23,431 research outputs found

    Augmenting Graphical User Interfaces with Haptic Assistance for Motion-Impaired Operators

    Get PDF
    Haptic assistance is an emerging field of research that is designed to improve human-computer interaction (HCI) by reducing error rates and targeting times through the use of force feedback. Haptic feedback has previously been investigated to assist motion-impaired computer users, however, limitations such as target distracters have hampered its integration with graphical user interfaces (GUIs). In this paper two new haptic assistive techniques are presented that utilise the 3DOF capabilities of the Phantom Omni. These are referred to as deformable haptic cones and deformable virtual switches. The assistance is designed specifically to enable motion-impaired operators to use existing GUIs more effectively. Experiment 1 investigates the performance benefits of the new haptic techniques when used in conjunction with the densely populated Windows on-screen keyboard (OSK). Experiment 2 utilises the ISO 9241-9 point-and-click task to investigate the effects of target size and shape. The results of the study prove that the newly proposed techniques improve interaction rates and can be integrated with existing software without many of the drawbacks of traditional haptic assistance. Deformable haptic cones and deformable virtual switches were shown to reduce the mean number of missed-clicks by at least 75% and reduce targeting times by at least 25%

    The Effect of Haptic Feedback on Basic Social. Interaction within Shared Virtual Environments

    Get PDF
    This paper describes an experiment that studies the effect of basic haptic feedback in creating a sense of social interaction within a shared virtual environment (SVE). Although there have been a number of studies investigating the effect of haptic feedback on collaborative task performance, they do not address the effect it has in inducing social presence. The purpose of this experiment is to show that haptic feedback enhances the sense of social presence within a mediated environment. An experiment was carried out using a shared desktop based virtual environment where 20 remotely located couples who did not know one another had to solve a puzzle together. In 10 groups they had shared haptic communication through their hands, and in another group they did not. Hence the haptic feedback was not used for completing the task itself, but rather as a means of social interacting – communicating with the other participant. The results suggest that basic haptic feedback increases the sense of social presence within the shared VE

    Web-based haptic applications for blind people to create virtual graphs

    Get PDF
    Haptic technology has great potentials in many applications. This paper introduces our work on delivery haptic information via the Web. A multimodal tool has been developed to allow blind people to create virtual graphs independently. Multimodal interactions in the process of graph creation and exploration are provided by using a low-cost haptic device, the Logitech WingMan Force Feedback Mouse, and Web audio. The Web-based tool also provides blind people with the convenience of receiving information at home. In this paper, we present the development of the tool and evaluation results. Discussions on the issues related to the design of similar Web-based haptic applications are also given

    Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application

    Get PDF
    Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving each modality's immersion and performance factors. This paper concerns manipulation tasks and proposes a visuo-haptic system integrating immersive visualization, tactile force and tactile feedback with co-location. An industrial application is presented

    An Evaluation of Input Controls for In-Car Interactions

    Get PDF
    The way drivers operate in-car systems is rapidly changing as traditional physical controls, such as buttons and dials, are being replaced by touchscreens and touch-sensing surfaces. This has the potential to increase driver distraction and error as controls may be harder to find and use. This paper presents an in-car, on the road driving study which examined three key types of input controls to investigate their effects: a physical dial, pressure-based input on a touch surface and touch input on a touchscreen. The physical dial and pressure-based input were also evaluated with and without haptic feedback. The study was conducted with users performing a list-based targeting task using the different controls while driving on public roads. Eye-gaze was recorded to measure distraction from the primary task of driving. The results showed that target accuracy was high across all input methods (greater than 94%). Pressure-based targeting was the slowest while directly tapping on the targets was the faster selection method. Pressure-based input also caused the largest number of glances towards to the touchscreen but the duration of each glance was shorter than directly touching the screen. Our study will enable designers to make more appropriate design choices for future in-car interactions

    Expressive haptics for enhanced usability of mobile interfaces in situations of impairments

    Get PDF
    Designing for situational awareness could lead to better solutions for disabled people, likewise, exploring the needs of disabled people could lead to innovations that can address situational impairments. This in turn can create non-stigmatising assistive technology for disabled people from which eventually everyone could benefit. In this paper, we investigate the potential for advanced haptics to compliment the graphical user interface of mobile devices, thereby enhancing user experiences of all people in some situations (e.g. sunlight interfering with interaction) and visually impaired people. We explore technical solutions to this problem space and demonstrate our justification for a focus on the creation of kinaesthetic force feedback. We propose initial design concepts and studies, with a view to co-create delightful and expressive haptic interactions with potential users motivated by scenarios of situational and permanent impairments.Comment: Presented at the CHI'19 Workshop: Addressing the Challenges of Situationally-Induced Impairments and Disabilities in Mobile Interaction, 2019 (arXiv:1904.05382

    An Evaluation of Touch and Pressure-Based Scrolling and Haptic Feedback for In-car Touchscreens

    Get PDF
    An in-car study was conducted to examine different input techniques for list-based scrolling tasks and the effectiveness of haptic feedback for in-car touchscreens. The use of physical switchgear on centre consoles is decreasing which allows designers to develop new ways to interact with in-car applications. However, these new methods need to be evaluated to ensure they are usable. Therefore, three input techniques were tested: direct scrolling, pressure-based scrolling and scrolling using onscreen buttons on a touchscreen. The results showed that direct scrolling was less accurate than using onscreen buttons and pressure input, but took almost half the time when compared to the onscreen buttons and was almost three times quicker than pressure input. Vibrotactile feedback did not improve input performance but was preferred by the users. Understanding the speed vs. accuracy trade-off between these input techniques will allow better decisions when designing safer in-car interfaces for scrolling applications

    Classifying public display systems: an input/output channel perspective

    Get PDF
    Public display screens are relatively recent additions to our world, and while they may be as simple as a large screen with minimal input/output features, more recent developments have introduced much richer interaction possibilities supporting a variety of interaction styles. In this paper we propose a framework for classifying public display systems with a view to better understanding how they differ in terms of their interaction channels and how future installations are likely to evolve. This framework is explored through 15 existing public display systems which use mobile phones for interaction in the display space
    • 

    corecore