4 research outputs found

    Generalized Coordinated Multipoint Framework for 5G and Beyond

    Get PDF
    The characteristic feature of 5G is the diversity of its services for different user needs. However, the requirements for these services are competing in nature, which impresses the necessity of a coordinated and flexible network architecture. Although coordinated multipoint (CoMP) systems were primarily proposed to improve the cell edge performance in 4G, their collaborative nature can be leveraged to support the diverse requirements and enabling technologies of 5G and beyond networks. To this end, we propose generalization of CoMP to a proactive and efficient resource utilization framework capable of supporting different user requirements such as reliability, latency, throughput, and security while considering network constraints. This article elaborates on the multiple aspects, inputs, and outputs of the generalized CoMP (GCoMP) framework. Apart from user requirements, the GCoMP decision mechanism also considers the CoMP scenario and network architecture to decide upon outputs such as CoMP technique or appropriate coordinating clusters. To enable easier understanding of the concept, popular use cases, such as vehicle-to-everything (V2X) communication and eHealth, are studied. Additionally, interesting challenges and open areas in GCoMP are discussed.Comment: 11 pages, 7 figure

    Intelligent handover triggering mechanism in 5G ultra-dense networks via clustering-based reinforcement learning

    Get PDF
    Ultra-dense networks (UDNs) are considered as key 5G technologies. They provide mobile users a high transmission rate and efficient radio resource management. However, UDNs lead to the dense deployment of small base stations (BSs) that can cause stronger interference and subsequently increase the handover management complexity. At present, the conventional handover triggering mechanism of user equipment (UE) is only designed for macro mobility and thus could result in negative effects such as frequent handovers, ping-pong handovers, and handover failures on the handover process of UE at UDNs. These effects degrade the overall network performance. In addition, a massive number of BSs significantly increase the network maintenance system workload. To address these issues, this paper proposes an intelligent handover triggering mechanism for UE based on Q-learning frameworks and subtractive clustering techniques. The input metrics are first converted to state vectors by subtractive clustering, which can improve the efficiency and effectiveness of the training process. Afterward, the Q-learning framework learns the optimal handover triggering policy from the environment. The trained Q table is deployed to UE to trigger the handover process. The simulation results demonstrate that the proposed method can ensure the stronger mobility robustness of UE that is improved by 60%–90% compared to the conventional approach with respect to the number of handovers, ping-ping handover rate, and handover failure rate while maintaining other key performance indicators (KPIs), that is, a relatively high level of throughput and network latency. In addition, through integration with subtractive clustering, the proposed mechanism is further improved by an average of 20% in terms of all the evaluated KPIs

    Seamless Mobility under a Dedicated Distributed Antenna System for High-Speed Rail Networks

    Get PDF
    High-speed railway (HSR) has demonstrated a tremendous growth worldwide, and currently is attaining a maximum velocity of 575 km/h. Such a high speed makes the mobile wireless communications a challenging task for HSR to sustain since the handover (HO) rate increases with speed which might result in a high loss of link connectivity. By employing a dedicated distributed antenna system (DAS) along with the two-hop network architecture for HSR wireless communications, this thesis aims to attain a high system capacity, a more transmission reliability, and consequently a superior mobile wireless communication quality-of-service (QoS) for commuters on HSR. First, this thesis proposes a frequency switch (FSW) scheme to mitigate the persistent HO issue in conventional HSR wireless communication systems. The proposed scheme significantly alleviates the interruption time and the dense signalling overhead associated with the traditional HO process, providing a much more convenient scheme, i.e. fast and soft which suits the remote antenna unit (RAU) small coverage area and the train's high moving speed. Therefore, FSW scheme provides mobility robustness signalling process that guarantees a more successful frequency switch instead of HO, thereby, reduces the probability of a radio link failure (RLF) compared with HO process in traditional HSR systems. Second, an enhanced fast predictive HO mechanism is proposed by starting the HO process earlier, when moving from one RAU coverage area to the next where these two RAUs are controlled by different central units (CUs). It shows that the proposed fast HO scheme achieves a lower HO command failure probability than the traditional HO. This leads to a lower HO failure probability which consequently can considerably enhance the end-users' quality-of-service (QoS) experience. Analytical results verify that the proposed schemes can improve the system performance substantially by delivering ultra-reliable low-latency communications. Finally, with the aim of providing an ultra-reliable low-latency wireless communications, this thesis also proposes an onboard frequency switch scheme to further simplify our previously proposed FSW scheme
    corecore