12,401 research outputs found

    Virtual reality training and assessment in laparoscopic rectum surgery

    Get PDF
    Background: Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. Methods: To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. Results: With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. Conclusions: This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. © 2014 John Wiley & Sons, Ltd

    Force Control for One Degree of Freedom Haptic Device using PID Controller

    Get PDF
    Haptics has been used as an additional feedback to increase human experience to the environment over years and its application has been widening into education, manufacturing and medical. The most developed haptic devices are for rehabilitation purpose. The rehabilitation process usually depends on the physiotherapist. But, it requires repetitive movements for long-term rehabilitation, thus haptic devices are needed. Most of the rehabilitation devices are included with haptic feedback to enhance therapy exercise during the rehabilitation process. However, the devices come with multiple degrees of freedom (DOF), complex design and costly. Rehabilitation for hand movement such as grasping, squeezing, holding and pinching usually does not need an expensive and complex device. Therefore, the goal of this study is to make an enhancement to One DOF Haptic Device for grasping rehabilitation exercise. It is improved to perform a force control mechanism with few types of conventional controller which are Proportional (P) controller, Proportional-Integral (PI) controller, Proportional-Derivative (PD) controller and Proportional-Integral-Derivative (PID) controller. The performance of the haptic device is tested with different conventional controller to obtain the best proposed controller based on the lowest value of Mean Square Error (MSE). The results show that PID Controller (MSE = 0.0028) is the most suitable for the haptic device with Proportional gain (Kp), Integral gain (Ki) and Derivative gain (Kd) are 1.3, 0.01 and 0.2 respectively. The force control mechanism can imitate the training motion of grasping movement for the patient

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe
    • …
    corecore