme. Then |S| = 33r and using Grover’s search algorithm inside the quantum
hybrid attack would yield an expected number of loops of

Lgrover =
√

33r ≈ 22.52r.

In comparison, our quantum hybrid attack only requires

Lour =

((
32∑
i=0

p
2
3
i

)r) 3
2

≈ 21.85r, where pi =

(
32
i

)
· 2−32.
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For r = 200 entries that are guessed during the quantum hybrid attack this amounts
to a speedup factor of 2134 of our approach over using Grover’s algorithm inside
the hybrid attack. This example showcases the significant improvement of our
quantum hybrid attack over one that is simply using Grover’s search algorithm. It
also demonstrates that our new quantum hybrid attack opens the possibility to apply
the hybrid attack to larger, non-uniform search spaces.

7.2.2 Total Runtime of the Quantum Hybrid Attack

In this section we estimate the total runtime of the quantum hybrid attack by
estimating the individual cost of one application of fB,C,y, A, and A−1, the precom-
putation (i.e., lattice reduction) cost, and combining the results with the ones of
Section 7.2.1. The resulting runtime formula must then be optimized over all possible
attack parameters.

Cost of fB,C,y, A, and A−1. The cost of the function fB,C,y is dominated by the
cost of one Nearest Plane call, which was experimentally found to be roughly k2/21.06

bit operations [HHHGW09], where k is the dimension of the lattice (in our case
k = m− r), see Section 2.4.5. We assume that compared to this cost, the cost of the
algorithm A and A−1 can be neglected.

Total Cost and Runtime Optimization. Consequently, the total runtime of the
quantum hybrid attack can be estimated by

Ttotal =
Tred + Thyb

p
,

where

Thyb =

(∑
x∈S

d
2
3
x

) 3
2

· (d− r)2/21.06,

Tred is the runtime of lattice reduction, and p is the success probability as given in
Heuristic 7.1. The total runtime of the attack Ttotal depends on the attack parameters,
i.e., the guessing dimension r and the applied block size β, and must therefore be
optimized over all such choices as in Section 5.3.3.

7.2.3 Further Techniques

When embedding LWE or NTRU problems into uSVP, the (quantum) hybrid attack
can be combined with further (known) techniques.
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Choosing the lattice dimension. One of the simplest techniques is to choose a
number of LWE samples that optimizes the attack. In the NTRU setting, this
corresponds to the dimension reducing techniques described in [MS01], which allow
to choose the lattice dimension between n and 2n, where n is the degree of the
polynomial defining the NTRU ring.

Rescaling parts of the lattice. If the LWE secret vector is uniquely small or sparse,
rescaling techniques can be applied to balance the size of the LWE secret and the
error vectors when using Bai and Galbraith’s embedding [BG14b], see Section 3.3.1
for more details. In this case, we swap the positions of the secret and error vector in
order to guess parts of the smaller or sparser secret in the hybrid attack.

Centering LWE error vectors. If the LWE error distribution is not centered around
zero, shifting the center of the distribution to zero by subtracting a constant vector
from the parts of the LWE equation which are not guessed can lead to a more efficient
attack by reducing the norm of the error vector. This is illustrated for LWE with
binary error in Section 5.4.3.

Considering rotations of the short vector. As accounted for in Chapter 5, it is
possible that the uSVP lattice contains more than one uniquely short vector. In
fact, this case can be seen as a variant of uSVP, which occurs for instance when
embedding the NTRU problem into uSVP, as also rotations of the short vector are
contained in the lattice. This can be taken into consideration by amplifying the
success probability psucc of one vector to 1− (1− psucc)k, where k is the number of
rotations to be considered (cf. Section 5.4.2). This assumes that each of the rotations
has the same success probability and that they are independent.

7.3 Optimizing the Search Space

In the classical hybrid attack, one typically assumes that the last r entries of the
short vector(s) have a fixed number of non-zero entries, i.e., Hamming weight, hr.
Consequently, one only guesses vectors of that weight and accounts for that restriction
in the success probability of the attack. In the quantum hybrid attack as detailed
above one instead guesses all possible vectors. However, both approaches may not
be optimal as they are located at the opposite sides of the trade-off between success
probability and number of vectors that need to be guessed. Instead, we propose to
use the following approach for the quantum hybrid attack. Let the lattice dimension
m and the guessing dimension r be fixed. Let χ be the distribution of the short vector
and χr be the distribution of its last r components. Let M be the maximal possible
guessing set for the last r components, i.e., the support of χr (e.g., for random binary
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or random ternary vectors this would be {0, 1}r or {−1, 0, 1}r respectively). Further
let S ⊂ M denote the actual guessing set used in the attack. Let pS denote the

probability that vg ∈ S if vg
$← χr and for x ∈M let qx denote the probability of x

according to χr. Then it can be assumed that the runtime of the quantum hybrid
attack is roughly

Ttotal ≈
Tred + Tqsearch

psucc
≈
Tred +

(∑
x∈S

(
qx
pS

)2/3
)3/2

TNP

(1− (1− pNP · pS)k)
, (7.8)

where k is the number of rotations of the short vector that can be found, psucc is the
overall success probability and pNP is the estimated success probability of Nearest
Plane (cf. Chapter 5). Ttotal can then be minimized over all possible choices of the
guessing set S. In the following, we elaborate on how to optimize S. First, it is
reasonable to construct S as a subset of M containing the most likely elements of
M , i.e., no guess in M \ S should have a higher probability of being a correct guess
than some guess in S. If one respects this condition on S, one only has to optimize
its size. In the following, we explain how to construct such sets S if

(i) χ is the uniform distribution on {0, 1}m,

(ii) χ is the uniform distribution on {−1, 0, 1}m,

(iii) χ is the uniform distribution on the set of all vectors in {0, 1}m with fixed
Hamming weight h, or

(iv) χ is the uniform distribution on the set of all vectors in {−1, 0, 1}m with fixed
Hamming weight h.

In cases (i) and (ii), every guess in M has the same probability of being correct.
Hence we can pick any elements to construct S and only need to minimize (7.8),
which in this case it equivalent to

Tred +
√
|S|TNP(

1−
(

1− pNP · |S||M |
)k) ,

over all possible choices of the size of S with 1 ≤ |S| ≤ |M |. This can be done for
instance by a binary search. Note that in the uniform case and if k = 1, the optimal
choice is always to choose S = M .

We now consider the case (iii). For max(0, h − (m − r)) ≤ i ≤ min(r, h) let Si
denote the set of all vectors {0, 1}r with hamming weight i. Note that for each such
i, every element x ∈ Si has the same probability

qx = qi :=

(
m−r
h−i

)(
m
h

)
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of being a correct guess. Let i0, . . . imin(r,h)−max(0,h−(m−r)) be ordered such that qi0 ≥
. . . ≥ qimin(r,h)−max(0,h−(m−r)) . Then we may construct S as a union S = Si0∪. . .∪Sik−1

∪
S ′ik for some k ∈ N0, where S ′ik is some subset of Sik . One then minimizes (7.8) over
the choice of k and the size of the subset S ′ik of Sik . A valid ordering of the ij is for
example given by choosing ij such that h− ij is a closest integer in N0 \{i0, . . . , ij−1}
to
⌊
m−r

2

⌋
.

Finally, we consider the case (iv), which is similar to case (iii). For max(0, h −
(m− r)) ≤ i ≤ min(r, h) let Si denote the set of all vectors {−1, 0, 1}r with hamming
weight i. Then for each such i, every element x ∈ Si has the same probability

qx = qi :=
2−i
(
m−r
h−i

)(
m
h

)
of being a correct guess. Again, let i0, . . . imin(r,h)−max(0,h−(m−r)) be ordered such that
qi0 ≥ . . . ≥ qimin(r,h)−max(0,h−(m−r)) . We may again construct S as a union S = Si0 ∪
. . .∪ Sik−1

∪ S ′ik for some k ∈ N0, where S ′ik is some subset of Sik by minimizing (7.8)
over the choice of k and the size of the subset S ′ik of Sik .

In Section 7.4.2, we provide examples that showcase the improvements gained by
the above techniques.

7.4 Results

In this section, we present concrete runtime estimates of our quantum hybrid attack
for various uSVP instances and provide a comparison to the classical hybrid and
the primal attack. For all our runtime estimates in this section we assume that one
Nearest Plane call in dimension d costs d2/(21.06) operations. If not specified otherwise,
we apply the enumeration-based cost model log2(8d · 20.18728β log2(β)−1.0192β+16.1) for
BKZ-β in dimension d.

7.4.1 Comparison to the Classical Hybrid and Primal Attack

In this section, we compare the quantum hybrid attack to the classical hybrid attack
and the 2016 estimate for the primal attack (cf. Chapter 3). To this end, as in
Chapters 5 and 6, we analyze a uSVP instance of fixed lattice dimension 512 and
determinant 128256 with a random binary unique shortest non-zero vector, which
underlies the first proposed parameter set of the encryption scheme by Buchmann
et al. [BGG+16]. For our comparison, we do not shift the binary vector, as for
instance discussed in Section 7.2.3. We apply the enumeration-based log2(8d ·
20.18728β log2(β)−1.0192β+16.1) cost model for BKZ. The results, including the optimal
attack parameters, are shown in Table 7.1. The expected attack cost significantly
drops from 2151 for the primal attack to 2109 for the classical attack. This cost is
further reduced to 290 when using the quantum hybrid attack.

118



7.4 Results

Attack Quantum Hybrid Classical Hybrid Primal
Cost 90 109 151

Guessing dimension 135 124 —
Block size 158 185 256

Table 7.1: Expected costs and attack parameters for the quantum hybrid attack,
classical hybrid attack, and primal attack against a uSVP instance of
fixed lattice dimension 512 and determinant 128256 with a random binary
unique shortest non-zero vector.

How the runtime of the classical hybrid attack can be reduced using parallel
computing techniques is shown in Chapter 6. A comparison between the quantum
hybrid attack and an improved version of the primal attack for small or sparse secrets
can be found in Section 8.5.

7.4.2 Small and Sparse Secret vectors

In this section, we analyze the behavior of the quantum hybrid attack on uSVP
instances with small and sparse secret vectors and compare its performance to the
primal attack under the 2016 estimate (cf. Chapter 3). To that end, we analyze uSVP
instances in lattice dimension 512 with determinant 128256, where the unique shortest
non-zero vector is of the form v = (v1,v2) with a uniformly random v1 ∈ {0, 1}256

and v2 is either uniformly random binary, uniformly random ternary, or random
binary or ternary with a fixed Hamming weight. Such instances may for example
appear in instantiations of NTRU or LWE with small and sparse secrets.

We compare the quantum hybrid attack with additional scaling or search-space
optimization techniques to the quantum hybrid attack in its simple form and to the
primal attack. For the quantum hybrid attack, we optimized its runtime according
to Section 7.2.2.

Our runtime estimates and the corresponding attack parameters assuming either
enumeration-based or quantum-sieving-based BKZ are shown in Table 7.2 and
Table 7.3, respectively. The results show that for all except one (in the quantum-
sieving regime) analyzed uSVP instances with binary and ternary shortest non-zero
vectors, the quantum hybrid attack significantly outperforms the primal attack. The
gap between the runtime of the quantum hybrid and the primal attack grows bigger
and bigger as the vectors get more sparse. One can also notice that in general the
size of the search space needs to be optimized as the naive choices do not yield
optimal attacks, see Section 7.3.

A comparison between the quantum hybrid attack and an improved version of the
primal attack for small or sparse secrets applied to lattice-based schemes is conducted
in Section 8.5.
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7 The Hybrid Lattice Reduction and Quantum Search Attack

7.4.3 Gaussian Distributions

In this section, we show that the quantum hybrid attack is suitable for uSVP
instances where the unique shortest non-zero vector is drawn from a (narrow)
discrete Gaussian distribution. We analyze uSVP instances with lattice dimension
512, determinant q256, and a unique shortest non-zero vector whose components are
drawn from a discrete Gaussian distribution Dσ of standard deviation σ for different
q and σ with respect to the quantum hybrid attack and the primal attack under
the 2016 estimate (cf. Chapter 3). Note that theoretically, the discrete Gaussian
distributions have infinite support, while our analysis requires finite support. However,
using a standard tailbound argument [LP11] one can show that with overwhelming
probability the absolute value of Dσ is bounded by 14σ. We therefore assume that
the distributions Dσ have finite support {− d14σe , . . . , d14σe}. For the quantum
hybrid attack, we optimized the runtime of the attack according to Section 7.2.2
using the log2(8d · 20.18728β log2(β)−1.0192β+16.1) cost model for BKZ.

The expected attack costs are shown in Table 7.4. The corresponding attack
parameters (guessing dimension and block size for the quantum hybrid attack and
block size for the primal attack) are shown in Table 7.5. Note that the table
is designed such that (assuming the Gaussian heuristic for the second successive
minimum λ2(Λ)) both going from one column to the next (i.e., decreasing q) and going
from one row to the next (i.e., increasing σ) decreases the uSVP gap λ2(Λ)/λ1(Λ)
by a factor of 2. The results show that for certain instantiations of uSVP with
a Gaussian shortest non-zero vector the quantum hybrid attack outperforms the
primal attack. This is not the case for the classical hybrid attack and was enabled
by replacing the meet-in-the-middle search by a quantum search that is sensitive
to the underlying distribution. In the following, we explain the results shown in
Table 7.4 in more detail. For fixed dimension, assuming the Gaussian heuristic for
the second successive minimum, the 2016 estimate only depends on the uSVP gap (cf.
Section 4.2.1). Hence, for the same gap we obtain the same cost for the primal attack,
and decreasing the gap by increasing sigma and decreasing the gap by decreasing
the determinant has the same effect on the expected cost under the 2016 estimate.
This is not true for the quantum hybrid attack. In this case, decreasing the gap by
increasing sigma results in a worse runtime than decreasing the gap by decreasing the
determinant. This can be explained by the negative effect of increasing sigma on the
quantum search phase. As a consequence, the runtime of the quantum hybrid attack
increases when keeping the uSVP gap constant while increasing sigma. Therefore,
for each fixed uSVP gap and varying sigma, there typically exists a crossover point
at which the quantum hybrid attack becomes more efficient than the primal attack.
Note that if one assumes quantum sieving to be feasible as an SVP oracle in BKZ,
these crossover points might not be within reasonable parameters for Gaussian
distributions, rendering the quantum hybrid less efficient than the primal attack in
this case.
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7.4 Results

σ
q

64 · 256 16 · 256 4 · 256 1 · 256

1 (60, 57) (76, 76) (98, 104) (128, 151)
2 (82, 76) (107, 104) (143, 151) (194, 230)
4 (113, 104) (152, 151) (207, 230) (288, 375)
8 (158, 151) (217, 230) (321, 375) (423, 672)

Table 7.4: Expected costs (Tqhybrid, Tprimal) for the quantum hybrid attack and the
primal attack for uSVP instances of lattice dimension 512, determinant
q256, and a unique shortest non-zero vector whose components are drawn
from a discrete Gaussian distribution of standard deviation σ.

σ
q

64 · 256 16 · 256 4 · 256 1 · 256

1 ((35, 109), 113) ((47, 132), 146) ((62, 160), 191) ((84, 197), 257)
2 ((34, 138), 146) ((50, 178), 191) ((66, 216), 257) ((93, 275), 356)
4 ((38, 178), 191) ((52, 222), 257) ((74, 283), 356) ((102, 356), 519)
8 ((43, 225), 257) ((59, 281), 356) ((83, 358), 519) ((124, 479), 814)

Table 7.5: Optimal attack parameters for the quantum hybrid and block sizes for the
primal attack ((rqhybrid, βqhybrid), β2016) corresponding to Table 7.4.
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8 Security Estimates for Lattice-based
Candidates for NIST’s Standardiza-
tion

In 2015, the US National Institute of Standards and Technology (NIST) initiated
a process of standardizing post-quantum Public-Key Encryption (PKE) schemes,
Key Encapsulation Mechanisms (KEM), and Digital Signature Algorithms (SIG),
resulting in a call for proposals in 2016 [Nat16]. Among the accepted submissions, 23
are either based on the hardness of LWE or NTRU problems. In their submissions,
the authors were asked to provide security estimates for their schemes and categorize
them into one or more of five security categories. However, the different submissions
used numerous different cost models to estimate their scheme’s security, making it
hard to compare security levels across the submissions.

Contribution. In this chapter, we analyze the security of the LWE and NTRU-
based NIST submissions with respect to the primal attack under the 2016 estimate
(cf. Chapter 3) and the quantum hybrid attack (cf. Chapter 7). To this end, we
apply the primal attack to all schemes, utilizing the [APS15] estimator15 using all
of the different cost models for lattice reduction proposed in the NIST submissions.
This enables a fair comparison of security levels across the submissions. We further
analyze selected schemes with respect to the quantum hybrid attack. Depending
on the assumed cost of lattice reduction, our results yield either significantly lower
or comparable attack costs for the quantum hybrid attack when compared to the
primal attack.

Organization. After recalling the definition of NIST’s security categories in Sec-
tion 8.1, we summarize the analyzed schemes and extract the proposed parameters
from the submissions to NIST in Section 8.2. A summary of the proposed cost
models for BKZ as part of a NIST submission is given in Section 8.3. Our analysis
of the proposed schemes with respect to the primal attack is presented in Section 8.4.

15 https://bitbucket.org/malb/lwe-estimator, commit 1850100.
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8 Security Estimates for Lattice-based Candidates for NIST’s Standardization

Our analysis of selected schemes with respect to the quantum hybrid attack is shown
in Section 8.5.

Publications. This chapter is based on the publication [5], which will be presented
at SCN 2018. In addition, the considerations with respect to the quantum hybrid
attack are novel in this thesis.

8.1 NIST’s Security Categories

The goal of NIST’s standardization process [Nat16] is to meet the cryptographic
requirements for communication (e.g., via the internet) in an era where large-scale
quantum computers exist. The call for proposals received 69 “complete and proper”
submissions, out of which 23 are based on either the LWE or the NTRU family of
lattice problems. Participants were invited to submit their cryptographic schemes,
along with different parameter sets aimed at meeting the requirements of one or
more of the following security categories.

1. Any attack that breaks the relevant security definition must re-
quire computational resources comparable to or greater than those
required for key search on a block cipher with a 128-bit key (e.g.
AES128)

2. Any attack that breaks the relevant security definition must require
computational resources comparable to or greater than those re-
quired for collision search on a 256-bit hash function (e.g. SHA256/
SHA3-256)

3. Any attack that breaks the relevant security definition must re-
quire computational resources comparable to or greater than those
required for key search on a block cipher with a 192-bit key (e.g.
AES192)

4. Any attack that breaks the relevant security definition must require
computational resources comparable to or greater than those re-
quired for collision search on a 384-bit hash function (e.g. SHA384/
SHA3-384)

5. Any attack that breaks the relevant security definition must require
computational resources comparable to or greater than those re-
quired for key search on a block cipher with a 256-bit key (e.g. AES
256)

([Nat16])
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8.2 Proposed Schemes

These categories roughly indicate how classical and quantum attacks on the proposed
schemes compare to attacks on AES and SHA-3 in the post-quantum context. As
part of their submissions participants were asked to provide cryptanalysis supporting
their security claims, and to use this cryptanalysis to roughly estimate the size of
the security parameter for each parameter set.

8.2 Proposed Schemes

The three tables below specify the parameter sets for the schemes considered. Table 8.1
gives the parameters for the NTRU-based schemes. In Table 8.2 these parameters
are converted into the LWE-based context as detailed in Section 8.4. Table 8.3 gives
the parameters for the LWE-based schemes in terms of plain LWE, that is, ignoring
the potential ring or module structure.

Throughout, n is the dimension of the problem and q the modulus. The polynomial
φ, if present, is the polynomial used to define the base ring Rq = Zq[x]/(φ) from
which Ring-/Module-LWE or NTRU elements are drawn. In Tables 8.2 and 8.3,
the value σ is the standard deviation of the (discrete Gaussian) distribution χ from
which the LWE errors are drawn. If the error distribution is not a discrete Gaussian,
our approaches are explained in Section 8.4. If the secret distribution is “normal”,
i.e. in the normal form, this means it is the same distribution as the error, namely
χ. If not, the distribution given determines the secret distribution. We use the
following notation for these distributions. For integers a and b we use (a, b) to denote
the uniform distribution on the integer interval from a to b. Furthermore, for some
positive integer k ≤ n we use ((−1, 1), k) to denote the uniform distribution on the
set of vectors in {−1, 0, 1}n with Hamming weight k.

Name n q ‖f‖ ‖g‖ NIST Assumption φ Primitive

NTRUEncrypt 443 2048 16.94 16.94 1 NTRU xn − 1 KEM, PKE

743 2048 22.25 22.25 1, 2, 3, 4, 5 NTRU xn − 1 KEM, PKE

1024 1073750017 23168.00 23168.00 4, 5 NTRU xn − 1 KEM, PKE

Falcon 512 12289 91.71 91.71 1 NTRU xn + 1 SIG

768 18433 112.32 112.32 2, 3 NTRU xn − xn/2 + 1 SIG

1024 12289 91.71 91.71 4, 5 NTRU xn + 1 SIG

NTRU HRSS 700 8192 20.92 20.92 1 NTRU
∑n−1

i=0 xi KEM

S/L NTRU Prime 761 4591 16.91 22.52 5 NTRU xn − x− 1 KEM

pqNTRUsign 1024 65537 22.38 22.38 1, 2, 3, 4, 5 NTRU xn − 1 SIG

Table 8.1: Parameter sets for NTRU-based schemes with secret dimension n, modulus
q, small polynomials f and g, and ring Zq[x]/(φ). The NIST column
indicates the NIST security category aimed at.
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8 Security Estimates for Lattice-based Candidates for NIST’s Standardization

Name n q σ Secret dist. NIST Assumption φ Primitive

NTRUEncrypt 443 2048 0.80 ((−1, 1), 287) 1 NTRU xn − 1 KEM, PKE

743 2048 0.82 ((−1, 1), 495) 1, 2, 3, 4, 5 NTRU xn − 1 KEM, PKE

1024 1073750017 724.00 normal 4, 5 NTRU xn − 1 KEM, PKE

Falcon 512 12289 4.05 normal 1 NTRU xn + 1 SIG

768 18433 4.05 normal 2, 3 NTRU xn − xn/2 + 1 SIG

1024 12289 2.87 normal 4, 5 NTRU xn + 1 SIG

NTRU HRSS 700 8192 0.79 ((−1, 1), 437) 1 NTRU
∑n−1

i=0 xi KEM

SNTRU Prime 761 4591 0.82 ((−1, 1), 286) 5 NTRU xn − x− 1 KEM

pqNTRUSign 1024 65537 0.70 ((−1, 1), 501) 1, 2, 3, 4, 5 NTRU xn − 1 SIG

Table 8.2: LWE parameter sets for NTRU-based schemes, with dimension n, modulus
q, standard deviation of the error σ, and ring Zq[x]/(φ). The parameters
are obtained following Section 8.4. The NIST column indicates the NIST
security category aimed at.

Name n k q σ Secret dist. NIST Assumption φ Primitive

KCL-RLWE 1024 — 12289 2.83 normal 5 RLWE xn + 1 KEM

KCL-MLWE 768 3 7681 1.00 normal 4 MLWE xn/k + 1 KEM

768 3 7681 2.24 normal 4 MLWE xn/k + 1 KEM

BabyBear 624 2 1024 1.00 normal 2 ILWE qn/k − qn/(2k) − 1 KEM

624 2 1024 0.79 normal 2 ILWE qn/k − qn/(2k) − 1 KEM

MamaBear 936 3 1024 0.94 normal 5 ILWE qn/k − qn/(2k) − 1 KEM

936 3 1024 0.71 normal 4 ILWE qn/k − qn/(2k) − 1 KEM

PapaBear 1248 4 1024 0.87 normal 5 ILWE qn/k − qn/(2k) − 1 KEM

1248 4 1024 0.61 normal 5 ILWE qn/k − qn/(2k) − 1 KEM

CRYSTALS-Dilithium 768 3 8380417 3.74 (−6, 6) 1 MLWE xn/k + 1 SIG

1024 4 8380417 3.16 (−5, 5) 2 MLWE xn/k + 1 SIG

1280 5 8380417 2.00 (−3, 3) 3 MLWE xn/k + 1 SIG

CRYSTALS-Kyber 512 2 7681 1.58 normal 1 MLWE xn/k + 1 KEM, PKE

768 3 7681 1.41 normal 3 MLWE xn/k + 1 KEM, PKE

1024 4 7681 1.22 normal 5 MLWE xn/k + 1 KEM, PKE

Ding Key Exchange 512 — 120883 4.19 normal 1 RLWE xn + 1 KEM

1024 — 120883 2.60 normal 3, 5 RLWE xn + 1 KEM

EMBLEM 770 — 16777216 25.00 (−1, 1) 1 LWE — KEM, PKE

611 — 16777216 25.00 (−2, 2) 1 LWE — KEM, PKE

R EMBLEM 512 — 65536 25.00 (−1, 1) 1 RLWE xn + 1 † KEM, PKE

512 — 16384 3.00 (−1, 1) 1 RLWE xn + 1 † KEM, PKE

Frodo 640 — 32768 2.75 normal 1 LWE — KEM, PKE

976 — 65536 2.30 normal 3 LWE — KEM, PKE

NewHope 512 — 12289 2.00 normal 1 RLWE xn + 1 KEM, PKE

1024 — 12289 2.00 normal 5 RLWE xn + 1 KEM, PKE

HILA5 1024 — 12289 2.83 normal 5 RLWE xn + 1 KE
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Name n k q σ Secret dist. NIST Assumption φ Primitive

KINDI 768 3 16384 2.29 (−4, 4) 2 MLWE xn/k + 1 KEM, PKE

1024 2 8192 1.12 (−2, 2) 4 MLWE xn/k + 1 KEM, PKE

1024 2 16384 2.29 (−4, 4) 4 MLWE xn/k + 1 KEM, PKE

1280 5 16384 1.12 (−2, 2) 5 MLWE xn/k + 1 KEM, PKE

1536 3 8192 1.12 (−2, 2) 5 MLWE xn/k + 1 KEM, PKE

LAC 512 — 251 0.71 normal 1, 2 PLWE xn + 1 KE, KEM, PKE

1024 — 251 0.50 normal 3, 4 PLWE xn + 1 KE, KEM, PKE

1024 — 251 0.71 normal 5 PLWE xn + 1 KE, KEM, PKE

LIMA-2p 1024 — 133121 3.16 normal 3 RLWE xn + 1 KEM, PKE

2048 — 184321 3.16 normal 4 RLWE xn + 1 KEM, PKE

LIMA-sp 1018 — 12521473 3.16 normal 1 RLWE
∑n

i=0 x
i KEM, PKE

1306 — 48181249 3.16 normal 2 RLWE
∑n

i=0 x
i KEM, PKE

1822 — 44802049 3.16 normal 3 RLWE
∑n

i=0 x
i KEM, PKE

2062 — 16900097 3.16 normal 4 RLWE
∑n

i=0 x
i KEM, PKE

Lizard 1024 — 2048 1.12 ((−1, 1), 140) 1 LWE, LWR — KEM, PKE

1024 — 1024 1.12 ((−1, 1), 128) 1 LWE, LWR — KEM, PKE

1024 — 2048 1.12 ((−1, 1), 200) 3 LWE, LWR — KEM, PKE

1024 — 2048 1.12 ((−1, 1), 200) 3 LWE, LWR — KEM, PKE

2048 — 4096 1.12 ((−1, 1), 200) 5 LWE, LWR — KEM, PKE

2048 — 2048 1.12 ((−1, 1), 200) 5 LWE, LWR — KEM, PKE

RLizard 1024 — 1024 1.12 ((−1, 1), 128) 1 RLWE, RLWR xn + 1 KEM, PKE

1024 — 2048 1.12 ((−1, 1), 264) 3 RLWE, RLWR xn + 1 KEM, PKE

2048 — 2048 1.12 ((−1, 1), 164) 3 RLWE, RLWR xn + 1 KEM, PKE

2048 — 4096 1.12 ((−1, 1), 256) 5 RLWE, RLWR xn + 1 KEM, PKE

LOTUS 576 — 8192 3.00 normal 1, 2 LWE — KEM, PKE

704 — 8192 3.00 normal 3, 4 LWE — KEM, PKE

832 — 8192 3.00 normal 5 LWE — KEM, PKE

uRound2.KEM 500 — 16384 2.29 ((−1, 1), 74) 1 LWR — KEM

580 — 32768 4.61 ((−1, 1), 116) 2 LWR — KEM

630 — 32768 4.61 ((−1, 1), 126) 3 LWR — KEM

786 — 32768 4.61 ((−1, 1), 156) 4 LWR — KEM

786 — 32768 4.61 ((−1, 1), 156) 5 LWR — KEM

uRound2.KEM 418 — 4096 4.61 ((−1, 1), 66) 1 RLWR
∑n

i=0 x
i KEM

522 — 32768 36.95 ((−1, 1), 78) 2 RLWR
∑n

i=0 x
i KEM

540 — 16384 18.47 ((−1, 1), 96) 3 RLWR
∑n

i=0 x
i KEM

700 — 32768 36.95 ((−1, 1), 112) 4 RLWR
∑n

i=0 x
i KEM

676 — 32768 36.95 ((−1, 1), 120) 5 RLWR
∑n

i=0 x
i KEM

uRound2.PKE 500 — 32768 4.61 ((−1, 1), 74) 1 LWR — PKE

585 — 32768 4.61 ((−1, 1), 110) 2 LWR — PKE

643 — 32768 4.61 ((−1, 1), 114) 3 LWR — PKE

835 — 32768 2.29 ((−1, 1), 166) 4 LWR — PKE

835 — 32768 2.29 ((−1, 1), 166) 5 LWR — PKE

uRound2.PKE 420 — 1024 1.12 ((−1, 1), 62) 1 RLWR
∑n

i=0 x
i PKE

540 — 8192 4.61 ((−1, 1), 96) 2 RLWR
∑n

i=0 x
i PKE

586 — 8192 4.61 ((−1, 1), 104) 3 RLWR
∑n

i=0 x
i PKE

708 — 32768 18.47 ((−1, 1), 140) 4, 5 RLWR
∑n

i=0 x
i PKE

nRound2.KEM 400 — 3209 3.61 ((−1, 1), 72) 1 RLWR
∑n

i=0 x
i KEM

486 — 1949 2.18 ((−1, 1), 96) 2 RLWR
∑n

i=0 x
i KEM

556 — 3343 3.76 ((−1, 1), 88) 3 RLWR
∑n

i=0 x
i KEM

658 — 1319 1.46 ((−1, 1), 130) 4, 5 RLWR
∑n

i=0 x
i KEM

nRound2.PKE 442 — 2659 1.47 ((−1, 1), 74) 1 RLWR
∑n

i=0 x
i PKE

556 — 3343 1.86 ((−1, 1), 88) 2 RLWR
∑n

i=0 x
i PKE

576 — 2309 1.27 ((−1, 1), 108) 3 RLWR
∑n

i=0 x
i PKE

708 — 2837 1.57 ((−1, 1), 140) 4, 5 RLWR
∑n

i=0 x
i PKE

LightSaber 512 2 8192 2.29 normal 1 MLWR xn/k + 1 KEM, PKE
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Name n k q σ Secret dist. NIST Assumption φ Primitive

NTRU LPrime 761 — 4591 0.82 ((−1, 1), 250) 5 RLWR xn − x− 1 KEM

Saber 768 3 8192 2.29 normal 3 MLWR xn/k + 1 KEM, PKE

FireSaber 1024 4 8192 2.29 normal 5 MLWR xn/k + 1 KEM, PKE

qTESLA 1024 — 8058881 8.49 normal 1 RLWE xn + 1 SIG

2048 — 12681217 8.49 normal 3 RLWE xn + 1 SIG

2048 — 27627521 8.49 normal 5 RLWE xn + 1 SIG

Titanium.PKE 1024 — 86017 1.41 normal 1 PLWE xn +
∑n−1

i=1 fix
i + f0 * PKE

1280 — 301057 1.41 normal 1 PLWE xn +
∑n−1

i=1 fix
i + f0 * PKE

1536 — 737281 1.41 normal 3 PLWE xn +
∑n−1

i=1 fix
i + f0 * PKE

2048 — 1198081 1.41 normal 5 PLWE xn +
∑n−1

i=1 fix
i + f0 * PKE

Titanium.KEM 1024 — 118273 1.41 normal 1 PLWE xn +
∑n−1

i=1 fix
i + f0 * KEM

1280 — 430081 1.41 normal 1 PLWE xn +
∑n−1

i=1 fix
i + f0 * KEM

1536 — 783361 1.41 normal 3 PLWE xn +
∑n−1

i=1 fix
i + f0 * KEM

2048 — 1198081 1.41 normal 5 PLWE xn +
∑n−1

i=1 fix
i + f0 * KEM

Table 8.3: Parameter sets for LWE-based schemes with secret dimension n, MLWE
rank k (if any), modulus q, standard deviation of the error σ. If the LWE
samples come from a Ring- or Module-LWE instance, the ring is Zq[x]/(φ).
The NIST column indicates the NIST security category aimed at. *For
Titanium no ring is explicitly chosen but the scheme simultaneously relies
on a family of rings where fi ∈ {−1, 0, 1}, f0 ∈ {−1, 1}. †For R EMBLEM
we list the parameters from the reference implementation since a suitable
φ could not be found for those proposed in [SPL+17, Table 2].

8.3 Proposed Costs for Lattice Reduction

There exist multiple different cost models for the runtime of BKZ in the literature,
e.g., [CN11, APS15, ADPS16]. The main differences between these models are
whether they rely on sieving or enumeration as an SVP subroutine and how many
calls to the SVP oracle are assumed (cf. Chapter 2). A summary of every cost model
applied in the NIST submissions can be found in Table 8.4.

The most commonly considered SVP oracle among the NIST submissions is
sieving. In the literature, its cost on a random lattice of dimension β is estimated as
2cβ+o(β), where c = 0.292 classically [BDGL16], with Grover speedups lowering this
to c = 0.265 [Laa15a] in the quantum setting. A “paranoid” lower bound is given
in [ADPS16] as 20.2075β+o(β) based on the “kissing number”. Some authors replace
o(β) by the constant 16.4 [APS15], based on experiments in [Laa15b], some authors
omit it. A “min space” variant of sieving is also considered in [BDGL16], which uses
c = 0.368 with Grover speedups lowering this to c = 0.2975 [Laa15a].

Alternatively, enumeration is considered in some of the submissions. In par-
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ticular, it can be found to be estimated as 2c1β log2 β+c2β+c3 [Kan83, MW15] or
as 2c1β

2+c2β+c3 [FP85, CN11], with Grover speedups considered to half the expo-
nent [ANS18]. The estimates 0.187β log2 β−1.019β+ 16.1 [APS15] and 0.000784β2 +
0.366β − 0.9 [HPS+15] are based on fitting the same data from [Che13].

With respect to the number of SVP oracle calls required by BKZ, a popular choice
among the submissions was to follow the “Core-SVP” model introduced in [ADPS16],
that conservatively assumes that only a single call to the SVP oracle. Alternatively,
the number of calls has also been estimated to be 8d (for example, in [Alb17]), where
d is the dimension of the embedding lattice and β is the BKZ block size.

LOTUS [PHAM17] is the only submission not to provide a closed formula for
estimating the cost of BKZ. Given their preference for enumeration, we fit their
estimated cost model to a curve of shape 2c1β log2 β+c2β+c3 following [MW15]. We fit a
curve to the values given by (39) in [PHAM17], the script used is available in the
public repository.

The NTRU Prime submission [BCLvV17a] utilizes the BKZ 2.0 simulator of [CN11]
to determine the necessary block size and number of tours to achieve a certain root
Hermite factor prior to applying their BKZ cost model. In contrast, we apply the
asymptotic formula from [Che13] to relate block size and root Hermite factor, and
consider BKZ to complete in 8 tours while matching their cost asymptotic for a
single enumeration call.

8.4 Estimates for the Primal Attack

For our experiments we make use of the LWE estimator16 from [APS15], which
allows one to specify arbitrary cost models for BKZ. We wrap it in a script that
loops though the proposed schemes and cost models, estimating the cost of the
appropriate variants of the primal attack. Note that the estimator considers choosing
the optimal number of LWE samples, rescaling the LWE secret, and dimension
reducing techniques for small or sparse secret variants when costing the primal
attack according to the 2016 estimate. The results may therefore differ from a plain
application of the 2016 estimate (cf. Chapter 3). For the following reason, we restrict
the number of LWE samples provided to an attacker to n or 2n. In the RLWE KEM
setting – which is the most common for the schemes considered in this chapter –
the public key is one RLWE sample (a, b) = (a, a · s + e) for some short s, e and
encapsulations consist of two RLWE samples v · a+ e′ and v · b+ e′′ + m̃ where m̃ is
some encoding of a random string and v, e′, e′′ are short. Thus, depending on the
target, the adversary is given either n or 2n plain LWE samples. However, note that
in a typical setting the adversary does not get to enjoy the full power of having two
samples at its disposal, because, firstly, the random string m̃ increases the noise in

16 https://bitbucket.org/malb/lwe-estimator, commit 1850100.
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Model Schemes

0.292β
0.265β

CRYSTALS [LDK+17, SAB+17]
SABER [DKRV17]
Falcon [PFH+17]
ThreeBears [Ham17]
HILA5 [Saa17]
Titanium [SSZ17]
KINDI [Ban17]
NTRU HRSS [SHRS17]
LAC [LLJ+17]
NTRUEncrypt [ZCHW17a]
New Hope [PAA+17]
pqNTRUSign [ZCHW17b]

0.292β + 16.4
0.265β + 16.4

LIMA [SAL+17]

0.368β
0.2975β

NTRU HRSS [SHRS17]

0.292β + log2(β)
0.265β + log2(β)

Frodo [NAB+17]
KCL [ZjGS17]
Lizard [CPL+17]
Round2 [GMZB+17]

0.292β + 16.4 + log2(8d)
Ding Key Exchange [DTGW17]
EMBLEM [SPL+17]

0.265β + 16.4 + log2(8d) qTESLA [BAA+17]

0.187β log2 β − 1.019β + 16.1
NTRU HRSS [SHRS17]
pqNTRUSign [ZCHW17b]
NTRUEncrypt [ZCHW17a]

1
2
(0.187β log2 β − 1.019β + 16.1) NTRU HRSS [SHRS17]

0.000784β2 + 0.366β − 0.9 + log2(8d) NTRU Prime [BCLvV17a]

0.125β log2 β − 0.755β + 2.25 LOTUS [PHAM17]

Table 8.4: Cost models proposed as part of a PQC NIST submission. The name of a
model is the base-2 logarithm of its cost.

v · b+ e′′ + m̃ by a factor of 2 and, secondly, because many schemes drop lower order
bits from v · b+ e′′ + m̃ to save bandwidth. Due to the way decryption works this
bit dropping can be quite aggressive, and thus the noise in the second sample can
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be quite large compared to the original noise rate. In the case of Module-LWE, a
ciphertext in transit produces a smaller number of LWE samples, but n samples can
still be recovered from the public key. In this chapter, we consider the n and 2n
scenarios for all schemes and leave distinguishing which scenario applies to which
scheme for future work.

Our code to estimate the security of the schemes is available at https://github.
com/estimate-all-the-lwe-ntru-schemes. Our results are given in Tables 8.5,
8.6, 8.7, 8.8, 8.9, and 8.10. A user friendly version of these tables is available
at https://estimate-all-the-lwe-ntru-schemes.github.io. In particular, the
HTML version supports filtering and sorting the table. It also contains SageMath
source code snippets to reproduce each entry.
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8.4 Estimates for the Primal Attack
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8 Security Estimates for Lattice-based Candidates for NIST’s Standardization
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8.4 Estimates for the Primal Attack
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8.4 Estimates for the Primal Attack
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8 Security Estimates for Lattice-based Candidates for NIST’s Standardization
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8.4 Estimates for the Primal Attack
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8 Security Estimates for Lattice-based Candidates for NIST’s Standardization
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8 Security Estimates for Lattice-based Candidates for NIST’s Standardization

In the following, we illuminate some of the choices and assumptions we made to
arrive at our estimates.

Secret distributions. Many submissions consider uniform, bounded uniform, or
sparse bounded uniform secret distributions. In the case of Lizard [CPL+17], LWE
secrets are drawn from the distribution ZOn(ρ) for some 0 < ρ < 1. ZOn(ρ) is
the distribution over {−1, 0, 1}n where each component si of a vector s← ZOn(ρ)
satisfies Pr [si = 1] = Pr [si = −1] = ρ/2 and Pr [si = 0] = 1 − ρ. We model this
distribution as a fixed weight bounded uniform distribution, where the Hamming
weight h matches the expected number of non-zero components of an element drawn
from ZOn(ρ).

Error distributions. While the LWE estimator assumes the distribution of error
vector components to be a discrete Gaussian, many submissions use alternatives.
Binomial distributions are treated as discrete Gaussians with the corresponding
standard deviation. Similarly, bounded uniform distributions U[a,b] are also treated

as discrete Gaussians with standard deviation
√

VU[a,b]
[ei], where V denotes the

variance of the distribution. In the case of LWR, we use a standard deviation of√
(q/p)2−1

12
, following [Ngu18].

Success probability. The LWE estimator supports defining a target success proba-
bility for the primal. The only proposal we found that explicitly uses this functionality
is LIMA [SAL+17], which chooses to use a target success probability of 51%. For our
estimates we imposed this to be the estimator’s default 99% for all schemes, since it
seems to make little to no difference for the final estimates as amplification in this
range is rather cheap.

Known limitations. While the estimator can scale short secret vectors with entries
sampled from a bounded uniform distribution, it does not attempt to shift secret
vectors whose entries have unbalanced bounds to optimize the scaling. Similarly,
it does not attempt to guess entries of such secrets to reduce the dimension. We
note, however, that only the KINDI submission [Ban17] uses such a secret vector
distribution. In this case, the deviation from a distribution centered at zero is small
and we thus ignore it.

NTRU. For estimating NTRU-based schemes, we also utilize the LWE estimator to
evaluate the primal attack (and its improvements) on NTRU. In particular, we treat
the NTRU problem as a uSVP instance and account for the presence of rotations by
amplifying the success probability p of dropping the correct columns of the short
vector to 1 − (1 − p)k, where k is the number of rotations. Further speedups as
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8.4 Estimates for the Primal Attack

presented in [KF17] which exploit the structure of the NTRU lattice do not affect
the schemes submitted to NIST and are therefore not considered. In more detail, let
(f ,g) ∈ Z2n be the secret NTRU vector. We treat f as the LWE secret and g as the
LWE error (or vice versa, as their roles can be swapped). The LWE secret dimension
n is set to the degree of the NTRU polynomial φ. The standard deviation of the
LWE error distribution is set to ‖g‖ /

√
n. The LWE modulus q is set to the NTRU

modulus. The secret distribution is set to the distribution of f . We limit the number
of LWE samples to n. The estimator is set to consider the n rotations of g when
estimating the cost of the primal attack on NTRU.

Beyond key recovery. We consider key recovery attacks on all schemes. In the
case of LWE-based schemes, we also consider message recovery attacks by setting the
number of samples to be m = 2n and trying to recover the ephemeral secret key set as
part of key encapsulation. A straight-forward primal uSVP message recovery attack
for NTRU-based schemes as described in Footnote 2 of [SHRS17] is not expected to
perform better than the primal uSVP key recovery attack, and is therefore omitted
in this work.

In the case of signatures, it is also possible to attempt forgery attacks. All four lattice-
based signatures schemes submitted to the NIST process claim that the problem
of forging a signature is strictly harder than that of recovering the signing key. In
particular, Dilithium and pqNTRUSign provide analyses which explicitly determine
that larger BKZ block sizes are required for signature forgery than key recovery.
Falcon argues similarly without giving explicit block sizes and qTESLA presents
a tight reduction in the QROM from the RLWE problem to signature forgery, in
particular from exactly the RLWE problem one would have to solve to recover the
signing key. As such, since one may trivially forge signatures given possession of the
signing key, forgery attacks are not considered further in their security analyses.

Several complications arise when attempting to estimate the complexity of signature
forgery compared to key recovery. These include the requirement for a signature
forging adversary to satisfy the conditions in the Verify algorithm, which for the
four proposed schemes consists of solving different, sometimes not well studied,
problems, such as the SIS problem in the `∞-norm for Dilithium and qTESLA and
the modular equivalence required between the message and signature in pqNTRUSign.
In attempts to determine how one might straightforwardly estimate the complexity of
signature forgery against the Dilithium and qTESLA schemes, custom analysis was
required which was heavily dependent on the intricacies of the scheme in question,
ruling out a scheme-agnostic approach to security estimation in the case of signature
forgeries.
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8 Security Estimates for Lattice-based Candidates for NIST’s Standardization

8.4.1 Discussion

Our data highlights that cost models for lattice reduction do not necessarily preserve
the ordering of the schemes under consideration. That is, under one cost model some
scheme A can be considered harder to break than a scheme B, while under another
cost model scheme B appears harder to break.

An example for the schemes EMBLEM and uRound2.KEM was highlighted
in [Ber18]. Consider the EMBLEM parameter set with n = 611 and the uRound2.KEM
parameter set with n = 500. In the 0.292β cost model, the cost of the primal attack
for EMBLEM-611 is estimated as17 76 and for uRound2.KEM-500 as 84. For the
same attack in the 0.187β log2 β − 1.019β + 16.1 cost model, the cost is estimated
for EMBLEM-611 as 142 and for uRound2.KEM-500 as 126. Similar swaps can
be observed for several other pairs of schemes and cost models. In most cases the
estimated securities of the two schemes are very close to each other (differing by, say,
1 or 2) and thus a swap of ordering does not fundamentally alter our understanding
of their relative security as these estimates are typically derived by heuristically
searching through the space of possible parameters and computing with limited preci-
sion. In some cases, though, such as the one highlighted in [Ber18], the differences in
security estimates can be significant. There are two classes of such cases as described
in the following.

Sparse secrets. The first class of cases involves instances with sparse secrets. The
LWE estimator applies guessing strategies (cf. [Alb17]) when costing the primal
attack. The basic idea is that for a sparse secret, many of the entries of the secret
vector are zero, and hence can be ignored. We guess τ entries to be zero, and drop
the corresponding columns from the attack lattice. In dropping τ columns from a
n-dimensional LWE instance, we obtain a (n− τ)-dimensional LWE instance with a
more dense secret distribution, where the density depends on the choice of τ and
the original value of the Hamming weight h. On the one hand, there is a probability
of failure when guessing which columns to drop. On the other hand there may
exist a τ for which the (n − τ)-dimensional LWE instance is easier to solve, and
in particular requires a smaller BKZ blocksize β. The trade-off between running
BKZ on smaller lattices and having to run it multiple times can correspond to an
overall lower expected attack cost. The probability of failure when guessing secret
entries does not depend on the cost model, but rather on the weight and dimension
of the secret, making this kind of attack more effective for very sparse secrets. In
the case of comparing an enumeration cost model versus a sieving one, we have that
the cost of enumeration is fitted as 2Θ(β log2 β) or 2Θ(β2) whereas the cost of sieving is
2Θ(β). The steeper curve for enumeration means that as we increase τ , and hence
decrease β, savings are potentially larger, justifying a larger number τ of entries

17Any discrepancies in value from those cited in [Ber18] are due to rounding introduced to the
estimator output since.
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8.4 Estimates for the Primal Attack

guessed. Concretely, the computed optimal guessing dimension τ can be much larger
than in the sieving regime. This phenomenon can also be observed when comparing
two different sieving models or two different enumeration models.

In Figure 8.1, we illustrate this for the EMBLEM and uRound2.KEM example.
EMBLEM does not have a sparse secret, while uRound2.KEM does. For EMBLEM
the best guessing dimension, giving the lowest overall cost, is τ = 0 in both cost
models. For uRound2.KEM, we see that the optimal guessing dimension varies
depending on the cost model. In the 0.292β cost model, the lowest overall expected
cost is achieved for τ = 1 while in the 0.187β log2 β−1.019β+16.1 model the optimal
choice is τ = 197.

0 50 100 150 200 250 300 350

100

200

300

400

500

τ

co
st

EMBLEM 0.187β log2 β − 1.019β + 16.1
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Figure 8.1: Estimates of the cost of the primal attack when guessing τ secret en-
tries for the schemes EMBLEM-611 and uRound2.KEM-500 using the
sieving-based cost model 0.292β and the enumeration-based cost model
0.187β log2 β − 1.019β + 16.1.

Multiple hardness assumptions. Lizard (RLizard) is based on two different hard-
ness assumptions, namely LWE (RLWE) and LWR (RLWR). Secret key recovery
corresponds to the underlying LWE problem, and ephemeral key recovery corre-
sponds to the underlying LWR problem. There are Lizard parameter sets for which
ephemeral key recovery is harder than secret key recovery (i.e, the underlying LWR
problem is harder than the underlying LWE problem), and there are also parameter
sets for which the converse is true. To deal with this issue, for each parameter set,
in each cost model, we always choose the lower of the two possible costs.
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Quantum security. In [Nat16], NIST defined five security categories that schemes
should target in the presence of an adversary with access to a large scale quantum
computer (cf. Section 8.1). They furthermore propose as a plausible assumption that
such a device would support a maximum quantum circuit depth MAXDEPTH ≤ 296

(although they do not mention a preferred set of universal gates to consider). However,
not all schemes take this limitation into account, and many of the submissions instead
use an asymptotic quantum cost model that considers the best known (or assumed)
theoretical Grover speed-up, resulting in possible overestimates of the adversary’s
power.

This use of quantum models introduces a further difficulty when trying to compare
schemes based on the outputs of the [APS15] estimator. For example, the security
definition of Category 1 requires that attacks on schemes should be as hard as
AES128 key recovery. Some schemes address this by tuning their parameters to
match a quantum-hardness of at least 2128, in the vein of “128 bit security”. On the
other hand, other schemes claiming the same category match a quantum-hardness of
at least 264 since key recovery on AES128 can be considered as a search problem in
an unstructured list of size 2128, which Grover can complete in O(2n/2) time. This
results in schemes with rather different cycle counts and memory usage claiming the
same security category, as can be seen from the “claimed security” column in the
estimates table.

8.5 Estimates for the Quantum Hybrid Attack

In this section, we analyze two selected schemes with respect to their security against
the quantum hybrid attack and compare the results to the security estimates against
the primal attack provided in Section 8.4. Note that the quantum hybrid attack may
be applied to more of the submitted schemes. For our analysis, we pick one scheme
with particularly sparse ternary secret vectors, namely the LWR-based parameter
sets of the uRound2 [GMZB+17] KEM, and one scheme with random ternary
secret vectors, namely the RLWE-based parameter sets of the EMBLEM [SPL+17]
KEM/PKE. For a comparison between these two schemes with respect to the primal
attack, see also Section 8.4.1. When analyzing the schemes, we restricted our
considerations to the case where n samples are provided. Furthermore, we restrict
our analysis to the most commonly used enumeration- and quantum-sieving-based
BKZ cost models, i.e., 0.187β log2 β − 1.019β + 16.1 and 0.265β. We used Bai and
Galbraith’s embedding [BG14b] to embed RLWE and LWR into uSVP (ignoring the
additional dimension introduced by the embedding factor and flipping the positions
of the secret and error vector). We considered rescaling and dimension reducing
techniques (as discussed in Section 7.2.2) and optimizing the search space according
to Section 7.3. To that end, we proceeded as follows. For each combination of number
of LWE/LWR samples m and relative size of the search space |S| / |M |, we optimized
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the attack parameters r (guessing dimension) and β (block size) as described in
Sections 5.3.3 and 7.2.2) with optimal rescaling factor. To get reasonably close to
the optimum, we tried all combinations with 20 | m, 5 | log2(|S| / |M |), and 5 | r.

Results. Our results for the LWR-based uRound2 KEM for the 0.187β log2 β −
1.019β + 16.1 and 0.265β cost models are presented in Tables 8.11 and 8.12. The
results for the RLWE-based EMBLEM KEM/PKE are presented in Tables 8.13
and 8.14. For both schemes, the quantum hybrid attack significantly outperforms the
primal attack up to a factor of 2109 in the enumeration-regime. For uRound2 in the
quantum-sieving-regime, the quantum hybrid attack performs slightly better than the
primal attack. For EMBLEM, however, the quantum hybrid attack is outperformed
by the primal attack in the quantum-sieving-regime. This can be explained by
noting that guessing entries of the secret vector is typically less beneficial in the
sieving-regime than in the enumeration-regime, in particular for uniform ternary
secrets compared to sparse secrets.

Quantum hybrid attack
Parameter set I II III IV V
Expected cost 91 126 140 185 185
Guessing dim. 225 260 295 400 400

Block size 163 215 231 282 282
|S| / |M | 2−160 2−185 2−205 2−255 2−255

m 260 320 360 420 420
Primal attack (cf. Table 8.8)

Parameter set I II III IV V
Expected cost 126 188 213 294 294

Table 8.11: Expected costs and corresponding attack parameters for the LWR-based
uRound2 KEM parameter sets (cf. Table 8.3) under the 0.187β log2 β −
1.019β + 16.1 BKZ cost model.
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Quantum hybrid attack
Parameter set I II III IV V
Expected cost 73 95 105 134 134
Guessing dim. 170 180 205 275 275

Block size 240 316 349 453 453
|S| / |M | 2−145 2−150 2−170 2−220 2−220

m 360 460 480 540 540
Primal attack (cf. Table 8.5)

Parameter set I II III IV V
Expected cost 76 95 105 138 138

Table 8.12: Expected costs and corresponding attack parameters for the LWR-based
uRound2 KEM parameter sets (cf. Table 8.3) under the 0.265β BKZ
cost model.

Quantum hybrid attack
Parameter set I II
Expected cost 179 162
Guessing dim. 190 165

Block size 294 268
|S| / |M | 1 1

m 380 400
Primal attack (cf. Table 8.8)
Parameter set I II
Expected cost 210 242

Table 8.13: Expected costs and corresponding attack parameters for the RLWE-based
EMBLEM (R EMBLEM) KEM/PKE parameter sets (cf. Table 8.3)
under the 0.187β log2 β − 1.019β + 16.1 BKZ cost model.
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Quantum hybrid attack
Parameter set I II
Expected cost 120 108
Guessing dim. 115 105

Block size 412 382
|S| / |M | 1 1

m 500 460
Primal attack (cf. Table 8.5)
Parameter set I II
Expected cost 92 102

Table 8.14: Expected costs and corresponding attack parameters for the RLWE-based
EMBLEM (R EMBLEM) KEM/PKE parameter sets (cf. Table 8.3)
under the 0.265β BKZ cost model.
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9 Conclusion

In this chapter, we conclude our work and give possible future research directions.
This work presented several techniques to estimate the hardness of lattice problems
(in particular instances of the uSVP) and in consequence to estimate the concrete
security of lattice-based schemes.

We showed that the 2016 estimate [ADPS16] constitutes a reliable estimate for
the minimal block size that guarantees the success of the BKZ [SE94, CN11, Che13]
lattice reduction algorithm in solving uSVP. As the block size determines the runtime
of the BKZ algorithm, this directly translates to cost estimates for one of the most
efficient attacks on lattice-based schemes, the primal attack, which embeds lattice
problems into uSVP instances and solves them via BKZ.

We further investigated the practical implications of using sparsification tech-
niques [Kho03, Kho04, DK13, DRS14, SD16] when embedding lattice problems into
uSVP instances. While the use of such techniques yield improved theoretical reduc-
tions [BSW16], our analysis shows that they typically do not lead to better attacks
in practice. This is due to the fact that the low success probabilities introduced by
these techniques is typically not compensated for by the expected speedup in the
success case.

In addition to the above approaches to solve uSVP in general, we investigated
hybrid attacks, which outperform the general approaches for certain uSVP instances.
Typical targets for such attacks are uSVP instances with particularly small and/or
sparse secret vectors. To this end, we adapted the hybrid attack [HG07] on the
NTRU encryption scheme [HPS98] to solve the uSVP and presented an improved
analysis of the attack. The new uSVP framework makes the attack applicable to
a wider class of lattice-based cryptosystems (e.g., LWE-based schemes) while the
improved analysis enables reliable runtime estimates, which were previously not
available due to inaccuracies in the existing analyses.

We showed how to accelerate the hybrid attack in two different ways. The first
is using parallel computing techniques of classical computers. We showed how to
parallelize the hybrid attack and analyzed the expected speedup. Our theoretical
analysis and practical experiments demonstrate that the parallel hybrid attack scales
well within reasonable parameter ranges.

The second way we improved the hybrid attack is using quantum computing,
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which needs to be taken into account when evaluating the post-quantum security of
cryptographic schemes. By replacing the classical meet-in-the-middle search of the
attack with a quantum search [BHMT02] which is sensitive to the distribution on
the search space we not only made the hybrid attack faster, but also applicable to a
wider range of uSVP instances. Besides outperforming the classical hybrid attack,
our results show that the quantum hybrid attack also outperforms the primal attack
for several uSVP instances with small and sparse secret vectors as well as vectors
that follow a (narrow) discrete Gaussian distribution.

Finally, we used our derived results for the primal and quantum hybrid attack to
evaluate the security of the lattice-based schemes which were accepted to NIST’s
process of standardizing post-quantum public-key cryptography [Nat16], highlighting
the practical implications of this work.

Future work. All of the attacks discussed in this work make heavy use of the
BKZ lattice reduction algorithm. The runtime of the BKZ algorithms is determined
by its block size. In this work, we showed how to determine the optimal block
size for the respective attacks. To determine the runtime of BKZ with a certain
block size, we applied estimates that exist in the current literature. However,
the numerous existing estimates provide vastly different results as highlighted in
Chapter 8. The main source of these differences is that BKZ is either assumed to
rely on enumeration algorithms [Kan83, FP85, MW15] as SVP oracle or on sieving
algorithms [AKS01, LMvdP15, BDGL16]. While sieving algorithms offer better
asymptotic complexities, they require access to exponentially large memory, which
may render them less efficient in practice despite the better asymptotics. Currently,
there exists no consensus in the cryptographic community as to which estimates to
use for BKZ. Settling this debate by deriving an accurate and realistic cost model
for BKZ is one of the most important topics in the cryptanalysis of lattice-based
cryptography. Note that the results presented in this thesis are applicable to all cost
models of BKZ, and hence relevant independently of what future works shows with
respect to the runtime of BKZ.

In our analysis of the 2016 estimate for the primal attack, we made the assumption
that BKZ uses a perfect SVP oracle as subroutine. Future research may investigate
if it is possible to obtain an improved estimate by relaxing this assumption and
allowing SVP oracles with certain success probabilities (possibly different success
probabilities at different stages of BKZ) as used in BKZ 2.0 [CN11, Che13]. Lowering
the success probability of the SVP oracle can considerably decrease the runtime of
BKZ, but the effect on the 2016 estimate so far is unclear.

For the hybrid attack, we used Babai’s Nearest Plane algorithm [Bab86] to check
if a guess is correct. Future work can investigate if it is beneficial to replace the
Nearest Plane algorithm by a different BDD solver, or even only an algorithm that
decides whether a given CVP instance is in fact a BDD instance. However, the fact
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that Nearest Plane can be divided into an expensive precomputation phase and a
cheap BDD phase seems to make it particularly suitable for the hybrid attack.

With respect to the parallel hybrid attack we identified the interference of the
execution of multiple BKZ executions on a single compute node and the parallel
speedup of the guessing as a bottleneck in our current implementation. It results
from an overextension of system’s memory interface through multiple BKZ runs
executed in parallel. Replacing NTL’s BKZ implementation by a more cache friendly
and memory efficient one will remove this effect. Furthermore, an analysis of the
performance and scalability of a parallel BKZ implementation was out of scope and
is left for future work.

An open question regarding the quantum hybrid attack is whether is can be
improved by a quantum meet-in-the-middle search [BHT98, XWW+12, WMM13]
as briefly discussed in [Sch15]. Besides the problem of requiring huge quantum
memory, this would introduce the low collision finding probabilities as encountered
in the classical hybrid attack. We therefore may conjecture that using a quantum
meet-in-the-middle search does not improve the quantum hybrid attack, however, a
detailed analysis of such a modification has not yet been conducted.

As most of the proposed quantum algorithms for lattice problems, our quantum
hybrid attack uses (a generalization of) Grover’s quantum search algorithm [Gro96].
The further investigation of dedicated quantum algorithms designed to solve spe-
cific problems, as for example used for lattices with additional algebraic struc-
ture [CDPR16, BS16, Bia17, CDW17], remains open for future work. In addition,
while parts of this thesis were focused on weaknesses in lattice problems introduced
by small or sparse secret vectors, the study of potential weaknesses of lattice problems
introduced by additional algebraic structure as in [ELOS15, ABD16, KF17] is an
important future research topic.
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EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 789–819.
Springer, Heidelberg, May 2016. 14, 69

[BAA+17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto,
Johannes Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer,
Patrick Longa, Harun Polat, Jefferson E. Ricardini, and Gustavo
Zanon. qtesla. Technical report, National Institute of Standards and
Technology, 2017. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-1-submissions. 132
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reductions for module lattices. Designs, Codes and Cryptography,
75(3):565–599, June 2015. 11

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key
sizes. Journal of Cryptology, 14(4):255–293, 2001. 17, 66

173

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


Bibliography

[LWXZ14] Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. A note
on BDD problems with λ2-gap. Inf. Process. Lett., 114(1-2):9–12, 2014.
43

[MLC+17] Artur Mariano, Thijs Laarhoven, Fábio Correia, Manuel Rodrigues,
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