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Abstract 

Natural language processing (NLP) and machine learning techniques have been widely 

utilized in the mining software repositories (MSR) field in recent years. Separating natural 

language from source code is a pre-processing step that is needed in both NLP and the 

MSR domain for better data quality. This paper presents the design and implementation 

of a multi-class classification approach that is based on the existing open-source R 

package Natural Language or Not (NLoN).  

This article also reviews the existing literature on MSR and NLP. The review classified 

the information sources and approaches of MSR in detail, and also focused on the text 

representation and classification tasks of NLP. In addition, the design and implementation 

methods of the original paper are briefly introduced. 

Regarding the research methodology, since the research goal is technology-oriented, i.e., 

to improve the design and implementation of existing technologies, this article adopts the 

design science research methodology and also describes how the methodology was 

adopted. 

This research implements an open-source Python library, namely NLoN-PY. This is an 

open-source library hosted on GitHub, and users can also directly use the tools published 

to the PyPI library. 

Since NLoN has achieved comparable performance on two-class classification tasks with 

the Lasso regression model, this study evaluated other multi-class classification 

algorithms, i.e., Naive Bayes, k-Nearest Neighbours, and Support Vector Machine. Using 

10-fold cross-validation, the expanded classifier achieved AUC performance of 0.901 for 

the 5-class classification task and the AUC performance of 0.92 for the 2-class task. 

Although the design of this study did not show a significant performance improvement 

compared to the original design, the impact of unbalanced data distribution on 

performance was detected and the category of the classification problem was also refined 

in the process. These findings on the multi-class classification design can provide a 

research foundation or direction for future research. 

Keywords 
Natural language processing, machine learning, multi-class classification, mining 

software repositories, NLoN, text categorization. 
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1. Introduction 

Software repositories may contain various valuable data, such as instructions on software 

design and maintenance, solutions to certain stack traces, and comments related to 

technical debt. But these data are often a mixture of natural language and source code, 

separating natural language and non-natural language is an essential pre-task before 

proceeding to a more in-depth natural language processing. At the same time, different 

software repositories often have different mixing styles, e.g., in StackOverflow, the 

questioner often mixes natural language with stack traces or log information, while the 

answerer often mixes natural language and source code. Therefore, this problem may 

require a multi-class classification solution. 

Previous research has given a solid foundation on two-class classification, Mäntylä, 

Calefato, and Claes (2018) proposed a machine learning approach NLoN (Natural 

Language or Not) for separating natural language from other text inputs that are common 

in software engineering. Their results suggested a significantly more lightweight design 

than previous studies, meanwhile, achieved comparable performance in three different 

information source types, i.e., issue comments from bug repositories, archived chats from 

online discussions, and email messages from mailing lists.  

However, Mäntylä et al. (2018) also pointed out that there is a limitation in the original 

study, i.e., the solution can only provide a two-class classification (natural language or 

not). This may lead to an ambiguous result for a mixed statement that consists of both 

natural language and code in a line of text. Multi-class classification (natural language or 

not or mixed) and further processing for mixed lines (e.g. parse and separate mixed 

content) could supplement and enhance the original solution.  

Moreover, the original study adopted only one machine learning technique Glmnet1 

which implements a fast algorithm that fits generalized linear and similar models via 

penalized maximum likelihood (Friedman, Hastie, & Tibshirani, 2010). Considering the 

diversity and rapid development of machine learning algorithms (Bonaccorso, 2017; 

Jordan & Mitchell, 2015), it is necessary to explore whether other algorithms would 

provide better results. 

Therefore, this study is aimed at improving the accuracy of classification for software 

engineering text mining by using multi-class classification algorithms. Based on this, this 

study needs to address two main research questions: 

• RQ1: How to design and implement a multi-class classification approach based 

on previous work? 

• RQ2: Whether other algorithms can get better performance than Glmnet without 

breaking the original principle of lightweight design? 

Since the output of the original study is an open-source R project on GitHub2 (M3SOulu, 

2018), this study also focuses on the implementation and performance of an artefact 

(open-source R package), thus the design science research (DSR) approach will be 

 

1 https://glmnet.stanford.edu/ 

2 https://github.com/M3SOulu/NLoN 
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adopted as the methodology in this research. This paper followed the guideline of design 

science research methodology (DSRM) proposed by Peffers, Tuunanen, Rothenberger, 

and Chatterjee (2007).  

To bridge the gap of academic background, a review of the original paper and the related 

work will be presented in chapter 2. After that, chapter 3 will give a detailed description 

of the methodology and explain the adoption of DSRM for this project. Next, in chapter 

4, the implementation of the study will be described and illustrated. Chapter 5 will present 

the findings and discuss the results. At last, a conclusion of the study will be summarized 

in chapter 6. 
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2. Prior research 

This chapter is divided into three sections, i.e., mining software repositories, natural 

language processing, and the original paper. Section 2.1 reviews the development of 

mining software repositories (MSR) research, i.e., the main research field of this thesis. 

Meanwhile, this study also utilized the natural language processing techniques which are 

introduced in Section 2.2. Next, Section 2.3 gives a comprehensive overview of the 

original research conducted by Mäntylä et al. (2018).  

2.1 Mining software repositories 

The research subjects of mining software repositories (MSR) refer to artefacts that are 

produced and archived during software evolution (Kagdi, Collard, & Maletic, 2007). The 

MSR aims to discover interesting and actionable information about software systems and 

projects by analyzing available data from different software repositories (Hassan, 2008). 

To provide a systematic perception, the taxonomy of MSR is introduced in Section 2.1.1. 

Hence, software repositories can be diverse, such as source control systems that store the 

entire history of the source code, defect management systems that retain bugs, 

improvements, and other issues, and other communication channels such as mailing lists 

or forums (Robles, 2010; Nazar, Hu, & Jiang, 2016). Thereby, considering the scope of 

this study (mining text that consists of both natural language and code), the related 

software repositories and their respective approaches are listed in Subsection 2.1.2. 

2.1.1 Taxonomy of MSR 

Regarding the taxonomy of MSR approaches, different dimensions were used to compare 

and contrast as shown in Table 1. Kagdi, Collard, & Maletic (2005) proposed a taxonomy 

of MSR approaches with four categories including annotation analysis, heuristic, data 

mining, and differencing. Then, based on the grouping, their work went further to evaluate 

the specific dimensions of each category. At the same time, another framework that 

classifies the mining tools for MSR was proposed by German, Cubranić, & Storey (2005).  

Table 1.  The dimensions of MSR taxonomy. 

 Dimensions 

Kagdi et al., 2005 • Entity type and granularity 

• How changes are expressed and defined 

• Type of MSR question 

German et al., 2005 • Intent: the expected users of the tool, and its main objective 

• Information: the specific sources that the tool mines and the type of 

analysis made by the tool 

• Infrastructure: the environment needed to support the tool 

Kagdi et al., 2007 • The software repositories utilized: information sources 

• The purpose of MSR: why or what for 

• The methodology: how to achieve the purpose of mining 

• The evaluation of the undertaken approach: how to assess the quality 
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Whereas it can be found that two studies have their focus which may not be able to give 

a comprehensive classification for MSR approaches. Therefore, to form a basis for MSR 

investigations in the context of software evolution, Kagdi et al. (2007) extended their 

previous work (Kagdi et al., 2005) and presented a layered taxonomy which was derived 

from a broader survey of MSR approaches. As shown in Figure 1, MSR approaches can 

be categorized into four layers, i.e., layer 1 (software evolution) and layer 2 (purpose) 

define the overall context in which a particular MSR investigation is conducted, or an 

adopted/invented MSR methodology is evaluated; then, layer 3 (representation) refers to 

the type, granularity, and expression of the artefacts and their differences; finally, layer 4 

(information sources) represents the information sources that are readily available in the 

software repositories and those that need to be made available to support the MSR 

investigation (Kagdi et al., 2007). Hence, to provide a more intuitive perspective, I will 

introduce the related MSR approaches from the dimension of information sources. 

 

Figure 1. Four-layer taxonomy of MSR approaches (Kagdi et al., 2007, p. 85). 

2.1.2 Information sources and approaches 

According to Demeyer, Murgia, Wyckmans, and Lamkanfi (2013), the information 

sources of MSR can be divided into three main categories: source configuration 

management (SCM), bug tracking systems (BTS), and archived project communications 

(APC). Additionally, de F. Farias et al. (2016) supplemented some unfamiliar data 

sources such as binary code, issue tracking system (ITS, similar to BTS but specified to 

issues reported by customer or user), documents, and logs and subdivided the sources into 

two subcategories: structured and unstructured repositories (Figure 2). 
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Figure 2. The information source types of MSR (de F. Farias et al., 2016, p. 1477). 

Source Code and Version Control Systems 

Source code is one of the most important software development artefacts (Kagdi et al., 

2007; Hemmati et al., 2013). In general, source code artefacts are stored and managed in 

source control or version control systems (VCS) (e.g. Git3, Subversion4). A VCS can not 

only store source code but also keep historical versions of source code and project files 

that are under development (Ruparelia, 2010). Therefore, diverse research purposes can 

be served due to a source code artefact is a mixed artefact that contains both structured 

data such as semantics, syntax, and unstructured data such as code comments, identifiers, 

commit comments (Kagdi et al., 2007; Nazar et al., 2016). 

Early researchers have already put effort into searching techniques for source code 

(Devanbu, 1992; Paul & Prakash, 1994; Chen et al., 2001). Since most programmers 

started their work by searching for task-relevant code and spent 13% (±6) of time on it 

(Ko, Aung, & Myers, 2005), more studies have been employed to increase the search 

effectiveness. Yang and Tan (2012) proposed a general technique to automatically infer 

semantically related words in software by taking advantage of the context of words in 

comments and code. They hypothesised that if two words or phrases are used in the same 

context in comment sentences or identifier names, then they likely have syntactic and 

semantic relevance. The evaluation proved that their work achieved a reasonable accuracy 

in seven large and popular code bases written in C and Java. However, their approach 

identified word pairs related within a given context which may not be commonly related 

to many applications (Howard, Gupta, Pollock, & Vijay-Shanker, 2013). Thus, a 

 

3 https://git-scm.com/ 

4 https://subversion.apache.org/ 
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complementary study was conducted to automatically mine word pairs that are 

semantically similar in the software domain by Howard et al. (2013). They leveraged the 

role of leading comments (a comment before a method signature that provided the reader 

with the overall summary of a method’s actions) and programmer conventions in coding 

as well as method signatures to automatically mine semantically similar verbs. Their 

approach contained four main phases of automation as shown in Figure 3: 

• Identifying descriptive leading comments. 

• Extracting documented actions from leading comments. 

• Extracting the main action from the method signature. 

• Analyzing comment-code word pairs. 

Non-descriptive leading comments are filtered out in the first phase; then, the main action 

words from the descriptive leading comment and the method signature are extracted for 

each descriptive leading comment; hence, the candidate semantically similar word pairs 

are formed by comment-code word pairs; finally, the comment-code pairs are analysed 

and ranked to automatically produce a list of semantically related word pairs (Howard et 

al., 2013). 

 

Figure 3. The main process of mining word pairs (Howard et al., 2013, p. 380). 

Regarding the version control data, Kim and Notkin (2006) conducted a study on 

matching techniques that could be used for multi-version program analysing. Their work 

indicated that matching program elements between two revisions was a basic building 

block for multi-version program analyses and other software evolution research. They 

concluded that every matching technique is an implementation of some kind of pseudo 

equivalence function, and the more heuristics that are used, the better the matching 

technique will perform. On the other hand, Parnin and Görg (2008) also proposed a 

technique for expressing changes between software versions. Instead of textual analysis 

of source code and line-based differencing, they worked on fully annotated bytecode to 
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utilized type information that is harder to obtain with textual representations. They 

obtained which bytecode statements differed between revisions, emitted a collection of 

symbol pairs for each statement that had been modified, and identified which pairs were 

removed and inserted between revisions. The symbols have the type of information and 

fully qualified source code location annotated on them (Parnin & Görg, 2008). 

Bug Repositories 

In the form of bug reports, details about software bugs are stored in a bug tracking system 

(e.g. Bugzilla5, Redmine6, Jira7) which contains information about the creation and the 

resolution of bugs, feature enhancements, and other maintenance tasks (Nazar et al., 

2016). Furthermore, a bug repository can be combined with the version control repository 

to analyse fix-inducing changes, i.e., changes that lead to problems, indicated by fixes 

(Śliwerski, Zimmermann, & Zeller, 2005). For their analysis, Bugzilla should be mapped 

in a local database. Thus, they used the XML export feature of Bugzilla and then imported 

attachments and activities directly from the web interface of Bugzilla. 

In addition to natural language text, bug reports also contained structural elements such 

as stack traces, source code fragments, and patches (Bettenburg, Premraj, Zimmermann, 

& Kim, 2008). To make full use of the valuable information of bug reports, a tool called 

infoZilla that could extract structural elements from bug reports was presented by 

Bettenburg et al. (2008). Their study has some similarities to my research, i.e., separate 

natural language and code. However, the objectives of the two studies were different, i.e., 

my study needs to consider both the extraction of natural language and non-natural 

language but they focused on only extracting the non-natural language fragments from 

the context in which natural language is dominant due to the descriptions of bug reports 

were usually regarded as natural language text (Bettenburg et al., 2008). Moreover, they 

mainly used heuristics, regular expressions, and island grammars (Moonen, 2001) as the 

filters for detecting specific elements with remarkably high accuracy. Nevertheless, they 

indicated the advantages of having additional information such as stack traces and source 

code separated from natural language, i.e., it could enable researchers to access more 

structured data, improve machine learning training, and allow research based on specific 

interests. 

Moreover, the life cycle data of issues that are preserved in bug tracking systems can also 

be regarded as one type of information source for MSR. A typical life cycle of issues is 

shown in Figure 4. For instance, an early study conducted by Weiss, Premraj, 

Zimmermann, and Zeller (2007) demonstrated an approach that utilized the issue tracking 

systems to predict the fixing effort, i.e., the person-hours spent on fixing an issue. They 

used the Lucene8 (an open-source search engine software library) framework to search 

for similar, earlier reports and used their average time as a prediction when given a new 

 

5 https://www.bugzilla.org/ 

6 https://www.redmine.org/ 

7 https://www.atlassian.com/software/jira 

8 https://lucene.apache.org/ 
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issue report. Regarding when there were no similar issues, Weiss et al. (2007) also 

extended the nearest neighbour approach (kNN) to increase the reliability of predictions. 

 

Figure 4. The life cycle of an issue report in Bugzilla (Zeller, 2009) 

Mailing Lists 

Mailing lists play a central role in communication during Open Source Software (OSS) 

development process (Ibrahim, Bettenburg, Shihab, Adams, & Hassan, 2010). Typically, 

mailing lists consist of a series of time-stamped email messages that include a header that 

contains the sender, receiver(s), and time stamp, a message body, i.e., the email's text 

content, and a set of attachments, i.e., additional documents sent with the email (Nazar et 

al., 2016).  

Rigby and Hassan (2007) indicated that the unstructured nature of mailing lists increased 

the difficulty of the information extraction, therefore, they proposed an approach that used 

a psychometrically-based word count tool to understand Apache httpd9 (an open-source 

HTTP server) developer mailing lists. They aimed at discovering the personality and 

attitude of developers. Similarly, Júnior, Mendonca, Farias, and Henrique (2010) 

presented a psychometrically-based neuro-linguistic mining tool to analyse the mailing 

lists of the Apache project. They intended to address the distribution of representational 

systems among the Apache project developers and explore what is the preferred 

representational system (PRS) of the Apache project top committers. Likewise, Ibrahim 

et al. (2010) proposed a composite model that explored the contribution behaviour for the 

top ten developers in three OSS mailing lists (Apache, PostgreSQL10 , and Python11). To 

improve the overall performance, they combined two data mining approaches, i.e., using 

a Naive Bayesian classifier to deal with the body and subject of a thread and a Decision 

Tree classifier to explain the contribution behaviour of a developer. Hence, they found 

the most important contributing factors are the message content, developer contribution 

activity in the last month, and the length of the thread.  

However, in recent years, there has been a shift in the communication habits of the OSS 

projects toward increased usage of issue repositories and other social platforms (Guzzi, 

 

9 https://httpd.apache.org/ 

10 https://www.postgresql.org/ 

11 https://www.python.org/ 
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Bacchelli, Lanza, Pinzger, & Van Deursen, 2013). Guzzi et al. (2013) analysed the email 

threads from the development mailing list of an OSS project, Lucene. Their findings 

revealed that email threads covered a wide range of topics, with implementation details 

only appearing in a small percentage of them, those code artefacts were discussed in 

topics other than implementation, and those project developers did not make up the 

majority of the participants. 

Online Discussions 

As another form of APC, online discussions (also known as developer forums) are online 

forums where engineers, developers, beginners, and the general public can post questions 

and exchange comments about the same specialized area (Nazar et al., 2016). For 

instance, Twitter12, Stack Overflow13, and Slack14 are popular for online discussions.  

Regarding Twitter, Tian, Achananuparp, Lubis, Lo, and Lim (2012) examined what the 

software engineering community microblogged on Twitter and classified these 

microblogs into ten categories as shown in Table 2. They also analysed the types of tweets 

that drew the most attention and spread the most via retweeting. Thus, they found that job 

openings, news, Q&A, and new tools and code were the most popular categories of 

tweets, while events and commercials were the most commonly propagated or shared 

tweet categories. 

Table 2.  The categories of tweets (Tian et al., 2012, p. 248). 

 Category Description 

1. Commercials Promotions about a particular company or a commercial 

product 

2. News Objective reports about a particular topic 

3. Tools & Code Sharing of open source tools or code for general use 

4. Q&A Questions either posed directly or asked via question-

answering sites, e.g., StackOverflow.com 

5. Events Information about various gatherings or activities, e.g., 

conferences 

6. Personal Personal messages, e.g., ramblings about daily activities, 

conversations with friends, etc. 

7. Opinions Opinions (e.g., likes, dislikes, etc.) about a particular topic 

8. Tips Advice about a particular topic 

9. Jobs Job openings 

10. Misc. Miscellaneous microblogs not belonging to one of the above 

categories or not related to software engineering. These also 

include microblogs whose contents are unclear. 

 

12 https://twitter.com/ 

13 https://stackoverflow.com/ 

14 https://slack.com/ 
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According to Chowdhury and Hindle (2015), StackOverflow (SO) is an example of an 

asynchronous long-lived discussion medium, in which questions and responses are posted 

at various times and the conversation is archived. Wang, Malik, and Godfrey (2015) 

presented an approach for recommending SO posts that were likely to concern API design 

issues by combining social network analysis and topic mining. Similarly, Bangash et al. 

(2019) conducted a study on SO machine learning related posts to discover what machine 

learning topics were discussed on SO. Moreover, Rahman, Rigby, Palani, and Nguyen 

(2019) evaluated three different corpus cleaning approaches, i.e., standard NLP, title only, 

and software task extraction for SO to generate a parallel English-Code corpus from 

Android related posts. Their results proved the potential of SO as a bilingual machine 

translation corpus. 

Slack is another popular chat platform that hosted many active channels focused on 

software development technologies, e.g., Python, Rails15, React16 (Chatterjee, Damevski, 

Pollock, Augustine, & Kraft, 2019; Chatterjee, Damevski, Kraft, & Pollock, 2020). 

Chatterjee et al. (2019) conducted an exploratory study to investigate the potential of 

developer Q&A chats in Slack as a mining resource for software maintenance and 

evolution tools. They examined that Q&A chats in Slack provided the same information 

as can be found in Q&A posts on SO. Furthermore, Chatterjee et al. (2020) presented an 

approach for automatic data collection, pre-processing, disentanglement and storage of 

Slack developer chats. The dataset derived from their study could be utilized to identify 

trending topics of discussion in a software development community and understand 

common challenges and misconceptions among developers. 

Logs 

Vaarandi (2003) presented a clustering algorithm for mining patterns from log files. In 

that study, an experimental clustering tool called SLCT17 (Simple Logfile Clustering 

Tool) was implemented. Accordingly, Nagappan and Vouk (2010) presented an approach 

that was a modification of the SLCT algorithm for log file abstraction to cope with the 

inherent variability of log files. Furthermore, to build a link between the log messages in 

the raw log file and the log statements in the source code, Schipper, Aniche, and van 

Deursen (2019) proposed an approach to implement and evaluate log parsing. 

On the other hand, Bajracharya and Lopes (2009) proposed a topic modelling analysis for 

revealing a usage log of a commercial code search engine. They used Latent Dirichlet 

Allocation (LDA) as the topic modelling technique and identified the common ways in 

which users expressed their queries. Similarly, Baysal, Holmes, and Godfrey (2012) 

demonstrated how usage data from web server logs can be combined with development 

information to provide insight into user dynamic behaviour and adoption patterns in a 

variety of deployment environments. Likewise, Fu et al. (2013) proposed an approach for 

contextual analysis of system logs for understanding the behaviors of a software system. 

 

15 https://rubyonrails.org/ 

16 https://reactjs.org/ 

17 https://ristov.github.io/slct/ 
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2.2 Natural language processing 

Natural language processing (NLP) is an interdisciplinary research area aimed at getting 

computers to perform useful tasks involving human language, such as allowing human-

machine communication, enhancing human-human communication, or simply processing 

text or speech for useful purposes (Jurafsky & Martin, 2009). NLP research began in the 

1950s, the initial interest was focused on machine translation (Jones, 1994). Since then, 

diverse research tasks have been studied in the NLP field, such as information retrieval, 

text summarization, question answering, information extraction, topic modelling, and 

opinion mining (Cambria & White, 2014). The task that is related to this study - text 

categorization (classification) is to assign natural language texts to one or more 

predefined categories based on their content (Dumais, Platt, Heckerman, & Sahami, 

1998).  

The traditional NLP process may be divided into several steps, reflecting the theoretical 

linguistic differences between syntax, semantics, and pragmatics (Indurkhya & Damerau, 

2010). However, with the development of machine learning techniques, the increasing 

dominance of statistical approaches in NLP has been acknowledged (Indurkhya & 

Damerau, 2010). Hence, in this paper, the focus is automatic text categorization with 

machine learning techniques. Moreover, instead of processing the original text document, 

text representation and feature selection are used when applying machine learning 

methods to text categorization for the reasons of both efficiency and efficacy (Dumais et 

al., 1998). 

2.2.1 Text Representations 

The “bag of words” was coined by Harris (1954) for describing language in terms of a 

distributional structure. Naturally, the bag-of-word model does not preserve the order of 

words. Therefore, based on the assumption that the order of words would not matter, Lang 

(1995) used the bag-of-words model for text representation to build a Netnews filter 

system. Likewise, Joachims (1997) provided a more detailed description of bag-of-words 

representation for text classification tasks, i.e., each word is a feature and the number of 

times the word occurs in the document is its value as shown in Figure 5. However, the 

assumption of bag-of-words was challenged by Scott and Matwin (1998, 1999). They 

tried to represent texts by adding syntactic and semantic relationships between words, 

although the results did not show significant performance improvements. Nevertheless, 

their work supported the rising consensus that more sophisticated NLP techniques were 

needed before better text representations emerged. 

 

Figure 5. Bag-of-words representation in an attribute value style (Joachims, 1997). 
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On the other hand, the n-gram models were used to address the problem of predicting a 

word from previous words in a sample of text (Brown, DeSouza, Mercer, Della Pietra, & 

Lai, 1992). Meanwhile, Cavnar and Trenkle (1994) proposed an N-gram-based approach 

for text categorization. They used n-grams frequency profiles to represent text categories. 

Cavnar and Trenkle (1994) provided an example of n-grams for the word “TEXT”: 

• bi-grams: _T, TE, EX, XT, T_  

• tri-grams: _TE, TEX, EXT, XT_, T_ _ 

• quad-grams: _TEX, TEXT, EXT_, XT_ _, T_ _ _ 

a string was sliced into a set of overlapping n-grams, and they also appended blanks 

(underscore character “_”) to the beginning and end of the string to help with matching 

beginning-of-word and end-of-word situations. The original paper (Mäntylä et al., 2018) 

was also inspired by the character tri-grams approach for identifying languages which 

was presented by T. Jauhiainen, Linden, and H. Jauhiainen (2017).  

Moreover, Bengio, Ducharme, Vincent, and Janvin (2003) proposed a neural network 

language model to learn jointly the word vector representation and a statistical language 

model that significantly improved on the n-grams model. Besides, Mikolov, Chen, 

Corrado, and Dean (2013) introduced word2vec18 that consisted of two methods for 

learning representations of words, i.e., continuous Bag-of-Words model and continuous 

Skip-gram model. They noticed the potential of using simple model architectures to train 

high-quality word vectors compared to the neural network models. 

Similarly, source code could be represented as the language model mentioned above. 

Collard, Decker, and Maletic (2013) presented srcML19 which is an XML representation 

for C/C++/Java source code. They used a lightweight format that allows round-trip 

transformation with no loss of information or formatting. Apart from this, Alon, 

Zilberstein, Levy, and Yahav (2019) proposed code2vec20 which is a neural model for 

representing snippets of code as distributed vectors (see Figure 6). 

 

Figure 6. Source code is decomposed into a collection of paths (Alon et al., 2019). 

 

18 https://code.google.com/archive/p/word2vec/ 

19 https://www.srcml.org/ 

20 https://code2vec.org/ 
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2.2.2 Classification Algorithms 

Kotsiantis (2007) presented a prominent review of supervised machine learning and 

classification algorithms. Thereby, I will base on that work and refer to other recent 

studies as well. In general, machine learning algorithms can be divided into supervised 

learning and unsupervised learning. As shown in Table 3, the supervised learning needs 

to give the instance in dataset known labels, i.e., the corresponding correct outputs 

(Kotsiantis, 2007). Therefore, in this paper, the focus is on the supervised learning 

algorithms due to the study also need to label the dataset as natural language or not for 

training and testing.  

Table 3. Instances with known labels (Kotsiantis, 2007). 

 Feature 1 Feature 2 … Feature n Class 

1 xxx x  xx Good 

2 xxx x  xx Good 

3 xxx x  xx Bad 

…     ... 

The supervised learning techniques for text classification were extensively studied, 

including Bayesian classifier, Decision Tree, K-nearest neighbour (KNN), Support 

Vector Machines (SVMs), and Neural Networks (A. Khan, Baharudin, Lee, & K. Khan, 

2010). According to Kotsiantis (2007), a general supervised learning process includes 

several steps: 

1. Collecting the dataset. 

2. Data preparation and data pre-processing. 

3. Algorithm selection (training and testing). 

4. Classifier for routine use. 

The core step is to choose the appropriate learning algorithm and the process can be 

repeated multiple times until the prediction accuracy, i.e., the percentage of correct 

prediction divided by the total number of predictions is satisfactory (Kotsiantis, 2007). 

Naive Bayes 

Based on the strong independence assumptions of Bayes’ Theorem (Good, 1950), the 

Naive Bayes classifier is a simple probabilistic classifier that can be trained very 

efficiently by requiring a relatively small amount of training data to estimate the 

parameters necessary for classification (Khan et al., 2010). McCallum and Nigam (1998) 

indicated that although the naive assumption was false in most real-world tasks, the Naive 

Bayes often performs very well in the text classification domain. Hence, the major 

advantage of the Naive Bayes classifier is its short computational time for training 

(Kotsiantis, 2007). However, Khan et al. (2010) argued that Naive Bayes performs very 

poorly when features are highly correlated and does not consider the frequency of word 

occurrences. 
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Support Vector Machine (SVM) 

SVM classification is based on the Structural Risk Minimization principle proposed by 

Vapnik (1995) from computational learning theory. The idea of this principle is to find a 

hypothesis to guarantee the lowest true error (Joachims, 1998). Once the optimal 

separating hyperplane is found for linearly separable data (see Figure 7), data points on 

its margin are known as support vector points, and the solution is defined as a linear 

combination of only these points (Kotsiantis, 2007).  

 

Figure 7. Linear Support Vector Machine (Dumais et al., 1998). 

LIBSVM21 is one of the most widely used SVM software which had been developed since 

the year 2000 (Chang & Lin, 2011). Hence, Karatzoglou, Meyer, and Hornik (2006) 

introduced an implementation of SVM in the R package E107122 based on LIBSVM. 

They provided a rigid interface to LIBSVM  along with visualization and parameter 

tuning methods. The Python implementation of LIBSVM is used in this study. 

Regarding the multi-class classification, SVM implemented the “one-against-one” 

approach, i.e., if k is the number of classes, then to construct k(k − 1)/2 classifiers and 

each one trains data from two classes (Chang & Lin, 2011).  

𝑚𝑖𝑛

𝜔𝑖𝑗 , 𝑏𝑖𝑗 , 𝜉𝑖𝑗
 

1

2
(𝜔𝑖𝑗)

𝑇
𝜔𝑖𝑗 +  𝐶 ∑(𝜉𝑖𝑗)

𝑡
𝑡

 

(1) 
subject to (𝜔𝑖𝑗)

𝑇
𝜙(𝑥𝑡) + 𝑏𝑖𝑗 ≥ 1 −  𝜉𝑡

𝑖𝑗
, if 𝑥𝑡 in the ith class, 

 (𝜔𝑖𝑗)
𝑇

𝜙(𝑥𝑡) + 𝑏𝑖𝑗 ≤ −1 +  𝜉𝑡
𝑖𝑗

, if 𝑥𝑡 in the jth class, 

  𝜉𝑡
𝑖𝑗

 ≥ 0. 

Formula (1) shows how to solve a two-class classification problem for training data from 

the ith and the jth classes, Chang and Lin (2011) used a voting strategy, i.e., each binary 

classification was considered to be voting and a point was selected to be in a class with 

the maximum number of votes. 

 

21 https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

22 https://cran.r-project.org/package=e1071 
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k-Nearest Neighbours (k-NN) 

The nearest neighbour algorithm is one of the most straightforward instance-based 

learning algorithms which is also lazy-learning, i.e., the induction or generalization 

process is delayed until classification is performed (Kotsiantis, 2007). Cover and Hart 

(1967) proposed the basic principle for k-Nearest Neighbours (k-NN), i.e., the instances 

within a dataset will generally exist close to other instances that have similar properties. 

Additionally, Han, Karypis, and Kumar (1999) presented a k-NN scheme for text 

categorization in which the importance of discriminating words was learned using mutual 

information and weight adjustment techniques. The training sets are mapped into a multi-

dimensional feature space, and a point in the feature space is assigned to a specific 

category when it is the most frequent among the k closest training data (Khan et al., 2010). 

Figure 8 illustrated the k-NN algorithm and indicated that the choice of k value would 

affect the result (Zhu, Spachos, Pensini, & Plataniotis, 2021). 

 

Figure 8. An example of the k-NN algorithm (Zhu et al., 2021). 

Decision Trees 

Decision trees are hierarchical, sequential structures that recursively partition data to 

represent rules underlying data (Murthy, 1998). In a decision tree (see Figure 9), each 

node represents a feature in a classification case, and each branch represents a value that 

the node can assume (Kotsiantis, 2007). Hence, the key benefit of a decision tree is its 

ease of comprehension and interpretation; the description of a given result can be easily 

replicated using simple mathematics algorithms (Khan et al., 2010). Besides, Ho (1995) 

proposed Random Forest that is a method to construct tree-based classifiers by building 

multiple trees in randomly selected subspaces of the feature space. Another advanced 

approach called Gradient Boosting was proposed to produce competitive, highly robust, 

interpretable procedures for both regression and classification by Friedman (2001). 
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Figure 9. A decision tree (Kotsiantis, 2007). 

Artificial Neural network (ANN) 

Rumelhart, Hinton, and Williams (1985) proposed a machine learning procedure with a 

multi-layered perceptron (Artificial Neural Networks). As shown in Figure 10, a multi-

layer neural network uses a pattern of connections to join a large number of units, 

including input units for receiving information, output units for the results, and hidden 

units in between (Kotsiantis, 2007). ANN was suggested to be an important tool in 

automatic text categorization (Ruiz & Srinivasan, 1997). However, the training cost of 

ANN needs to be considered due to training ANN is generally much more time 

consuming than the other classifiers (Yang & Liu, 1999). Hochreiter and Schmidhuber 

(1997) presented long short-term memory (LSTM) which is an architecture of recurrent 

neural network (RNN)  to solve complex, artificial long-time-lag tasks. Moreover, 

regarding another form of ANN, the convolutional neural network (CNN) was used for 

handwritten digit recognition (LeCun et al., 1990). 

 

Figure 10.  An example structure of ANN (Zhu et al., 2021). 
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2.3 Natural Language or Not (NLoN) 

Mäntylä et al. (2018) presented the NLoN (a lightweight classifier tool that would take a 

line of text as input and predict whether it is Natural Language or Not) for text 

classification of MSR information sources. Bacchelli, Dal Sasso, D’Ambros, and Lanza 

(2012) presented a similar study for classifying content from software development 

emails, however, the complexity of design is too excessive compared to NLoN. 

Mäntylä et al. (2018) used three different types of MSR information sources, including: 

• Issue comments of Mozilla Firefox project. 

• Archived chats of Slack channel for Kubernetes. 

• Mailing lists of Apache Lucene project. 

After the mining of those information sources, they manually and independently labelled 

the data as the ground truth for training and testing. Regarding the text representation, 

Mäntylä et al. (2018) utilised two approaches, i.e., feature engineering and character tri-

grams. They created eleven feature engineering predictors of language such as the ratio 

of non-letter characters and the ratio of capital letters (see Table 4).  

Table 4. Feature engineering predictors (Mäntylä et al., 2018). 

 Abbreviation Explanation 

1 r.caps Ratio of capital letters 

2 r.specials Ratio of chars not alphanumeric or whitespace 

3 r.numbers Ratio of numbers 

4 l.words Length of words 

5 n.sw Number of stop-words split with white space 

6 n.sw2 Number of stop-words split with tokenize words 

7 last.c.code Is last character typical in code, e.g., { or ; 

8 n.c1-3.letters Number of letters in first three characters 

9 last.c.nl Is last character typical in NL, e.g., ? or . 

10 n.emoticons Number of emoticons 

11 first.c.at Is first character of line @-sign 

Additionally, they also used character tri-grams (one variant of the n-grams) and applied 

some adaptations such as change all numbers to zeros and convert all characters to lower 

case. Regarding the learning model, they selected Glmnet for performing Lasso 

regression (Tibshirani, 1996) and optimized its 10-fold cross-validation performance 

concerning the area under the ROC curve (AUC). As for the result, Mäntylä et al. (2018) 

achieved comparable performance with an area under the ROC curve performances from 

0.976 to 0.987 and cross-source prediction performance from 0.913 to 0.980. 

Nevertheless, it was shown that different machine learning algorithms could be applied 

in the MSR field (Pascarella, 2018; Fucci, Mollaalizadehbahnemiri, & Maalej, 2019; Zhai 

et al., 2020). Pascarella (2018) used Naive Bayes Multinominal and Random Forest to 

classify code comments in Java mobile applications. Fucci et al. (2019) compared k-NN 

and SVM with RNN trained on manually annotated Java and .NET API documentation. 

Zhai et al. (2020) leveraged decision trees, random forests, and CNN to automatically 

categorize comments. 
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3. Research methods 

Before introducing the methodology, it is necessary to clarify the research object of this 

study. NLoN is a text categorization tool that can be regarded as an artificial creation. 

According to Simon (1996), the definition of “artificial” is “produced by art rather than 

by nature; not genuine or natural; affected; not pertaining to the essence of the matter” (p. 

4). Therefore, this study aims at improving the performance of an artefact (NLoN). 

Likewise, the objective of design science research (DSR) is to develop technology-based 

solutions to important and relevant business problems (Hevner, March, Park, & Ram, 

2004). Moreover, Hevner and Chatterjee (2010) defined DSR as follows: 

Design science research is a research paradigm in which a designer answers 

questions relevant to human problems via the creation of innovative artifacts, 

thereby contributing new knowledge to the body of scientific evidence. The 

designed artifacts are both useful and fundamental in understanding that 

problem. (p. 5) 

The definition of DSR fits our research entirely due to the artefact of this study was 

created to solve the actual problem that would be met in the research process of mining 

software repositories, i.e., the natural language and source code need to be separated for 

further analysis. Hence, DSR is selected as the methodology of this research. 

3.1 Design science research methodology (DSRM) 

Hevner et al. (2004) introduced the conceptual framework and practice rules of DSR 

which provided an understanding of how to conduct, evaluate, and present DSR. 

However, Peffers et al. (2007) indicated that principles and practice rules were only part 

characteristics of a methodology, a generally accepted process was missing. Therefore, 

Peffers et al. (2007) presented the design science research methodology (DSRM) for 

conducting DSR in information systems, they provided a commonly accepted framework 

for carrying out DSR and a mental model for its presentation. Besides, DSRM may also 

help with the recognition and legitimization of DSR and its objectives, processes, and 

outputs (Hevner & Chatterjee, 2010). Hence, a nominal process for the conduct of DSR 

was suggested by Peffers et al. (2007) as a roadmap for researchers who want to use 

design as a research mechanism for IS research (see Figure 11). 

 

Figure 11.  DSRM Process Model (Peffers et al., 2007). 
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As shown in Figure 11, the DSRM process model consists of six activities (e.g. problem 

identification and motivation; definition of the objectives; design and development; 

demonstration; evaluation; and communication) and four entry points (i.e. problem-

centred initiation; objective-centred solution; design & development-centred initiation; 

and client/context initiated). I will explain my understanding of this DSRM process model 

in the following subsections. 

3.1.1 Problem Identification and Motivation 

According to Peffers et al. (2007), the first activity is to define the specific research 

problem and justify the value of a solution. In my opinion, defining a problem is a process 

of refinement and decomposition in where the context of the problem should be constantly 

clarified, i.e., under what specific conditions the problem is valid. Moreover, based on a 

clear scope and context, the complexity of the problem could have a measurable premise. 

Peffers et al. (2007) summarized it as atomize the problem and capture its complexity. 

Regarding motivation, the general assumption for why researchers conduct a study is that 

there is no solution to the defined problem or the existing solution has some deficiencies. 

At first, my recognition of motivation was why I wanted to study the problem, but after 

two years’ academic training, the subject of motivation no longer included only myself, 

i.e., the readers of the paper or other researchers can be the subject of motivation as well. 

According to Peffers et al. (2007), it motivates both the researcher and the audience. 

Besides, Peffers et al. (2007) indicated that this activity required the knowledge of the 

state of the problem and the importance of its solution. From my understanding, the first 

thing is to search for the relevant literature to avoid reinventing the wheel. However, the 

“relevant” is not limited to one specific discipline due to the need to know if there is any 

crossover research in other disciplines, e.g., this study involves several interdisciplinary 

fields of study such as mining software repositories, natural language processing, 

machine learning, and linguistics. 

3.1.2 Objectives of the Solution 

After the problem is identified, the next activity is to infer rationally the objectives 

(quantitative or qualitative) of a solution from the problem definition (Peffers et al., 

2007). The rationality of objectives refers to the comparison of existing solutions, i.e., a 

researcher should not imagine the performance, effect and capability of the solutions 

without any basis. For this study, the main objective is to improve the performance of the 

NLoN tool, so I needed to know how the original study evaluated the performance and 

what the performance had been achieved. Then based on the existing knowledge, I was 

able to perceive the practical meaning behind the phrase “improve performance”. The 

objective of RQ1 could be qualitative because it was a problem that the current solution 

did not address, i.e., the classification of mixed statements. In contrast, the objective of 

RQ2 could be quantitative due to it challenged whether the existing performance could 

be improved. 

3.1.3 Design and Development 

This activity included determining the artefact’s desired functionality and its architecture 

and then creating the actual artefact (Peffers et al., 2007). The artefact could be in the 
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form of a construct, a model, a method, or an instantiation (Hevner et al., 2004). In my 

opinion, the problem is the current place, the objective is the destination, and the 

implementation (design or development) is the way to connect them. The implementation 

of this study will be described in detail in Chapter 4. 

3.1.4 Demonstration 

After the implementation, the use of the artefact should be demonstrated to solve one or 

more instances of the problem (Peffers et al., 2007). In this paper, the initial idea of 

demonstration would be experimentation that used data from diverse information sources 

(e.g. mail lists, issue comments, and other online discussions) to train and test the 

classification tool. 

3.1.5 Evaluation 

Since objectives were defined in activity 2 and results were generated in activity 4, they 

could be compared by observing and measuring how well the artefact supports a solution 

to the problem (Peffers et al., 2007). I think this activity not only allows the author to 

evaluate the results but also allows audiences to evaluate whether this research is valid or 

not. 

3.1.6 Communication 

According to Peffers et al. (2007), communication was to inform researchers and other 

related audiences about the issue and its significance, the artefact, its usefulness and 

novelty, the rigour of its design, and its effectiveness. The original research was published 

as well as making the code open on GitHub and the tool was released as an R package. 

This research also planned to publish the paper and open the source code. As to whether 

it will still be developed in the form of R language or Python language, it will be discussed 

in the following chapters. 

3.2 The adoption of DSRM in this study 

Although Peffers et al. (2007) mentioned that the DSRM process was structured in 

nominally sequential order, i.e., researchers do not have to follow this order exactly. This 

study is a design and development-centred approach that followed the basic process order 

except for starting with activity three due to the selected entry point (see Figure 12). The 

entry point of this research is the enhancement of design and development on an existing 

artefact (NLoN tool). The problem of separating natural language was identified as two 

research questions, i.e., 

• RQ1: How to design and implement a multi-class classification approach based 

on previous work? 

• RQ2: Whether other algorithms can get better performance than Glmnet without 

breaking the original principle of lightweight design? 
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Figure 12.  The adoption of the DSRM Process Model. 

Regarding the preprocessing of data, the label of the corpus is manually labelled by the 

author alone. Although the original study has achieved success on the objective of two-

class classification, a multi-class classification approach was expected to extend the 

“Not” class, i.e., the “Not” class could be refining to code, stack trace, error/log messages, 

and the mixed class which consist of natural language and some “Not” class (Figure 13). 

 

Figure 13. The category of class compared with the original study. 
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4. Implementation 

Although the original implementation is based on the R language, combining the popular 

machine learning technology and my development ability, I finally chose Python as the 

development language for this project. Therefore, this project will be an open-source 

project NLoN-PY23 hosted on GitHub, and the final artefact will be also released to the 

PyPI24 (Python Package Index) repository in the form of a Python package. 

4.1 Data Collection and Labelling 

Since the original paper provided three different sources of information, i.e., issues 

tracker comments (Firefox), chat messages (Kubernetes), and mailing list (Lucene), this 

study will add source code comments as an extra information source. The Github 

repository of Bitcoin25 was selected because its code is open-source and consist of enough 

lines of code comments. As shown in Figure 14, the first step of data collection is to fetch 

source code from the GitHub repository. The text of the source code file contains both 

code block and comment block,  as introduced in the previous chapter, srcML is used to 

transform the source code files into XML format. Thereby, all the comment blocks are 

tagged with <comment> tag in the XML files, hence using the built-in function of Python 

could parse the comment elements to text corpus.  

 

Figure 14. The process of data collecting and labelling. 

 

23 https://github.com/Jianwen-Xu/NLoN-PY 

24 https://pypi.org/project/nlon-py/ 

25 https://github.com/bitcoin/bitcoin 
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Regarding the labelling process, Mäntylä et al. (2018) classified the original three data 

sources with tag [1: 'NL', 2: 'Not'], this study extended the tags to 7 categories: 

[1: 'NL', 2: 'CODE', 3:'TRACE', 4: 'LOG', 5: 'NL_CODE', 6: 'NL_TRACE', 7: 'NL_LOG'] 

The example data and labels are shown in Table 5, the labelled data include three 

columns, i.e., “Index”, “Class”,  and “Text”. In total, 8000 lines of text were labelled. 

Table 5. Data source from different software repositories. 

 Source Type Examples Lines 

1 Mozilla 

Firefox 

Issues 

comment 

 

2000 

2 Kuberne

tes 

Slack chats 

 

2000 

3 Apache 

Lucene 

Mailing 

list 

 

2000 

4 Bitcoin  Code 

comments 

 

2000 

4.2 Text representation and Feature extraction 

Based on the original paper, Character tri-grams and feature engineering were used to 

represent the text corpus. Moreover, standardization was introduced in the new design of 

this study to preprocess data for adapting to some learning models (such as the RBF kernel 

of SVMs or the l1 and l2 regularizers of linear models) which may assume the features 

centred around zero (Standardization).  

Formula (2) presents the process of standardizing: 

Value of sample x,  

Number of samples N 

Mean µ, Standard Deviation 𝜎 

𝜇 =
∑ 𝑥𝑖

𝑁
             𝜎 = √

∑(𝑥𝑖 − 𝜇)2

𝑁
 

(2) 

Standardized Value 𝑠 𝑠𝑖 =
𝑥𝑖 − 𝜇

𝜎
 

 

This study used the same 11 text features as the original paper in the feature extraction 

process (see Table 5). The main modification in the implementation is to replace the use 

of the regular expression with the built-in function of Python. The following code 

demonstrates the difference between the two implementations: 

## The R code of NLoN 



28 

CapsRatio <- function(text) Caps(text) / nchar(text) 

 

Caps <- function(text) { 

  .CountRegexMatches(text, "[A-Z]") 

} 

 

.CountRegexMatches <- function(text, re) { 

  sapply(stringr::str_match_all(text, re), length) 

} 

 

// The Python code of NLoN-PY 

def CapsRatio(self, text): 

      return len([c for c in text if c.isupper()]) / self.charCount(text) 

 

self.charCount = lambda x: len(x) 

4.3 Model selection and Parameter tuning 

This study compares the original model (Glmnet) and three popular multi-class learning 

models, i.e., Naive Bayes (NB), k-NN, and SVM. Area Under the Receiver Operating 

Characteristic Curve (ROC AUC) and F1 score were used to validate the performance of 

classification models. AUC is a widely used measure of the performance of supervised 

classification rules,  Hand and Till (2001) extended the scope of application from two-

class cases to multi-class cases. Likewise, the F1 score is the harmonic mean of precision 

and recall, see Formula (3). Precision is the fraction of relevant instances among the 

retrieved instances, while recall is the fraction of relevant instances that were retrieved. 

The F1 score used in this study is ‘macro’, i.e., calculate metrics for each class and find 

their average value. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙 
=

𝑡𝑝

𝑡𝑝 +
1
2

(𝑓𝑝 + 𝑓𝑛)
 (3) 

The three models were trained with the default parameters on the 60% dataset and tested 

on the left 40% dataset. The training time cost was also recorded as another performance, 

the results were displayed in Table 6. Both NB and SVM achieved acceptable AUC 

scores, however, considering the diversity of parameter adjustment and F1 score, SVM 

was finally selected as the main research model. Nevertheless, the performance of Glmnet 

could be a baseline for the following training. On the other hand, for the SVM model, the 

time cost of training should be also considering in the optimize process. 

Table 6. Comparison of three models on test size 40%. 

 
Glmnet NB k-NN SVM 

AUC 0.838 0.836 0.797 0.858 

F1 0.767 0.656 0.759 0.770 

Training Time (s)  18.463 23.396 16.733 602.797 

After the model selection, the hyper-parameters (parameters that are not directly learnt 

by models) can be searched by using cross-validation. Regarding the SVM model, ‘C’ 

‘gamma’ and ‘kernel’  are the hyper-parameters that need tuning. Every parameter can 

have several candidates as presented in the following code: 



29 

C_range = [0.01, 0.1, 1, 10, 100] 

Gamma = [1e-2, 1e-3, 1e-4] 

param_grid = [{'kernel': ['rbf'], 'gamma': Gamma, 'C': C_range}, 

              {'kernel': ['linear'], 'C': C_range}] 

The popular Python package scikit-learn26 provided a successive halving (SH) search 

strategy for search on specified parameters, i.e., evaluating all the candidates with a small 

number of resources and iteratively selects the best candidates, using more and more 

resources (HalvingGridSearchCV). Figure 15 shows that the best parameters achieved 

performance AUC=0.904 and F1=0.776, the winning combination of candidates is: 

{'C': 10, 'gamma': 0.01, 'kernel': 'rbf'}  

The parameter set would be the initial setting for the learning model, however, this 

process would repeat several times if the following validation results can not meet the 

expected requirements. 

 

Figure 15.  Search parameters with SH strategy. 

4.4 K-fold Cross-Validation 

4.4.1 Validate 2-class performance 

As for validating the performance of NLoN, the original paper performed 10-fold cross-

validation in the six thousand samples of all three data sources and achieved performance 

0.982 in the ROC curve (AUC) score. Although this study focused on multi-class 

classification, the performance on both 2-class and multi-class tasks were validated by 

10-fold cross-validation. As shown in Figure 16, the new classifier achieved an AUC 

 

26 https://scikit-learn.org/stable/ 



30 

performance of 0.93 for 40% test data and a mean 0.92 ± 0.01 for 10-fold cross-validation 

on the 2-class classification task. 

 

Figure 16.  2-class classifier score for test size 40% (left) and 10-fold Cross-Validation (right). 

4.4.2 Validate multi-class performance 

The multi-class classification also used the 10-fold cross-validation as the evaluation 

method, besides the confusion matrix was also used to evaluate the accuracy of the multi-

class classification. Figure 17 illustrated the confusion matrix for the 5-class classification 

task performance,  both the NL and Code category achieved good accuracy, though the 

most misclassification happened between NL and NL_Code (203 false positives). This 

problem would be discussed in the next chapter. 

 

Figure 17.  5-class confusion matrix. 
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5. Findings and Discussion 

5.1 Data Imbalance 

The imbalanced distribution of data was found due to the validation score differed 

significantly in a range from 0.39 to 0.91 on different classes (see Figure 18). The mixed 

classes (NL_Code 0.38, NL_Trace 0.40, NL_Log 0.39) achieved less than half of the 

other four classes (NL 0.91, Code 0.90, Trace 0.92, Log 0.88).  

 

Figure 18. The performance (AUC) on 7-class classification. 

The data of four sources were analyzed to detect whether the distribution was balanced, 

as shown in Table 6, the least two classes only have 2 and 28 samples which are not 

sufficient for providing good performance in machine learning. However, the data 

volume and performance are not directly proportional, classes with fewer samples can 

likewise achieve considerable performance, e.g., Stack Trace (samples=201, AUC=0.92) 

and Mix NL Code (samples=638, AUC=0.38). 

Table 6. Distribution of each data source. 

 

Natural 

Language 

Code Stack 

Trace 

Error/Log Mix NL 

and Code 

Mix NL 

and Trace 

Mix NL 

and Log 

Mozilla 

Firefox 

1187 482 90 162 78 0 1 

Kubernetes 1425 337 2 59 151 1 25 

Apache 

Lucene 

1039 760 109 22 67 1 2 

Bitcoin  1557 101 0 0 342 0 0 

Total 5208 1680 201 243 638 2 28 

AUC 0.91 0.90 0.92 0.88 0.38 0.40 0.39 
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The relative trend of the two data indicators is shown in Figure 19, it is apparent that the 

performance of the mixed categories is generally poorer than that of the unmixed 

categories. 

 

Figure 19. The distribution of categories. 

This discovery raises a new question as to whether the originally designed classification 

(7-class) is reasonable enough (see Figure 13). To locate this problem, the detailed 

distribution of each category was also analyzed (see Figure 20). According to the diagram, 

it can be found that natural language and code occupy most of each category, besides, the 

mixture of natural language and stack trace, log messages is seldom detected. 

 

Figure 20. The distribution of categories for each data source. 
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According to the distribution of the data, the categories of classification can be refined, 

i.e., eliminate the two mixed classes originally designed (Mix NL Trace and Mix NL 

Log). The refined category (5-class) is shown in Figure 21. 

 

Figure 21. The refined design of categories. 

After the design was modified, the model was also learned for the new classification, and 

the preliminary results showed a significant performance improvement (see Figure 22). 

The 5-class design achieved better performance than 7-class design (see Figure 18), i.e., 

NL (samples=5208, AUC=0.91), Code (samples=1680, AUC=0.91), Stack Trace 

(samples=201, AUC=0.95), Log (samples=243, AUC=0.91), Mixed NL and Code 

(samples=668, AUC=0.53). 

  

Figure 22. The performance (AUC) on 5-class classification. 
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5.2 Research Questions 

RQ1: How to design and implement a multi-class classification approach based on 

previous work? 

The multi-class classification algorithm implemented in this research is based on two-

class classification, i.e., build one two-class classifier for each category to distinguish this 

category from all other categories. This strategy is also known as one-vs-rest (ovr). In 

contrast, the one-vs-one (ovo) strategy is to construct one two-class classifier for each 

pair of categories. Because the number of classifiers to be constructed is different, i.e., if 

the number of categories is N then ovr needs N classifiers and ovo needs N*(N-1)/2 

classifiers, the computational efficiency of ovr 𝛰(𝑛) is usually better than ovo 𝛰(𝑛2). 

Besides, another advantage of ovr is better interpretability, because each class has a 

unique classifier, and it is easier to calculate the score of each class when verifying 

performance. In Figure 22, The ROC curve of each category well illustrates the 

performance of each classifier. 

In practice, this study suggested that the ‘decision_function_shape’ parameter was set to 

‘ovr’ when using the learning models of the scikit-learn library although the default 

strategy for many multi-class models in the library is ovr. 

RQ2: Whether other algorithms can get better performance than Glmnet without breaking 

the original principle of lightweight design? 

This study compared the performance of Glmnet with other algorithms such as Naive 

Bayes, k-Nearest Neighbours, and Support Vector Machine (see Table 6). According to 

the experimental results, it can be seen that there is no significant performance 

improvement. Although the performance of SVM is slightly higher, it can be seen from 

the extra cost of model training time ( from 18s to 602s) that the original design is more 

lightweight. However, as a user, these performance issues may not be perceived. Due to 

the use of model persistence technology, after parameter tuning, the model will fit the 

training data, and the data of this model will be persisted in joblib format. A final classifier 

is a tool that can be used directly, and the user does not need to retrain the model to use 

it. 

5.3 Limitations 

Human bias may be the main limitation of this research. Since the labelled data are all 

done manually by the researcher, the original paper was independently labelled by two 

researchers, but this research was labelled by the author alone. Especially for the labelling 

of mixed categories, the mixing degree of natural language and code may not be 

completely consistent. In many cases, a sentence may only contain one or two function 

names, even if it is labelled as a natural language which could be also reasonable. Among 

the 8000 corpus labels, the consistency of manual labelling cannot be guaranteed in this 

study. Another limitation is that the current design does not compare neural networks or 

unsupervised learning algorithms. The model learning process of the two will be quite 

different from the design of this research. This research is still biased towards relatively 

traditional supervised machine learning algorithms. 
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6. Conclusions 

In this paper, I designed and implemented NLoN-PY, a tool used to classify natural 

languages and programming languages and related derivative texts. Three multi-category 

classification algorithms (Naive Bayes, k-NN, and SVM) have been compared and 

verified. At the same time, the main purpose is achieved, which is to expand the scope of 

application of the original papers while keeping the weight as light as possible. The 10-

fold cross-validation achieved AUC performance 0.901 for the 5-class classification task 

and the AUC performance of 0.92 for the 2-class task. 

However, this study has limitations on the multi-class definition task. The imbalance of 

data may prove that the practical communication in software repositories does not use 

mixed language extensively to describe problems or make comments. The definition of 

categories need larger data to support the rationality, and it was initially obtained through 

the combination of natural language and not classes. Another limitation is that human 

bias may be introduced in the data labelling process, there are ambiguous choices in 

expanding the labels to multi-category marking. 

Regarding future research, I suggest labelling more data and try to ensure that the data 

labelling does not introduce human bias. In addition, regarding machine learning 

algorithms, the direction of deep learning may be considered. When I was doing the 

literature review, I could already feel the popularity of this trend, whether it is neural 

networks or unsupervised learning are directions that can be tried. The interdisciplinary 

research of natural language processing and mining software repositories is also the future 

direction. 
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