244 research outputs found

    Using multiclass classification algorithms to improve text categorization tool:NLoN

    Get PDF
    Abstract. Natural language processing (NLP) and machine learning techniques have been widely utilized in the mining software repositories (MSR) field in recent years. Separating natural language from source code is a pre-processing step that is needed in both NLP and the MSR domain for better data quality. This paper presents the design and implementation of a multi-class classification approach that is based on the existing open-source R package Natural Language or Not (NLoN). This article also reviews the existing literature on MSR and NLP. The review classified the information sources and approaches of MSR in detail, and also focused on the text representation and classification tasks of NLP. In addition, the design and implementation methods of the original paper are briefly introduced. Regarding the research methodology, since the research goal is technology-oriented, i.e., to improve the design and implementation of existing technologies, this article adopts the design science research methodology and also describes how the methodology was adopted. This research implements an open-source Python library, namely NLoN-PY. This is an open-source library hosted on GitHub, and users can also directly use the tools published to the PyPI library. Since NLoN has achieved comparable performance on two-class classification tasks with the Lasso regression model, this study evaluated other multi-class classification algorithms, i.e., Naive Bayes, k-Nearest Neighbours, and Support Vector Machine. Using 10-fold cross-validation, the expanded classifier achieved AUC performance of 0.901 for the 5-class classification task and the AUC performance of 0.92 for the 2-class task. Although the design of this study did not show a significant performance improvement compared to the original design, the impact of unbalanced data distribution on performance was detected and the category of the classification problem was also refined in the process. These findings on the multi-class classification design can provide a research foundation or direction for future research

    Machine learning for ancient languages: a survey

    Get PDF
    Ancient languages preserve the cultures and histories of the past. However, their study is fraught with difficulties, and experts must tackle a range of challenging text-based tasks, from deciphering lost languages to restoring damaged inscriptions, to determining the authorship of works of literature. Technological aids have long supported the study of ancient texts, but in recent years advances in artificial intelligence and machine learning have enabled analyses on a scale and in a detail that are reshaping the field of humanities, similarly to how microscopes and telescopes have contributed to the realm of science. This article aims to provide a comprehensive survey of published research using machine learning for the study of ancient texts written in any language, script, and medium, spanning over three and a half millennia of civilizations around the ancient world. To analyze the relevant literature, we introduce a taxonomy of tasks inspired by the steps involved in the study of ancient documents: digitization, restoration, attribution, linguistic analysis, textual criticism, translation, and decipherment. This work offers three major contributions: first, mapping the interdisciplinary field carved out by the synergy between the humanities and machine learning; second, highlighting how active collaboration between specialists from both fields is key to producing impactful and compelling scholarship; third, highlighting promising directions for future work in this field. Thus, this work promotes and supports the continued collaborative impetus between the humanities and machine learning

    Large Scale Subject Category Classification of Scholarly Papers with Deep Attentive Neural Networks

    Get PDF
    Subject categories of scholarly papers generally refer to the knowledge domain(s) to which the papers belong, examples being computer science or physics. Subject category information can be used for building faceted search for digital library search engines. This can significantly assist users in narrowing down their search space of relevant documents. Unfortunately, many academic papers do not have such information as part of their metadata. Existing methods for solving this task usually focus on unsupervised learning that often relies on citation networks. However, a complete list of papers citing the current paper may not be readily available. In particular, new papers that have few or no citations cannot be classified using such methods. Here, we propose a deep attentive neural network (DANN) that classifies scholarly papers using only their abstracts. The network is trained using 9 million abstracts from Web of Science (WoS). We also use the WoS schema that covers 104 subject categories. The proposed network consists of two bi-directional recurrent neural networks followed by an attention layer. We compare our model against baselines by varying the architecture and text representation. Our best model achieves micro-F1 measure of 0.76 with F1 of individual subject categories ranging from 0.50-0.95. The results showed the importance of retraining word embedding models to maximize the vocabulary overlap and the effectiveness of the attention mechanism. The combination of word vectors with TFIDF outperforms character and sentence level embedding models. We discuss imbalanced samples and overlapping categories and suggest possible strategies for mitigation. We also determine the subject category distribution in CiteSeerX by classifying a random sample of one million academic papers.Comment: submitted to "Frontiers Mining Scientific Papers Volume II: Knowledge Discovery and Data Exploitation
    corecore