39 research outputs found

    Temporalising Unique Characterisability and Learnability of Ontology-Mediated Queries

    Full text link
    Recently, the study of the unique characterisability and learnability of database queries by means of examples has been extended to ontology-mediated queries. Here, we study in how far the obtained results can be lifted to temporalised ontology-mediated queries. We provide a systematic introduction to the relevant approaches in the non-temporal case and then show general transfer results pinpointing under which conditions existing results can be lifted to temporalised queries

    Optimization in SMT with LA(Q) Cost Functions

    Get PDF
    In the contexts of automated reasoning and formal verification, important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, very few work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of LA(Q) cost functions, combining SMT with standard minimization techniques. We have implemented the proposed approach within the MathSAT SMT solver. Due to the lack of competitors in AR and SMT domains, we experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.Comment: A shorter version is currently under submissio

    Modelling and Analysis for Cyber-Physical Systems: An SMT-based approach

    Get PDF

    Constraint satisfaction problems in clausal form

    Full text link
    This is the report-version of a mini-series of two articles on the foundations of satisfiability of conjunctive normal forms with non-boolean variables, to appear in Fundamenta Informaticae, 2011. These two parts are here bundled in one report, each part yielding a chapter. Generalised conjunctive normal forms are considered, allowing literals of the form "variable not-equal value". The first part sets the foundations for the theory of autarkies, with emphasise on matching autarkies. Main results concern various polynomial time results in dependency on the deficiency. The second part considers translations to boolean clause-sets and irredundancy as well as minimal unsatisfiability. Main results concern classification of minimally unsatisfiable clause-sets and the relations to the hermitian rank of graphs. Both parts contain also discussions of many open problems.Comment: 91 pages, to appear in Fundamenta Informaticae, 2011, as Constraint satisfaction problems in clausal form I: Autarkies and deficiency, Constraint satisfaction problems in clausal form II: Minimal unsatisfiability and conflict structur

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    Reasoning in Many Dimensions : Uncertainty and Products of Modal Logics

    Get PDF
    Probabilistic Description Logics (ProbDLs) are an extension of Description Logics that are designed to capture uncertainty. We study problems related to these logics. First, we investigate the monodic fragment of Probabilistic first-order logic, show that it has many nice properties, and are able to explain the complexity results obtained for ProbDLs. Second, in order to identify well-behaved, in best-case tractable ProbDLs, we study the complexity landscape for different fragments of ProbEL; amongst others, we are able to identify a tractable fragment. We then study the reasoning problem of ontological query answering, but apply it to probabilistic data. Therefore, we define the framework of ontology-based access to probabilistic data and study the computational complexity therein. In the final part of the thesis, we study the complexity of the satisfiability problem in the two-dimensional modal logic KxK. We are able to close a gap that has been open for more than ten years
    corecore