1,850 research outputs found

    Contex-aware gestures for mixed-initiative text editings UIs

    Full text link
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Interacting with computers following peer review. The version of record is available online at: http://dx.doi.org/10.1093/iwc/iwu019[EN] This work is focused on enhancing highly interactive text-editing applications with gestures. Concretely, we study Computer Assisted Transcription of Text Images (CATTI), a handwriting transcription system that follows a corrective feedback paradigm, where both the user and the system collaborate efficiently to produce a high-quality text transcription. CATTI-like applications demand fast and accurate gesture recognition, for which we observed that current gesture recognizers are not adequate enough. In response to this need we developed MinGestures, a parametric context-aware gesture recognizer. Our contributions include a number of stroke features for disambiguating copy-mark gestures from handwritten text, plus the integration of these gestures in a CATTI application. It becomes finally possible to create highly interactive stroke-based text-editing interfaces, without worrying to verify the user intent on-screen. We performed a formal evaluation with 22 e-pen users and 32 mouse users using a gesture vocabulary of 10 symbols. MinGestures achieved an outstanding accuracy (<1% error rate) with very high performance (<1 ms of recognition time). We then integrated MinGestures in a CATTI prototype and tested the performance of the interactive handwriting system when it is driven by gestures. Our results show that using gestures in interactive handwriting applications is both advantageous and convenient when gestures are simple but context-aware. Taken together, this work suggests that text-editing interfaces not only can be easily augmented with simple gestures, but also may substantially improve user productivity.This work has been supported by the European Commission through the 7th Framework Program (tranScriptorium: FP7- ICT-2011-9, project 600707 and CasMaCat: FP7-ICT-2011-7, project 287576). It has also been supported by the Spanish MINECO under grant TIN2012-37475-C02-01 (STraDa), and the Generalitat Valenciana under grant ISIC/2012/004 (AMIIS).Leiva, LA.; Alabau, V.; Romero Gómez, V.; Toselli, AH.; Vidal, E. (2015). Contex-aware gestures for mixed-initiative text editings UIs. Interacting with Computers. 27(6):675-696. https://doi.org/10.1093/iwc/iwu019S675696276Alabau V. Leiva L. A. Transcribing Handwritten Text Images with a Word Soup Game. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA) 2012.Alabau V. Rodríguez-Ruiz L. Sanchis A. Martínez-Gómez P. Casacuberta F. On Multimodal Interactive Machine Translation Using Speech Recognition. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2011a.Alabau V. Sanchis A. Casacuberta F. Improving On-Line Handwritten Recognition using Translation Models in Multimodal Interactive Machine Translation. Proc. Assoc. Comput. Linguistics (ACL) 2011b.Alabau, V., Sanchis, A., & Casacuberta, F. (2014). Improving on-line handwritten recognition in interactive machine translation. Pattern Recognition, 47(3), 1217-1228. doi:10.1016/j.patcog.2013.09.035Anthony L. Wobbrock J. O. A Lightweight Multistroke Recognizer for User Interface Prototypes. Proc. Conf. Graph. Interface (GI). 2010.Anthony L. Wobbrock J. O. N-Protractor: a Fast and Accurate Multistroke Recognizer. Proc. Conf. Graph. Interface (GI) 2012.Anthony L. Vatavu R.-D. Wobbrock J. O. Understanding the Consistency of Users' Pen and Finger Stroke Gesture Articulation. Proc. Conf. Graph. Interface (GI). 2013.Appert C. Zhai S. Using Strokes as Command Shortcuts: Cognitive Benefits and Toolkit Support. Proc. SIGCHI Conf. Hum. Fact. Comput. Syst. (CHI) 2009.Bahlmann C. Haasdonk B. Burkhardt H. On-Line Handwriting Recognition with Support Vector Machines: A Kernel Approach. Proc. Int. Workshop Frontiers Handwriting Recognition (IWFHR). 2001.Bailly G. Lecolinet E. Nigay L. Flower Menus: a New Type of Marking Menu with Large Menu Breadth, within Groups and Efficient Expert Mode Memorization. Proc.Work. Conf. Adv. Vis. Interfaces (AVI) 2008.Balakrishnan R. Patel P. The PadMouse: Facilitating Selection and Spatial Positioning for the Non-Dominant Hand. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1998.Bau O. Mackay W. E. Octopocus: A Dynamic Guide for Learning Gesture-Based Command Sets. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2008.Belaid A. Haton J. A syntactic approach for handwritten formula recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1984;6:105-111.Bosch V. Bordes-Cabrera I. Munoz P. C. Hernández-Tornero C. Leiva L. A. Pastor M. Romero V. Toselli A. H. Vidal E. Transcribing a XVII Century Handwritten Botanical Specimen Book from Scratch. Proc. Int. Conf. Digital Access Textual Cultural Heritage (DATeCH). 2014.Buxton W. The natural language of interaction: a perspective on non-verbal dialogues. INFOR 1988;26:428-438.Cao X. Zhai S. Modeling Human Performance of Pen Stroke Gestures. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2007.Castro-Bleda M. J. España-Boquera S. Llorens D. Marzal A. Prat F. Vilar J. M. Zamora-Martinez F. Speech Interaction in a Multimodal Tool for Handwritten Text Transcription. Proc. Int. Conf. Multimodal Interfaces (ICMI) 2011.Connell S. D. Jain A. K. Template-based on-line character recognition. Pattern Recognition 2000;34:1-14.Costagliola G. Deufemia V. Polese G. Risi M. A Parsing Technique for Sketch Recognition Systems. Proc. 2004 IEEE Symp. Vis. Lang. Hum. Centric Comput. (VLHCC). 2004.Culotta, A., Kristjansson, T., McCallum, A., & Viola, P. (2006). Corrective feedback and persistent learning for information extraction. Artificial Intelligence, 170(14-15), 1101-1122. doi:10.1016/j.artint.2006.08.001Deepu V. Madhvanath S. Ramakrishnan A. Principal Component Analysis for Online Handwritten Character Recognition. Proc. Int. Conf. Pattern Recognition (ICPR). 2004.Delaye A. Sekkal R. Anquetil E. Continuous Marking Menus for Learning Cursive Pen-Based Gestures. Proc. Int. Conf. Intell. User Interfaces (IUI) 2011.Dimitriadis Y. Coronado J. Towards an art-based mathematical editor that uses on-line handwritten symbol recognition. Pattern Recognition 1995;8:807-822.El Meseery M. El Din M. F. Mashali S. Fayek M. Darwish N. Sketch Recognition Using Particle Swarm Algorithms. Proc. 16th IEEE Int. Conf. Image Process. (ICIP). 2009.Goldberg D. Goodisman A. Stylus User Interfaces for Manipulating Text. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 1991.Goldberg D. Richardson C. Touch-Typing with a Stylus. Proc. INTERCHI'93 Conf. Hum. Factors Comput. Syst. 1993.Stevens, M. E. (1968). Selected pattern recognition projects in Europe. Pattern Recognition, 1(2), 103-118. doi:10.1016/0031-3203(68)90002-2Hardock G. Design Issues for Line Driven Text Editing/ Annotation Systems. Proc. Conf. Graph. Interface (GI). 1991.Hardock G. Kurtenbach G. Buxton W. A Marking Based Interface for Collaborative Writing. Proc.ACM Symp. User Interface Softw. Technol. (UIST) 1993.Hinckley K. Baudisch P. Ramos G. Guimbretiere F. Design and Analysis of Delimiters for Selection-Action Pen Gesture Phrases in Scriboli. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2005.Hong J. I. Landay J. A. SATIN: A Toolkit for Informal Ink-Based Applications. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2000.Horvitz E. Principles of Mixed-Initiative User Interfaces. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1999.Huerst W. Yang J. Waibel A. Interactive Error Repair for an Online Handwriting Interface. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 2010.Jelinek F. Cambridge, Massachusetts: MIT Press; 1998. Statistical Methods for Speech Recognition.Johansson S. Atwell E. Garside R. Leech G. The Tagged LOB Corpus, User's Manual. Norwegian Computing Center for the Humanities. 1996.Karat C.-M. Halverson C. Horn D. Karat J. Patterns of Entry and Correction in Large Vocabulary Continuous Speech Recognition Systems. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1999.Kerrick, D. D., & Bovik, A. C. (1988). Microprocessor-based recognition of handprinted characters from a tablet input. Pattern Recognition, 21(5), 525-537. doi:10.1016/0031-3203(88)90011-8Koschinski M. Winkler H. Lang M. Segmentation and Recognition of Symbols within Handwritten Mathematical Expressions. Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP). 1995.Kosmala A. Rigoll G. On-Line Handwritten Formula Recognition Using Statistical Methods. Proc. Int. Conf. Pattern Recognition (ICPR) 1998.Kristensson P. O. Discrete and continuous shape writing for text entry and control. 2007. Ph.D. Thesis, Linköping University, Sweden.Kristensson P. O. Denby L. C. Text Entry Performance of State of the Art Unconstrained Handwriting Recognition: a Longitudinal User Study. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2009.Kristensson P. O. Denby L. C. Continuous Recognition and Visualization of Pen Strokes and Touch-Screen Gestures. Proc. Eighth Eurograph. Symp. Sketch-Based Interfaces Model. (SBIM) 2011.Kristensson P. O. Zhai S. SHARK2: A Large Vocabulary Shorthand Writing System for Pen-Based Computers. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2004.Kurtenbach G. P. The design and evaluation of marking menus. 1991. Ph.D. Thesis, University of Toronto.Kurtenbach G. P. Buxton W. Issues in Combining Marking and Direct Manipulation Techniques. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 1991.Kurtenbach G. Buxton W. User Learning and Performance with Marking Menus. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA) 1994.Kurtenbach, G., Sellen, A., & Buxton, W. (1993). An Empirical Evaluation of Some Articulatory and Cognitive Aspects of Marking Menus. Human-Computer Interaction, 8(1), 1-23. doi:10.1207/s15327051hci0801_1LaLomia M. User Acceptance of Handwritten Recognition Accuracy. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 1994.Leiva L. A. Romero V. Toselli A. H. Vidal E. Evaluating an Interactive–Predictive Paradigm on Handwriting Transcription: A Case Study and Lessons Learned. Proc. 35th Annu. IEEE Comput. Softw. Appl. Conf. (COMPSAC) 2011.Leiva L. A. Alabau V. Vidal E. Error-Proof, High-Performance, and Context-Aware Gestures for Interactive Text Edition. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 2013.Li Y. Protractor: A Fast and Accurate Gesture Recognizer. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 2010.Li W. Hammond T. Using Scribble Gestures to Enhance Editing Behaviors of Sketch Recognition Systems. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 2012.Liao C. Guimbretière F. Hinckley K. Hollan J. Papiercraft: a gesture-based command system for interactive paper. ACM Trans. Comput.–Hum. Interaction (TOCHI) 2008;14:18:1-18:27.Liu P. Soong F. K. Word Graph Based Speech Rcognition Error Correction by Handwriting Input. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2006.Long A. Landay J. Rowe L. Implications for a Gesture Design Tool. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 1999.Long A. C. Jr. Landay J. A. Rowe L. A. Michiels J. Visual Similarity of Pen Gestures. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2000.MacKenzie, I. S., & Chang, L. (1999). A performance comparison of two handwriting recognizers. Interacting with Computers, 11(3), 283-297. doi:10.1016/s0953-5438(98)00030-7MacKenzie I. S. Tanaka-Ishii K. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 2007. Text Entry Systems: Mobility, Accessibility, Universality.MARTI, U.-V., & BUNKE, H. (2001). USING A STATISTICAL LANGUAGE MODEL TO IMPROVE THE PERFORMANCE OF AN HMM-BASED CURSIVE HANDWRITING RECOGNITION SYSTEM. International Journal of Pattern Recognition and Artificial Intelligence, 15(01), 65-90. doi:10.1142/s0218001401000848Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. doi:10.1007/s100320200071Martín-Albo D. Romero V. Toselli A. H. Vidal E. Multimodal computer-assisted transcription of text images at character-level interaction. Int. J. Pattern Recogn. Artif. Intell. 2012;26:1-19.Marzinkewitsch R. Operating Computer Algebra Systems by Hand-Printed Input. Proc. Int. Symp. Symbolic Algebr. Comput. (ISSAC). 1991.Mas, J., Llados, J., Sanchez, G., & Jorge, J. A. P. (2010). A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams. Pattern Recognition, 43(12), 4148-4164. doi:10.1016/j.patcog.2010.07.003Moyle M. Cockburn A. Analysing Mouse and Pen Flick Gestures. Proc. SIGCHI-NZ Symp. Comput.–Hum. Interact. (CHINZ). 2002.Nakayama Y. A Prototype Pen-Input Mathematical Formula Editor. Proc. AACE EdMedia 1993.Ogata J. Goto M. Speech Repair: Quick Error Correction Just by Using Selection Operation for Speech Input Interface. Proc. Eurospeech. 2005.Ortiz-Martínez D. Leiva L. A. Alabau V. Casacuberta F. Interactive Machine Translation using a Web-Based Architecture. Proc. Int. Conf. Intell. User Interfaces (IUI) 2010.Ortiz-Martínez D. Leiva L. A. Alabau V. García-Varea I. Casacuberta F. An Interactive Machine Translation System with Online Learning. Proc. Assoc. Comput. Linguist. (ACL). 2011.Michael Powers, V. (1973). Pen direction sequences in character recognition. Pattern Recognition, 5(4), 291-302. doi:10.1016/0031-3203(73)90022-8Raab F. Extremely efficient menu selection: Marking menus for the Flash platform. 2009. Available at http://www.betriebsraum.de/blog/2009/07/21/efficient-gesture-recognition-and-corner-finding-in-as3/ (retrieved on May 2012).Revuelta-Martínez A. Rodríguez L. García-Varea I. A Computer Assisted Speech Transcription System. Proc. Eur. Chap. Assoc. Comput. Linguist. (EACL). 2012.Revuelta-Martínez, A., Rodríguez, L., García-Varea, I., & Montero, F. (2013). Multimodal interaction for information retrieval using natural language. Computer Standards & Interfaces, 35(5), 428-441. doi:10.1016/j.csi.2012.11.002Rodríguez L. García-Varea I. Revuelta-Martínez A. Vidal E. A Multimodal Interactive Text Generation System. Proc. Int. Conf. Multimodal Interfaces Workshop Mach. Learn. Multimodal Interact. (ICMI-MLMI). 2010a.Rodríguez L. García-Varea I. Vidal E. Multi-Modal Computer Assisted Speech Transcription. Proc. Int. Conf. Multimodal Interfaces Workshop Mach. Learn. Multimodal Interact. (ICMI-MLMI) 2010b.Romero V. Leiva L. A. Toselli A. H. Vidal E. Interactive Multimodal Transcription of Text Images using a Web-Based Demo System. Proc. Int. Conf. Intell. User Interfaces (IUI). 2009a.Romero V. Toselli A. H. Vidal E. Using Mouse Feedback in Computer Assisted Transcription of Handwritten Text Images. Proc. Int. Conf. Doc. Anal. Recogn. (ICDAR) 2009b.Romero V. Toselli A. H. Vidal E. Study of Different Interactive Editing Operations in an Assisted Transcription System. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2011.Romero V. Toselli A. H. Vidal E. Vol. 80. Singapore: World Scientific Publishing Company; 2012. Multimodal Interactive Handwritten Text Transcription.Rubine, D. (1991). Specifying gestures by example. ACM SIGGRAPH Computer Graphics, 25(4), 329-337. doi:10.1145/127719.122753Rubine D. H. 1991b. The automatic recognition of gestures. Ph.D. Thesis, Carnegie Mellon University.Sánchez-Sáez R. Leiva L. A. Sánchez J. A. Benedí J. M. Interactive Predictive Parsing using a Web-Based Architecture. Proc. North Am. Chap. Assoc. Comput. Linguist. 2010.Saund E. Fleet D. Larner D. Mahoney J. Perceptually-Supported Image Editing of Text and Graphics. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2003.Shilman M. Tan D. S. Simard P. CueTIP: a Mixed-Initiative Interface for Correcting Handwriting Errors. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2006.Signer B. Kurmann U. Norrie M. C. igesture: A General Gesture Recognition Framework. Proc. Int. Conf. Doc. Anal. Recogn. (ICDAR) 2007.Smithies S. Novins K. Arvo J. A handwriting-based equation editor. Proc. Conf. Graph. Interface (GI). 1999.Suhm, B., Myers, B., & Waibel, A. (2001). Multimodal error correction for speech user interfaces. ACM Transactions on Computer-Human Interaction, 8(1), 60-98. doi:10.1145/371127.371166Tappert C. C. Mosley P. H. Recent advances in pen computing. 2001. Technical Report 166, Pace University, available: http://support.csis.pace.edu.Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive transcription of text images. Pattern Recognition, 43(5), 1814-1825. doi:10.1016/j.patcog.2009.11.019Toselli A. H. Vidal E. Casacuberta F. , editors. Berlin, Heidelberg, New York: Springer; 2011. Multimodal-Interactive Pattern Recognition and Applications.Tseng S. Fogg B. Credibility and computing technology. Commun. ACM 1999;42:39-44.Vatavu R.-D. Anthony L. Wobbrock J. O. Gestures as Point Clouds: A P Recognizer for User Interface Prototypes. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2012.Vertanen K. Kristensson P. O. Parakeet: A Continuous Speech Recognition System for Mobile Touch-Screen Devices. Proc. Int. Conf. Intell. User Interfaces (IUI) 2009.Vidal E. Rodríguez L. Casacuberta F. García-Varea I. Mach. Learn. Multimodal Interact., Lect. Notes Comput. Sci. Vol. 4892. Berlin, Heidelberg: Springer; 2008. Interactive Pattern Recognition.Wang X. Li J. Ao X. Wang G. Dai G. Multimodal Error Correction for Continuous Handwriting Recognition in Pen-Based User Interfaces. Proc. Int. Conf. Intell. User Interfaces (IUI). 2006.Wang L. Hu T. Liu P. Soong F. K. Efficient Handwriting Correction of Speech Recognition Errors with Template Constrained Posterior (TCP). Proc. INTERSPEECH 2008.Wobbrock J. O. Wilson A. D. Li Y. Gestures without Libraries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2007.Wolf C. G. Morrel-Samuels P. The use of hand-drawn gestures for text editing. Int. J. Man–Mach. Stud. 1987;27:91-102.Zeleznik R. Miller T. Fluid Inking: Augmenting the Medium of Free-Form Inking with Gestures. Proc. Conf. Graph. Interface (GI). 2006.Yong Zhang, McCullough, C., Sullins, J. R., & Ross, C. R. (2010). Hand-Drawn Face Sketch Recognition by Humans and a PCA-Based Algorithm for Forensic Applications. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(3), 475-485. doi:10.1109/tsmca.2010.2041654Zhao S. Balakrishnan R. Simple vs. Compound Mark Hierarchical Marking Menus. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2004

    Predicting and Reducing the Impact of Errors in Character-Based Text Entry

    Get PDF
    This dissertation focuses on the effect of errors in character-based text entry techniques. The effect of errors is targeted from theoretical, behavioral, and practical standpoints. This document starts with a review of the existing literature. It then presents results of a user study that investigated the effect of different error correction conditions on popular text entry performance metrics. Results showed that the way errors are handled has a significant effect on all frequently used error metrics. The outcomes also provided an understanding of how users notice and correct errors. Building on this, the dissertation then presents a new high-level and method-agnostic model for predicting the cost of error correction with a given text entry technique. Unlike the existing models, it accounts for both human and system factors and is general enough to be used with most character-based techniques. A user study verified the model through measuring the effects of a faulty keyboard on text entry performance. Subsequently, the work then explores the potential user adaptation to a gesture recognizer’s misrecognitions in two user studies. Results revealed that users gradually adapt to misrecognition errors by replacing the erroneous gestures with alternative ones, if available. Also, users adapt to a frequently misrecognized gesture faster if it occurs more frequently than the other error-prone gestures. Finally, this work presents a new hybrid approach to simulate pressure detection on standard touchscreens. The new approach combines the existing touch-point- and time-based methods. Results of two user studies showed that it can simulate pressure detection more reliably for at least two pressure levels: regular (~1 N) and extra (~3 N). Then, a new pressure-based text entry technique is presented that does not require tapping outside the virtual keyboard to reject an incorrect or unwanted prediction. Instead, the technique requires users to apply extra pressure for the tap on the next target key. The performance of the new technique was compared with the conventional technique in a user study. Results showed that for inputting short English phrases with 10% non-dictionary words, the new technique increases entry speed by 9% and decreases error rates by 25%. Also, most users (83%) favor the new technique over the conventional one. Together, the research presented in this dissertation gives more insight into on how errors affect text entry and also presents improved text entry methods

    Reflections on the impact of social technologies on lecturers in a pathway institution

    Get PDF
    Education has evolved over time from face-to-face teaching to computer-supported learning, and now to even more sophisticated electronic tools. In particular, social technologies are being used to supple- ment the classroom experience and to ensure that students are becoming increasingly engaged in ways that appeal to them. No matter how educationally beneficial, however, new technology is affected by its users. To investigate this, lecturers at the Eynesbury Institute of Business and Technology (EIBT)—a Higher Education pathway provider—were surveyed to determine their perception and application of social technolog(ies) in their personal, but predominantly ‘professional’ lives. Utilising a qualitative and autoethnographic approach, one author provides an insight into their own attitude toward social technologies, coupled with responses to three open-ended questions. Thereafter, the same questions were posed to EIBT academic staff to understand their willingness or reluctance to use social technologies in their practice as part of their first-year pathway course(s)

    Design of a Template for Handwriting Based Hindi Text Entry in Handheld Devices

    Full text link

    Ink-based Note Taking On Mobile Devices

    Get PDF
    Although touchscreen mobile phones are widely used for recording informal text notes (e.g., grocery lists, reminders and directions), the lack of efficient mechanisms for combining informal graphical content with text is a persistent challenge. In the first part of the thesis, we present InkAnchor, a digital ink editor that allows users to easily create ink-based notes by finger sketching on a mobile phone touchscreen. InkAnchor incorporates flexible anchoring, focus-plus-context input, content chunking, and lightweight editing mechanisms to support the capture of informal notes and annotations. We describe the design and evaluation of InkAnchor through a series of user studies, which revealed that the integrated support enabled by InkAnchor is a significant improvement over current mobile note taking applications on a range of mobile note-taking tasks. The thesis also introduces FingerTip, a shift-targeting solution to facilitate detailed drawings. Occlusion caused by users' finger on the screen and users' uncertainty of the pixel they interact with are resolved in FingerTip via shifting the actual point where inking occurs beyond the end of the user's finger. However, despite a positive first impression on the part of prospective end users, fingertip turned out only passable on the drawing experience for non-text content. Combining the results of InkAnchor and FigerTip, this thesis does demonstrate that a significant subset of mobile note taking tasks can be supported using focus+context input, and that tuning for hand drawn text input has significant value in the mobile smartphone note taking and sketch input domain

    Dwell-free input methods for people with motor impairments

    Full text link
    Millions of individuals affected by disorders or injuries that cause severe motor impairments have difficulty performing compound manipulations using traditional input devices. This thesis first explores how effective various assistive technologies are for people with motor impairments. The following questions are studied: (1) What activities are performed? (2) What tools are used to support these activities? (3) What are the advantages and limitations of these tools? (4) How do users learn about and choose assistive technologies? (5) Why do users adopt or abandon certain tools? A qualitative study of fifteen people with motor impairments indicates that users have strong needs for efficient text entry and communication tools that are not met by existing technologies. To address these needs, this thesis proposes three dwell-free input methods, designed to improve the efficacy of target selection and text entry based on eye-tracking and head-tracking systems. They yield: (1) the Target Reverse Crossing selection mechanism, (2) the EyeSwipe eye-typing interface, and (3) the HGaze Typing interface. With Target Reverse Crossing, a user moves the cursor into a target and reverses over a goal to select it. This mechanism is significantly more efficient than dwell-time selection. Target Reverse Crossing is then adapted in EyeSwipe to delineate the start and end of a word that is eye-typed with a gaze path connecting the intermediate characters (as with traditional gesture typing). When compared with a dwell-based virtual keyboard, EyeSwipe affords higher text entry rates and a more comfortable interaction. Finally, HGaze Typing adds head gestures to gaze-path-based text entry to enable simple and explicit command activations. Results from a user study demonstrate that HGaze Typing has better performance and user satisfaction than a dwell-time method

    Word processing in the Omaha Metropolitan Area and implications for business education in the area

    Get PDF
    The problem to be investigated is to what extent the concept of word processing has been adopted by businesses in the Omaha metropolitan area and implications for business education in the schools of the area. This problem can be divided into several sub-problems

    Optimizing Human Performance in Mobile Text Entry

    Get PDF
    Although text entry on mobile phones is abundant, research strives to achieve desktop typing performance "on the go". But how can researchers evaluate new and existing mobile text entry techniques? How can they ensure that evaluations are conducted in a consistent manner that facilitates comparison? What forms of input are possible on a mobile device? Do the audio and haptic feedback options with most touchscreen keyboards affect performance? What influences users' preference for one feedback or another? Can rearranging the characters and keys of a keyboard improve performance? This dissertation answers these questions and more. The developed TEMA software allows researchers to evaluate mobile text entry methods in an easy, detailed, and consistent manner. Many in academia and industry have adopted it. TEMA was used to evaluate a typical QWERTY keyboard with multiple options for audio and haptic feedback. Though feedback did not have a significant effect on performance, a survey revealed that users' choice of feedback is influenced by social and technical factors. Another study using TEMA showed that novice users entered text faster using a tapping technique than with a gesture or handwriting technique. This motivated rearranging the keys and characters to create a new keyboard, MIME, that would provide better performance for expert users. Data on character frequency and key selection times were gathered and used to design MIME. A longitudinal user study using TEMA revealed an entry speed of 17 wpm and a total error rate of 1.7% for MIME, compared to 23 wpm and 5.2% for QWERTY. Although MIME's entry speed did not surpass QWERTY's during the study, it is projected to do so after twelve hours of practice. MIME's error rate was consistently low and significantly lower than QWERTY's. In addition, participants found MIME more comfortable to use, with some reporting hand soreness after using QWERTY for extended periods

    Onsetsu hyoki no kyotsusei ni motozuita Ajia moji nyuryoku intafesu ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3450号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2011/10/26 ; 早大学位記番号:新577

    Mobile Pen and Paper Interaction

    Get PDF
    Although smartphones, tablets and other mobile devices become increasingly popular, pen and paper continue to play an important role in mobile settings, such as note taking or creative discussions. However, information on paper documents remains static and usage practices involving sharing, researching, linking or in any other way digitally processing information on paper are hindered by the gap between the digital and physical worlds. A considerable body of research has leveraged digital pen technology in order to overcome this problem with respect to static settings, however, systematically neglecting the mobile domain. Only recently, several approaches began exploring the mobile domain and developing initial insights into mobile pen-and-paper interaction (mPPI), e.g., to publish digital sketches, [Cowan et al., 2011], link paper and digital artifacts, [Pietrzak et al., 2012] or compose music, [Tsandilas, 2012]. However, applications designed to integrate the most common mobile tools pen, paper and mobile devices, thereby combining the benefits of both worlds in a hybrid mPPI ensemble, are hindered by the lack of supporting infrastructures and limited theoretical understanding of interaction design in the domain. This thesis advances the field by contributing a novel infrastructural approach toward supporting mPPI. It allows applications employing digital pen technology in controlling interactive functionality while preserving mobile characteristics of pen and paper. In addition, it contributes a conceptual framework of user interaction in the domain suiting to serve as basis for novel mPPI toolkits. Such toolkits ease development of mPPI solutions by focusing on expressing interaction rather than designing user interfaces by means of rigid widget sets. As such, they provide the link between infrastructure and interaction in the domain. Lastly, this thesis presents a novel, empirically substantiated theory of interaction in hybrid mPPI ensembles. This theory informs interaction design of mPPI, ultimately allowing to develop compelling and engaging interactive systems employing this modality
    corecore