215,255 research outputs found

    Hard Problems on Random Graphs

    Get PDF
    Many graph properties are expressible in first order logic. Whether a graph contains a clique or a dominating set of size k are two examples. For the solution size as its parameter the first one is W[1]-complete and the second one W[2]-complete meaning that both of them are hard problems in the worst-case. If we look at both problem from the aspect of average-case complexity, the picture changes. Clique can be solved in expected FPT time on uniformly distributed graphs of size n, while this is not clear for Dominating Set. We show that it is indeed unlikely that Dominating Set can be solved efficiently on random graphs: If yes, then every first-order expressible graph property can be solved in expected FPT time, too. Furthermore, this remains true when we consider random graphs with an arbitrary constant edge probability. We identify a very simple problem on random matrices that is equally hard to solve on average: Given a square boolean matrix, are there k rows whose logical AND is the zero vector? The related Even Set problem on the other hand turns out to be efficiently solvable on random instances, while it is known to be hard in the worst-case

    Phase Transitions of the Typical Algorithmic Complexity of the Random Satisfiability Problem Studied with Linear Programming

    Full text link
    Here we study the NP-complete KK-SAT problem. Although the worst-case complexity of NP-complete problems is conjectured to be exponential, there exist parametrized random ensembles of problems where solutions can typically be found in polynomial time for suitable ranges of the parameter. In fact, random KK-SAT, with α=M/N\alpha=M/N as control parameter, can be solved quickly for small enough values of α\alpha. It shows a phase transition between a satisfiable phase and an unsatisfiable phase. For branch and bound algorithms, which operate in the space of feasible Boolean configurations, the empirically hardest problems are located only close to this phase transition. Here we study KK-SAT (K=3,4K=3,4) and the related optimization problem MAX-SAT by a linear programming approach, which is widely used for practical problems and allows for polynomial run time. In contrast to branch and bound it operates outside the space of feasible configurations. On the other hand, finding a solution within polynomial time is not guaranteed. We investigated several variants like including artificial objective functions, so called cutting-plane approaches, and a mapping to the NP-complete vertex-cover problem. We observed several easy-hard transitions, from where the problems are typically solvable (in polynomial time) using the given algorithms, respectively, to where they are not solvable in polynomial time. For the related vertex-cover problem on random graphs these easy-hard transitions can be identified with structural properties of the graphs, like percolation transitions. For the present random KK-SAT problem we have investigated numerous structural properties also exhibiting clear transitions, but they appear not be correlated to the here observed easy-hard transitions. This renders the behaviour of random KK-SAT more complex than, e.g., the vertex-cover problem.Comment: 11 pages, 5 figure

    Rectangular Matrix Models and Combinatorics of Colored Graphs

    Full text link
    We present applications of rectangular matrix models to various combinatorial problems, among which the enumeration of face-bicolored graphs with prescribed vertex degrees, and vertex-tricolored triangulations. We also mention possible applications to Interaction-Round-a-Face and hard-particle statistical models defined on random lattices.Comment: 42 pages, 11 figures, tex, harvmac, eps

    Message passing for vertex covers

    Full text link
    Constructing a minimal vertex cover of a graph can be seen as a prototype for a combinatorial optimization problem under hard constraints. In this paper, we develop and analyze message passing techniques, namely warning and survey propagation, which serve as efficient heuristic algorithms for solving these computational hard problems. We show also, how previously obtained results on the typical-case behavior of vertex covers of random graphs can be recovered starting from the message passing equations, and how they can be extended.Comment: 25 pages, 9 figures - version accepted for publication in PR
    • …
    corecore