7 research outputs found

    On the Collaboration of an Automatic Path-Planner and a Human User for Path-Finding in Virtual Industrial Scenes

    Get PDF
    This paper describes a global interactive framework enabling an automatic path-planner and a user to collaborate for finding a path in cluttered virtual environments. First, a collaborative architecture including the user and the planner is described. Then, for real time purpose, a motion planner divided into different steps is presented. First, a preliminary workspace discretization is done without time limitations at the beginning of the simulation. Then, using these pre-computed data, a second algorithm finds a collision free path in real time. Once the path is found, an haptic artificial guidance on the path is provided to the user. The user can then influence the planner by not following the path and automatically order a new path research. The performances are measured on tests based on assembly simulation in CAD scenes

    Haptic Rendering of Arbitrary Serial Manipulators for Robot Programming

    Get PDF

    A 6-DOF haptic manipulation system to verify assembly procedures on CAD models

    Get PDF
    During the design phase of products and before going into production, it is necessary to verify the presence of mechanical plays, tolerances, and encumbrances on production mockups. This work introduces a multi-modal system that allows verifying assembly procedures of products in Virtual Reality starting directly from CAD models. Thus leveraging the costs and speeding up the assessment phase in product design. For this purpose, the design of a novel 6-DOF Haptic device is presented. The achieved performance of the system has been validated in a demonstration scenario employing state-of-the-art volumetric rendering of interaction forces together with a stereoscopic visualization setup

    Geometric Approximations and their Application to Motion Planning

    Get PDF
    Geometric approximation methods are a preferred solution to handle complexities (such as a large volume or complex features such as concavities) in geometric objects or environments containing them. Complexities often pose a computational bottleneck for applications such as motion planning. Exact resolution of these complexities might introduce other complexities such as unmanageable number of components. Hence, approximation methods provide a way to handle these complexities in a manageable state by trading off some accuracy. In this dissertation, two novel geometric approximation methods are studied: aggregation hierarchy and shape primitive skeleton. The aggregation hierarchy is a hierarchical clustering of polygonal or polyhedral objects. The shape primitive skeleton provides an approximation of bounded space as a skeleton of shape primitives. These methods are further applied to improve the performance of motion planning applications. We evaluate the methods in environments with 2D and 3D objects. The aggregation hierarchy groups nearby objects into individual objects. The hierarchy is created by varying the distance threshold that determines which objects are nearby. This creates levels of detail of the environment. The hierarchy of the obstacle space is then used to create a decom-position of the complementary space (i.e, free space) into a set of sampling regions to improve the efficiency and accuracy of the sampling operation of the sampling based motion planners. Our results show that the method can improve the efficiency (10 − 70% of planning time) of sampling based motion planning algorithms. The shape primitive skeleton inscribes a set of shape primitives (e.g., sphere, boxes) inside a bounded space such that they represent the skeleton or the connectivity of the space. We apply the shape primitive skeletons of the free space and obstacle space in motion planning problems to improve the collision detection operation. Our results also show the use of shape primitive skeleton in both spaces improves the performance of collision detectors (by 20 − 70% of collision detection time) used in motion planning algorithms. In summary, this dissertation evaluates how geometric approximation methods can be applied to improve the performance of motion planning methods, especially, sampling based motion planning method

    An ontology-based approach towards coupling task and path planning for the simulation of manipulation tasks

    Get PDF
    This work deals with the simulation and the validation of complex manipulation tasks under strong geometric constraints in virtual environments. The targeted applications relate to the industry 4.0 framework; as up-to-date products are more and more integrated and the economic competition increases, industrial companies express the need to validate, from design stage on, not only the static CAD models of their products but also the tasks (e.g., assembly or maintenance) related to their Product Lifecycle Management (PLM). The scientific community looked at this issue from two points of view: - Task planning decomposes a manipulation task to be realized into a sequence of primitive actions (i.e., a task plan) - Path planning computes collision-free trajectories, notably for the manipulated objects. It traditionally uses purely geometric data, which leads to classical limitations (possible high computational processing times, low relevance of the proposed trajectory concerning the task to be performed, or failure); recent works have shown the interest of using higher abstraction level data. Joint task and path planning approaches found in the literature usually perform a classical task planning step, and then check out the feasibility of path planning requests associated with the primitive actions of this task plan. The link between task and path planning has to be improved, notably because of the lack of loopback between the path planning level and the task planning level: - The path planning information used to question the task plan is usually limited to the motion feasibility where richer information such as the relevance or the complexity of the proposed path would be needed; - path planning queries traditionally use purely geometric data and/or “blind” path planning methods (e.g., RRT), and no task-related information is used at the path planning level Our work focuses on using task level information at the path planning level. The path planning algorithm considered is RRT; we chose such a probabilistic algorithm because we consider path planning for the simulation and the validation of complex tasks under strong geometric constraints. We propose an ontology-based approach to use task level information to specify path planning queries for the primitive actions of a task plan. First, we propose an ontology to conceptualize the knowledge about the 3D environment in which the simulated task takes place. The environment where the simulated task takes place is considered as a closed part of 3D Cartesian space cluttered with mobile/fixed obstacles (considered as rigid bodies). It is represented by a digital model relying on a multilayer architecture involving semantic, topologic and geometric data. The originality of the proposed ontology lies in the fact that it conceptualizes heterogeneous knowledge about both the obstacles and the free space models. Second, we exploit this ontology to automatically generate a path planning query associated to each given primitive action of a task plan. Through a reasoning process involving the primitive actions instantiated in the ontology, we are able to infer the start and the goal configurations, as well as task-related geometric constraints. Finally, a multi-level path planner is called to generate the corresponding trajectory. The contributions of this work have been validated by full simulation of several manipulation tasks under strong geometric constraints. The results obtained demonstrate that using task-related information allows better control on the RRT path planning algorithm involved to check the motion feasibility for the primitive actions of a task plan, leading to lower computational time and more relevant trajectories for primitive actions

    MĂ©thode interactive et par l'apprentissage pour la generation de trajectoire en conception du produit

    Get PDF
    The accessibility is an important factor considered in the validation and verification phase of the product design and usually dominates the time and costs in this phase. Defining the accessibility verification as the motion planning problem, the sampling based motion planners gained success in the past fifteen years. However, the performances of them are usually shackled by the narrow passage problem arising when complex assemblies are composed of large number of parts, which often leads to scenes with high obstacle densities. Unfortunately, humans’ manual manipulations in the narrow passage always show much more difficulties due to the limitations of the interactive devices or the cognitive ability. Meanwhile, the challenges of analyzing the end users’ response in the design process promote the integration with the direct participation of designers.In order to accelerate the path planning in the narrow passage and find the path complying with user’s preferences, a novel interactive motion planning method is proposed. In this method, the integration with a random retraction process helps reduce the difficulty of manual manipulations in the complex assembly/disassembly tasks and provide local guidance to the sampling based planners. Then a hypothesis is proposed about the correlation between the topological structure of the scenario and the motion path in the narrow passage. The topological structure refers to the medial axis (2D) and curve skeleton (3D) with branches pruned. The correlation runs in an opposite manner to the sampling based method and provide a new perspective to solve the narrow passage problem. The curve matching method is used to explore this correlation and an interactive motion planning framework that can learn from experience is constructed in this thesis. We highlight the performance of our framework on a challenging problem in 2D, in which a non-convex object passes through a cluttered environment filled with randomly shaped and located non-convex obstacles.L'accessibilitĂ©est un facteur important pris en compte dans la validation et la vĂ©rification en phase de conception du produit et augmente gĂ©nĂ©ralement le temps et les coĂ»ts de cette phase. Ce domaine de recherche a eu un regain d’intĂ©rĂȘt ces quinze derniĂšres annĂ©es avec notamment de nouveaux planificateurs de mouvement. Cependant, les performances de ces mĂ©thodes sont gĂ©nĂ©ralement trĂšs faibles lorsque le problĂšme se caractĂ©rise par des passages Ă©troits des assemblages complexes composĂ©es d'un grand nombre de piĂšces. Cela conduit souvent Ă des scĂšnes Ă forte densitĂ©d'obstacles. Malheureusement, les manipulations manuelles des humains dans le passage Ă©troit montrent toujours beaucoup de difficultĂ©s en raison des limitations des dispositifs interactifs ou la capacitĂ©cognitive. Pendant ce temps, les dĂ©fis de l'analyse de la rĂ©ponse finale des utilisateurs dans le processus de conception promeut l'intĂ©gration avec la participation directe des concepteurs.Afin d'accĂ©lĂ©rer la planification dans le passage Ă©troit et trouver le chemin le plus conforme aux prĂ©fĂ©rences de l'utilisateur, une nouvelle mĂ©thode de planification de mouvement interactif est proposĂ©e. Nous avons soulignĂ©la performance de notre algorithme dans certains scĂ©narios difficiles en 2D et 3D environnement.Ensuite, une hypothĂšse est proposĂ©sur la corrĂ©lation entre la structure topologique du scĂ©nario et la trajectoire dans le passage Ă©troit. La mĂ©thode basĂ©e sur les courbures est utilisĂ©e pour explorer cette corrĂ©lation et un cadre de planification de mouvement interactif qui peut apprendre de l'expĂ©rience est construit dans cette thĂšse. Nous soulignons la performance de notre cadre sur un problĂšme difficile en 2D, dans lequel un objet non-convexe passe Ă  travers un environnement encombrĂ©rempli d'obstacles non-convexes de forme alĂ©atoire et situĂ©s

    Apport des méthodes de planification automatique dans les simulations interactives d'industrialisation et de maintenance en réalité virtuelle

    Get PDF
    Ce document explore l'utilisation de méthodes de planification automatique dans des simulations interactives. Lors de simulations de montage et de démontage de composants industriels en environnement virtuel, l'utilisateur peut nécessiter une assistance. Cette assistance est réalisée par l'utilisation d'une solution de planification de trajectoire en temps réel. Cette solution permet la construction interactive d'une chemin par la combinaison de l'avis de l'utilisateur avec la performance de planificateurs automatiques. ABSTRACT : This PhD thesis explores the use of motion planning methods in interactive simulations. In the context of assembling and disassembling simulations of industrial components using haptic devices, the user may require assistance to find collision free paths. This assistance can be provided using real time interactive path planning methods. Our solution allows an interactive construction of free paths by combining the opinion of the user with the performance of fast modified automatic path planners
    corecore