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ABSTRACT   

Ultra-dense networks (UDNs) are considered as key 5G technologies. They provide mobile users a 

high transmission rate and efficient radio resource management. However, UDNs lead to the dense 

deployment of small base stations (BSs) that can cause stronger interference and subsequently increase 

the handover management complexity. At present, the conventional handover triggering mechanism 

of user equipment (UE) is only designed for macro mobility and thus could result in negative effects 

such as frequent handovers, ping-pong handovers, and handover failures on the handover process of 

UE at UDNs. These effects degrade the overall network performance. In addition, a massive number 

of BSs significantly increase the network maintenance system workload. To address these issues, this 

paper proposes an intelligent handover triggering mechanism for UE based on Q-learning frameworks 

and subtractive clustering techniques. The input metrics are first converted to state vectors by 

subtractive clustering, which can improve the efficiency and effectiveness of the training process. 

Afterward, the Q-learning framework learns the optimal handover triggering policy from the 

environment. The trained Q table is deployed to UE to trigger the handover process. The simulation 

results demonstrate that the proposed method can ensure the stronger mobility robustness of UE that 

is improved by 60%–90% compared to the conventional approach with respect to the number of 

handovers, ping-ping handover rate, and handover failure rate while maintaining other key 

performance indicators (KPIs), that is, a relatively high level of throughput and network latency. In 

addition, through integration with subtractive clustering, the proposed mechanism is further improved 

by an average of 20% in terms of all the evaluated KPIs. 

Keywords: handover management, Q-learning, subtractive clustering, ultra-dense networks 
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1. INTRODUCTION  

To manage increasing demand for mobile data traffic and efficient data delivery, ultra-dense networks 

(UDNs) have been introduced in the fifth-generation mobile communications system (5G). UDNs 

involve the close deployment of small base stations (BSs) at traffic hotspots. Using this method, data 

traffic is mainly delivered by small BSs, which can significantly increase the system capacity, 

spectrum efficiency, throughput, coverage and provide ubiquitous access for user equipment (UE) [1]. 

When UE moving across the coverage of small BSs, the handover process needs to be performed to 

ensure UE’s data delivery. As defined in the Third-Generation Partnership Project (3GPP) [2], the 

handover process is triggered by A3 event measured by UE. A3 event occur when the difference 

between the reference signal receiving power (RSRP) from UE serving cells and neighbouring cells is 

higher than a pre-determined condition, the handover hysteresis margin (HHM). When meeting the 

entering condition of A3 events, UE will wait for a pre-defined period, that is, the time to trigger (TTT). 

Subsequently, if the A3 event entering condition remains satisfied, the UE reports the A3 event to its 

serving base station (BS), and the handover process is then executed based on the Xn interface of the 

BS. The UE connection will subsequently switch to the neighbouring cell with the strongest RSRP.  

On the other hand, UDNs also increase the complexity of cellular networks and introduce new 

challenges to handover management[3]. Traditionally, the A3 event was designed as the handover 

triggering mechanism for UE in macro BS systems. Therefore, the A3 event may face the following 

three challenges within 5G-UDNs. First, because the coverage area of small BSs is much lower than 

macro BSs, UE will meet the edge of the cell more frequently. UE can have many more neighbouring 

cells as potential handover targets in UDNs. In this situation, the A3 event’s entering condition is 

easily satisfied, and the handover process is frequently triggered by UE even with short physical 

movements [4]. Since the handover process can interrupt the UE’s serving link before transferring its 

connection to the target cell. Thus, frequent handovers can also overload core network signalling, 

diminish system capacity and degrade overall system performance [5]. Second, the decision-making 

process is easily affected by interference and frequent handovers continually occurring among serving 

and target cells (known as the ping-pong effect). As small BSs are deployed denser and closer to each 

other, this may result in much stronger inter-cell interference. As such, inter-cell interference can result 

in much stronger fluctuations in the RSRP that further worsen this problem. Third, the A3 event needs 

to adjust the handover parameters, that is, HHM and TTT, to avoid frequent handovers, ping-pong 
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effects, and handover failure rates. To achieve this target, the network operator needs to frequently 

conduct extensive measuring activities and data analysis to determine the suitable handover 

parameters [6]. With the increasing deployment of BSs, the network maintenance workload and 

complexity also significantly increase. Therefore, in A3 events, it is unrealistic to adjust HHM and 

TTT to optimal levels to maintain a high level of network performance at all times.  

Based on the analysis above, simply implementing the current A3 event in 5G-UDNs can lead to 

system performance degradation. To overcome the limitation of A3 event, and increase the mobility 

robustness of UE in 5G-UDNs, a novel handover triggering mechanism that can precisely trigger 

handover process with low maintenance cost is necessary to be investigated. In this study, we 

integrated both advantages of Q-learning and subtractive clustering techniques to develop an 

intelligent handover triggering mechanism for UE in 5G-UDNs. The main contributions of this study 

are summarised as follows: 

• First, we develop an instant handover triggering mechanism that can trigger handover 

processes precisely based on multiple decision criteria. The proposed mechanism has the 

objectives of enhancing user mobility robustness while maintaining other high-level key 

performance indicators (KPIs). 

• Second, we proposed a Q-learning framework to achieve an optimal handover triggering policy 

by considering multiple network metrics, that is, the RSRP, signal to interference and noise 

ratio (SINR), and transmission distance. The trained Q table is utilised as a triggering 

mechanism of UE to decide the optimal triggering timing without additional handover 

conditions intelligently.  

• This study utilises the subtractive clustering technique to generate state vectors from historical 

data. Using this method, the input metrics are systematically categorised into corresponding 

states with respect to the actual data distribution, which can improve the trained Q table’s 

accuracy and effectiveness. This categorisation method can effectively process multiple 

fluctuating network metrics and minimise the impact of noise and interference in handover 

triggering decision-making.  
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To the best of our knowledge, this is the first study to directly apply Q-learning to make handover 

triggering decisions in 5G-UDNs rather than optimise handover parameters. This is also the first study 

to utilise subtractive clustering to optimise the Q-learning framework for handover decision-making.  

The rest of this article is organised as follows: Section 2 reviews some existing studies that are related 

to this paper. Section 3 introduces the channel model and performance metrics used in this study. The 

detailed proposed method is described in Section 4. The proposed triggering mechanism is compared 

with the other existing handover triggering mechanisms to evaluate its performance. The simulation 

designs and results are shown in Section 5. The study’s main conclusion is summarised in Section 6.  

 

2. RELEVANT STUDIES 

2.1 Threshold comparison based handover triggering optimisation methods 

To address the negative handover effects caused by A3 events, different handover management 

algorithms are proposed in the current literature. One way to optimise the handover triggering 

mechanism is adjusting the handover-related parameters, that is, HHM and TTT are adaptively based 

on different algorithms. References [7]–[9] reported handover optimisation methods based on 

threshold comparisons with specific metrics. Reference [7] proposed a handover parameter 

optimisation method to enhance mobility robustness across small cells. The proposed method adopts 

a threshold to classify categories of handover failures and then updates handover parameters according 

to dominant failures. To avoid handover failures due to radio link failures, Reference [8] developed a 

novel distributed auto-tuning algorithm based on metaheuristic algorithms that can automatically 

update HHM and TTT on the basis of user speed, RSRP, and SINR. In Reference [9], the authors 

integrated fuzzy logic into the conventional handover decision to dynamically adjust HHM and TTT. 

The signal levels from both serving and target cells were used as a fuzzy interference engine input to 

generate the adjusted margin as output. The simulation results in References [7]–[9] showed that 

compared with the traditional method, the proposed technique significantly reduces the number of 

handovers, ping-pong effect, handover failure rate, and radio link failure rate. However, some essential 

parameters of these proposed algorithms, that is, the thresholds, fuzzy rules, and fuzzy membership 

functions, rely heavily on human experience to define that is not applicable in practical situations.  
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2.2 Reinforcement based handover triggering optimisation methods 

Since reinforcement learning and deep learning have demonstrated their powerful learning, decision-

making and inference capabilities in many applications, such as [10]–[14]. As such, these techniques 

can be considered as effective ways to enable intelligent handover management. References [15]–[17] 

described reinforcement learning-based handover parameter optimisation methods. In Reference [15], 

the authors proposed a handover parameter tuning method that effectively detects handover events and 

minimises false handover triggers. To achieve optimal handover performance, the proposed method 

can also self-tune the handover decision parameters by defining two state variables for the Markov 

decision process, that is, handover decision parameters and radio state. In Reference [16], a Q-

learning-based framework that can adjust HHM and TTT according to the UE speed was proposed. A 

multiple attribute decision-making method is then applied to choose the most suitable cell as a 

handover target. Reference [17] also proposed a Q-learning-based mobility robustness optimisation 

method to learn the most suitable HHM and TTT based on different UE speeds. The simulation results 

in References [15]–[17] showed that the three proposed methods can reduce the call drop rate, 

handover failure rate, and ping-pong handover ratio for high-speed movement UE compared to the 

traditional approach. However, the reinforcement learning framework in References [15]–[17] cannot 

define a large-scale state and action space; otherwise, the training process becomes inefficient. To 

scale down the size of the state–action space, References [15]–[17] attempted to categorise input 

metrics, for example, the speed and RSRP, into same the length range as the state vectors. This 

categorisation method lacks systematic methodologies to reflect actual data distribution into state 

vectors and thus could potentially affect the effectiveness and accuracy of the generated Q table.  

These studies indicated that adjusting the HHM and TTT can effectively improve handover 

performance. However, the presence of HHM and TTT causes the triggering process to become not 

instantaneous, as the handover process is only triggered after these two pre-determined conditions. 

The coverage area of small BSs in UDNs is much smaller than in macro BSs. Small BSs only leave a 

very short time for triggering mechanisms to react and then execute the subsequent process. In this 

condition, an instant handover triggering mechanism can ensure the reliability and seamlessness of 

communications. In addition to optimising handover parameters for triggering mechanisms, some 

studies developed instant handover triggering mechanisms to directly trigger the handover process 

without any additional handover parameters and conditions.  
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2.3 Fuzzy logic based instant handover triggering mechanisms 

In References [17] and [18], a triggering threshold called the handover factor that is generated by fuzzy 

logic was used to minimise the number of handovers. The RSRP, SINR, and user speed are input into 

the fuzzy interference system. The input metrics are processed by a group of pre-defined fuzzy 

membership functions and fuzzy rules to generate the output handover factor. The handover factor is 

distributed between 0 and 1, with 1 denoting that the probability of handover occurrence is very high. 

Conversely, 0 denotes that the possibility of handover occurrence is the lowest. The simulation results 

in References [17] and [18] showed that the handover factors can minimise unnecessary handovers 

and ping-pong effects. However, these three studies did not further discuss how to define an optimal 

membership function for each decision metric. Therefore, the reliability of these methods cannot be 

ensured with the changes in application scenarios.  

2.4 Intelligent handover triggering mechanisms 

In Reference [20], the authors proposed an adaptive fuzzy logic-based handover triggering method. 

The fuzzy membership functions and rules were first generated by subtraction from historical data and 

then tuned to the optimal level concerning different application scenarios by neural networks. 

Compared with conventional fuzzy logic-based handover triggering mechanisms and other traditional 

approaches, the proposed algorithm in Reference [20] demonstrated that it provided a significant 

improvement in handover performance in terms of mobility robustness and mobility load balancing. 

However, the approach in Reference [20] was unable to process too many metrics as input parameters; 

otherwise, the whole system becomes complicated and the training process is time-consuming. In 

Reference [21], the authors adopted model-free asynchronous advantage actor-critic (A3C) 

reinforcement learning techniques to learn an optimal handover method. Each network user is a local 

agent to interact with the environment and learn a local handover policy. The local handover policy in 

each UE is then uploaded and integrated as the global handover policy at the global controller. Each 

UE regularly copies up-to-date handover policies from a global controller to trigger the handover 

process and supervise the subsequent leaning process when controller updates are required. The 

simulation results in Reference [21] demonstrated that the proposed method can achieve better 

performance than existing online techniques in terms of handover rates. However, other KPIs, that is, 

the ping-pong handover rate, handover failure rate, and throughput, were not further evaluated in this 
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paper. Due to the limited computation power of UE, it is inapplicable to utilise UE as a training agent 

in A3C framework.  

According to the aforementioned analyses, Q-learning demonstrates its powerful capabilities in 

handover triggering solutions. All of the Q-learning-based approaches focus on optimising handover 

parameters rather than instant triggering mechanisms. However, all of the Q-learning approaches lack 

systematic methodologies to convert radio conditions, that is, the RSRP and SINR, into state vectors. 

As shown in Reference [22], subtractive clustering can categorise data into corresponding groups 

based their distribution. This may provide a solution to define the proper state vectors for Q-learning 

frameworks in handover decision-making. 

 

3. SYSTEM MODEL 

In this study, we adopt two-tiered UDNs that consist of LTE-Advance and 5G networks. This two-

tiered structure was widely used in many previous studies such as [18], [20], and [22]. Fig. 1 presents 

an example of proposed network deployment in this study. The LTE-Advance network consisting of 

𝑁𝑚  macro BSs operates under a 5 GHz frequency band. 5G networks consisting of 𝑁𝑠  small BSs 

operate at million-metre wavebands. There are 𝑁𝑢𝑒 randomly moving within the deployed area with a 

constant velocity 𝑉𝑢𝑒 . Each UE is associated with one macro or small BS to exchange signalling. 

During UE movement, the UE periodically collects handover-related metrics from neighbouring BSs, 

that is, the RSRP, RSRQ, and SINR, and reports to its serving-based station. The proposed triggering 

mechanism is deployed at the UE to determine the optimal timing and then reports to its serving BS 

for handover execution.  

 

3.1 Channel model 

According to Reference [24], a large-scale channel model for macro Eq. (1a) and small base stations 

Eq. (1b) in urban areas are adopted. The path loss (𝑃𝐿𝑖𝑗) between UE 𝑖 and BS 𝑗 is defined as 

𝑃𝐿𝑖𝑗−𝑈𝑚𝑎 = 32.4 + 20𝑙𝑜𝑔10(𝑓) + 30𝑙𝑜𝑔10(𝑑𝑖,𝑗) + 𝜒 (1a) 

𝑃𝐿𝑖𝑗−𝑈𝑚𝑖 = 32.4 + 20𝑙𝑜𝑔10(𝑓) + 31.9𝑙𝑜𝑔10(𝑑𝑖,𝑗) + 𝜒  (1b) 

𝑑𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 − (𝑦𝑖 − 𝑦𝑗)2  (1c) 
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Fig. 1 Two-tiered system model 

In Eqs. (1a) and (1b), 𝑑𝑖,𝑗 represents the transmission distance between UE 𝑖 and BS𝑗 calculated by 

Eq (1c). (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) in Eq. (1c) are the coordinates of UE 𝑖 and BS 𝑗, 𝑓 is denoted as the carrier 

frequency for small and macro BSs, and 𝜒 is the interference and noise modelled by Gaussian random 

and Rayleigh random variables. The RSRP of UE i is then calculated by subtracting 𝑃𝐿𝑖𝑗 from the cell 

reference signal of BS j. 

According to Reference [25], the SINR from BS 𝑗 to UE 𝑖 is formulated as 

 𝛾𝑗,𝑖 = 10𝑙𝑜𝑔10(
𝑃𝑗𝑑𝑖𝑗

−𝛼

∑ 𝑃𝑜𝑑𝑖𝑜
−𝛼𝑛𝑚−1

𝑜=1 +𝑃𝑛
),  (2) 

where 𝑃𝑗  and 𝑃𝑜  represent the transmission power of UE serving BSs and neighbouring BSs, 

respectively, and 𝑑𝑖𝑗 and 𝑑𝑖𝑜 represent the distance between the UE to its serving and neighbouring 

BSs. 𝑃𝑛 is the power spectral density of the background noise and 𝑛𝑚 represents the number of BSs 

around the UE.  

 

3.2 System measurements 

Several KPIs are used in this study to quantify system performance due to different handover 

triggering mechanisms.  

The first KPI is the average number of handovers per UE (𝑁𝑂𝐻̅̅ ̅̅ ̅̅ ̅), which is the essential parameter to 

quantify the handover frequency in the entire simulation. The average handovers per UE is formulated 

as 
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 𝑁𝑂𝐻̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑁𝑂𝐻𝑖

𝑁𝑢𝑒
𝑖=1

𝑁𝑢𝑒
, (3) 

where 𝑁𝑂𝐻𝑖 is the number of UE 𝑖 handovers and 𝑁𝑢𝑒 is the total amount of UE in the environment. 

The second KPI is the probability of ping-ping handovers (PPHOs) used to determine unnecessary 

handovers between two BSs. The PPHO is counted when there are continual handovers by UE between 

the target cell and presently serving cells within a certain interval 𝑇𝑝.  Thus, the average PPHO 

probability is calculated as 

 𝑃(𝑃𝑃𝐻𝑂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑁𝑃𝑃𝐻𝑂

𝑁𝐻𝑂
, (4) 

where 𝑁𝑃𝑃𝐻𝑂 is the number of PPHOs that occur during the entire simulation and 𝑁𝐻𝑂 is the number 

of handovers during the entire simulation, respectively.  

The third KPI is the probability of handover fails (HOFs). According to the analysis in Reference [26], 

the handover process may fail if it is triggered too early or too late. Under these two conditions, the 

UE may out of the target coverage area or serving cell and subsequently lead to radio link failure 

before completely establishing handover. Moreover, HOFs may also occur when there is UE handover 

to the wrong cell. When this occurs, the target cell does not have sufficient resources to maintain UE 

connections. Therefore, the probability of HOF is a key parameter to evaluate the reliability of the 

proposed handover triggering mechanism, which is formulated as 

 𝑃(𝐻𝑂𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑁𝐻𝑂𝐹

𝑁𝐻𝑂
  (5) 

The fourth KPI is the average UE throughput in the entire simulation, which can reflect the quality of 

network service. According to Reference [27], the system throughput is calculated using Shannon’s 

capacity theory. The correction factor is adopted in this formula to account for the inherent 

implementation losses, that is, the reference symbol loss (ℒReferenceSymbol) and cyclic prefix loss 

(ℒCyclicPrefix). Therefore, Shannon’s capacity theory is formulated as 

 Г𝑡𝑜𝑡𝑎𝑙 = 𝜉 × 𝐵 × (𝑙𝑜𝑔2(1 + 10𝛾𝑗,𝑖/10)) (6a) 

 𝜉 = ℒ𝐶𝑦𝑐𝑙𝑖𝑐𝑃𝑟𝑒𝑓𝑖𝑥 × ℒ𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑦𝑚𝑏𝑜𝑙  (6b) 

 ℒ𝐶𝑦𝑐𝑙𝑖𝑐𝑃𝑟𝑒𝑓𝑖𝑥 =
𝑇𝑓𝑟𝑎𝑚𝑒−𝑇𝐶𝑃

𝑇𝑓𝑟𝑎𝑚𝑒
 (6c) 

 ℒ𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑆𝑦𝑚𝑏𝑜𝑙 =
𝑁𝑆𝐶×

𝑁𝑠
2

−4

𝑁𝑆𝐶×
𝑁𝑠
2

 (6d) 

 ℬ =
𝑁𝑆𝐶×𝑁𝑆×𝑁𝑟𝑏

𝑇𝑠𝑢𝑏
, (6e) 

9



where Г𝑡𝑜𝑡𝑎𝑙 represents the sum of throughput gain by UE in bps; 𝛾𝑗,𝑖 represents SINR between UE 𝑖 

and BS 𝑗 obtained from Eq. (2); 𝜉 is the correction factor and ℬ is the system bandwidth assigned to 

UE in Hz;  𝑇𝑓𝑟𝑎𝑚𝑒 is the interval of one orthogonal frequency division multiple access (OFDMA) 

frame and equals 10 ms; 𝑇𝐶𝑃 is the total cyclic prefix time of all OFDMA symbols in a frame calculated 

as (5.2μs + 6 × 4.69 μs) × 20 = 666.8 μs; 𝑁𝑆𝐶  is the number of subcarriers in the physical resource 

block (PRB), which is 12 subcarriers for both macro and small BSs; 𝑁𝑆 is the number of OFDMA 

symbols within a subframe, which is 14 symbols for macro BSs and 28 symbols for small BSs; and 

𝑁𝑟𝑏 is the number of PRBs assigned to the UE, which is 100 for macro BSs and 275 for small BSs. 

The bandwidth assigned to each PRB is the smallest unit of bandwidth that is assigned and can only 

be applied to one UE, and 𝑇𝑠𝑢𝑏 is the time interval of an OFDMA subframe and equals 1 ms for both 

macro and small BSs. 

The last KPI is the network latency that directly affects network performance. According to the 

analysis in References [5] and [27], this study considers the network latency from BS 𝑗 to UE 𝑖 during 

time 𝑡, which is denoted as Δ̂𝑖,𝑗
𝑡  and formulated as 

 �̂�𝑖,𝑗
𝑡 = ℓ𝑡𝑟𝑎𝑛𝑠 + ℓ𝑝𝑟𝑜𝑝𝑎 + ℓℎ𝑜 + ℓ𝑑𝑒𝑎𝑙 + ℓ𝑞𝑢𝑒𝑢𝑒, (7) 

where ℓ𝑡𝑟𝑎𝑛𝑠  is the transmission latency; ℓ𝑝𝑟𝑜𝑝𝑎  is the propagation latency;  ℓho  is the handover 

latency; ℓ𝑑𝑒𝑎𝑙 is the packet handling latency; and ℓ𝑞𝑢𝑒𝑢𝑒 is the queuing latency, respectively. ℓ𝑑𝑒𝑎𝑙 

and ℓ𝑞𝑢𝑒𝑢𝑒 are much shorter than ℓ𝑡𝑟𝑎𝑛𝑠 and ℓ𝑝𝑟𝑜𝑝𝑎, so the last two items in Eq. (7) can be omitted. 

Eq. (7) is then rewritten as 

 �̂�𝑖,𝑗
𝑡 =

𝛩

𝓇𝑖
+ ℓ𝑚𝑎𝑥 𝑖.𝑗 ×

𝑑𝑖.𝑗

𝑑𝑦
+ ℓℎ𝑜 (8) 

The first item in Eq. (8) calculates  ℓ𝑡𝑟𝑎𝑛𝑠. Θ represents the transmitting packet size and is 100 kbit in 

this study. 𝓇𝑖 is the UE 𝑖 throughput. The second part of Eq. (8) obtains ℓ𝑝𝑟𝑜𝑝𝑎, where ℓmax 𝑖.𝑗 is the 

maximum propagation latency from BS 𝑗 to UE 𝑖, which is assumed to be 20 ms for macro BS and 10 

ms for small BS, respectively. 𝑑𝑖.𝑗 is the distance between UE 𝑖 and its serving BS 𝑗. 𝑑𝑦 represents the 

maximum transmission distance from BS 𝑗  to UE 𝑖 . ℓho  is assumed to be 20 ms based on our 

measurements from real environments. 
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4. PROPOSE METHOD 

Fig. 2 demonstrates the proposed framework based on Q-learning and subtractive clustering. During 

UE movement, the UE will frequently collect handover-related metrics, that is, the RSRP, SINR, and 

transmission distance (d), from its serving and neighbouring BSs. These data are stored in the database 

as historical data. During the training stage, the historical data are used to build the Q-learning 

framework, which will be explained in detail in Section 4.1. To increase training efficiency, subtractive 

clustering is adopted to locate the clusters for each input metric and categorise input metrics into state 

vectors (Section 4.2). The trained Q table of the framework is used as a triggering mechanism to enable 

the UE to select the optimal timing and report to the BS for handover execution. The detailed handover 

process under the proposed triggering mechanism will be described in Section 4.3. 

 

 

Fig. 2 Subtractive clustering-based Q-learning framework for handover triggering 

 

4.1 Q-learning framework for handover in 5G-UDNs 

Q-learning is a model-free and off-policy reinforcement algorithm that provides the optimal policy 

from a set of Markov decision processes. The Q-learning framework consists of agent and triple <

𝒮,𝒜,ℛ >, where 𝒮 and 𝒜 represent the sets of all possible states and actions, respectively, and ℛ is 

the reward function. When an environment is in state 𝑠𝑡 ∈ 𝒮 at time step t, 𝑎𝑡 ∈ 𝒜  is executed by the 

agent. The environment is subsequently subjected to a transition from 𝑠𝑡  to 𝑠𝑡+1∈ 𝓢 , and an 

immediate reward 𝑟𝑡 ∈ ℛ is received by the agent. The main target of agent is to learn the optimal 

action for each state (policy) from the environment that can maximise the accumulated reward.  
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In this study, the environment refers to the UDNs in a specific area l, and the triple < 𝒮,𝒜,ℛ > in 

this framework is defined as 

• Action 𝒜: At time step 𝑡 and area 𝑙, the action 𝑎𝑖,𝑙,𝑡 ∈ 𝒜 for UE 𝑖 is set to execute the handover 

process or maintain the UE connection. If the agent decides to execute the handover process, 

the UE link switches to a new BS at time 𝑡 + 1. Otherwise, the UE will maintain its link to the 

previous serving BS. 

• State 𝒮: The input metrics, that is, the RSRP, SINR, and transmission distance (𝑑), are first 

normalised between 0 and 1. The normalised value for each metrics 𝑥 is then mapped into the 

corresponding cluster to find its cluster index. The states are represented by the combination of 

the cluster index. At time step 𝑡 and area 𝑙, the states 𝑠𝑖,𝑙,𝑡 for UE 𝑖 are 

 𝑠𝑖,𝑙,𝑡 = {𝑐𝑘,𝑅𝑆𝑅𝑃
𝑖,𝑙,�̃� , 𝑐𝑘,𝑆𝐼𝑁𝑅

𝑖,𝑙,�̃� , 𝑐𝑘,𝑑
𝑖,𝑙,𝑡̃ }, (9) 

where 𝑠𝑖,𝑙,𝑡 ∈ 𝒮 and 𝑐𝑘,𝑅𝑆𝑅𝑃
𝑖,𝑙,�̃� , 𝑐𝑘,𝑆𝐼𝑁𝑅

𝑖,𝑙,�̃� , and 𝑐𝑘,𝑑
𝑖,𝑙,𝑡̃

 are the input data at time 𝑡 and area 𝑙 belonging to the k-

th cluster of the RSRP, SINR, and d, respectively. If the handover process is executed by the agent at 

time 𝑡, the state at 𝑡 + 1 is updated based on the RSRP, SINR, and d from a new serving BS. Otherwise, 

the state at 𝑡 + 1 is updated based on the input metric of the current BS. 

• Reward ℛ: The sum of centre value of the corresponding cluster is utilised as the reward value at 

each time step t. At time step 𝑡 and area 𝑙, after the agent executes an action 𝑎𝑖,𝑙,𝑡, the reward for 

UE 𝑖 is defined as 

 𝑟𝑖,𝑙,𝑡 = 𝑥𝑘,𝑅𝑆𝑅𝑃
𝑖,𝑙,𝑡+1̃ + 𝑥𝑘,𝑆𝐼𝑁𝑅

𝑖,𝑙,𝑡+1̃ + 𝑥𝑘,𝑑
𝑖,𝑙,𝑡+1̃

, (10) 

where 𝑟𝑖,𝑙,𝑡 ∈ ℛ and 𝑥𝑘,𝑅𝑆𝑅𝑃
𝑖,𝑙,𝑡+1̃ , 𝑥𝑘,𝑆𝐼𝑁𝑅

𝑖,𝑙,𝑡+1̃
, and 𝑥𝑘,𝑑

𝑖,𝑙,𝑡+1̃
 represent the centre values of clusters 𝑐𝑘,𝑅𝑆𝑅𝑃

𝑖,𝑙,𝑡+1̃ , 𝑐𝑘,𝑆𝐼𝑁𝑅
𝑖,𝑙,𝑡+1̃

, 

and 𝑐𝑘,𝑑
𝑖,𝑙,𝑡+1̃

, respectively. If the handover process is executed by the agent at time 𝑡, the reward signal 

is obtained from the new serving BS. Otherwise, the reward signal is obtained from the current serving 

BS. 

After establishing the framework based on the aforementioned information, the Q-learning framework 

updates its value function, also known as the Q table, through several epochs. Assuming that the agent 

chooses an action based on policy 𝜋, the Q table is defined to represent every state–action pair. The 

expected total discount reward received from starting action 𝑎 in state 𝑠  is based on policy 𝜋. For the 

optimal policy 𝜋∗, the 𝑄𝜋∗
is formulated as 
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 𝑄𝜋∗
(𝑠𝑡, 𝑎𝑡) = 𝐸 [𝑟(𝑠𝑡, 𝑎𝑡)  +  𝛾 ∗ 𝑚𝑎𝑥

𝑎𝑡+1

{𝑄𝜋∗
(𝑠𝑡+1, 𝑎𝑡+1)}], (11) 

where 𝛾 ∈  (0,1) is adopted as a discount factor to balance immediate and future rewards. During the 

learning stage of Q-learning, the agent estimates the Q value from received rewards using the temporal 

difference (TD) error, which means the difference between the actual Q value (𝑄(𝑠𝑡, 𝑎𝑡)) and its 

currently estimated Q value (�̂�(𝑠𝑡, 𝑎𝑡)). Therefore, the Q value at time 𝑡 + 1 and �̂�𝑡+1(𝑠𝑡, 𝑎𝑡) is 

updated by adding a discount TD error to the currently estimated �̂�𝑡(𝑠𝑡, 𝑎𝑡) as 

�̂�𝑡+1(𝑠𝑡, 𝑎𝑡) = �̂�𝑡(𝑠𝑡, 𝑎𝑡) +  𝜂 ∗ [𝑄(𝑠𝑡, 𝑎𝑡) − �̂�𝑡(𝑠𝑡, 𝑎𝑡)] 

       =  �̂�𝑡(𝑠𝑡, 𝑎𝑡) +  𝜂 ∗ [ℛ (𝑠𝑡, 𝑎𝑡) + 𝛾 ∗ max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) − �̂�𝑡(𝑠𝑡, 𝑎𝑡)]    (12) 

where 𝜂 ∈ (0,1) is the learning rate to balance the new and old information. For example, when η=0, 

all of the new information is abandoned and no further Q value is update required; when η=1, all of 

the oldest information is discarded and the Q value is updated entirely from the latest information. 

In this study, each epoch comprises 10000 simulation time steps and is equivalent to 2.7 hours of 

actual network time. For each epoch, the accumulated reward (𝑅𝑒) is calculated as 

 𝑅𝑒 = ∑ 𝑟𝑖,𝑙,𝑡
𝑛
𝑡=1  (13) 

The training stage is terminated when the accumulated reward is converged. To achieve optimum Q 

values, ϵ-greedy is adopted to facilitate a trade-off between exploration and exploitation of the state–

action pair. With ϵ-greedy, at each time step 𝑡, the agent performs the action with the maximum reward, 

that is, 𝑎𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

𝑄∗(𝑠𝑖; 𝑎) with probability 1 − ϵ; otherwise, it will take a random action. In the 

initial training phase, ϵ is set to nearly 1 and gradually becomes 1 as each epoch increases. The Q-

learning-related parameters are {𝛾 = 0.9, 𝜂 = 0.1, and ϵ = 0.9 − 0.1} in this study. 

 

4.2 Subtractive clustering 

To improve the training efficiency and obtain a small Q table, it is necessary to reduce the scale of the 

state–action pairs. The traditional method is to categorise the related metrics into several equal length 

states. However, this categorisation method cannot reflect the actual characteristics of the input metrics. 

For example, the RSRP is divided into five equal length states -20 to -50 dB, -50 to -80 dB, -80 to -

110 dB, -110 to -130 dB, and -130 to -160 dB based on the traditional categorisation method. The 

actual data distribution of RSRP is concentrated between -80 and -140 dB. Therefore, the states need 
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to concentrate at -80 to -140 dB, rather than the other intervals, to ensure accuracy and effectiveness 

of the training results. In this study, we introduce a more systematic subtractive clustering technique 

to categorise the handover metrics into corresponding states based on the data distribution. 

Categorising input metrics into clusters effectively processes uncertain and imprecise data, minimising 

the effect of inference and noise on decision-making. 

For m input metrics and each metric with n data points, 

 {𝒙𝒊⃗⃗  ⃗ = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑚)|𝑖 ∈ [1, 𝑛]}  (14) 

Three input indicators for subtractive clustering are used in this study. Each metric has 5000 data 

points, hence n=5000 and m=3. A data point is counted as the high potential value if it has many 

neighbouring points. The potential value of each data points is evaluated as 

 𝑃𝑖 = ∑ 𝑒  −𝛼‖𝒙𝒊⃗⃗  ⃗−𝒙𝒋⃗⃗  ⃗‖
2

𝑛
𝑗=1  (15a) 

 𝛼 =
4

𝑟𝑎
2 (15b) 

In Eq. (15b), 𝑟𝑎 defines a neighbourhood’s effective radius. The data outside 𝑟𝑎 have only a limited 

influence on 𝑃𝑖. 

After calculating 𝑃𝑖 for each data point, the point with the highest 𝑃𝑖 is located as the first cluster centre. 

𝑃𝑖  for the rest of the data points is revised based on the potential 𝑃1
∗ of the first cluster centre 𝒙𝟏⃗⃗⃗⃗ 

∗
 as 

 𝑃𝑖 ← 𝑃𝑖 − 𝑃1
∗𝑒  −𝛽‖𝒙𝒊⃗⃗  ⃗−𝒙𝟏⃗⃗ ⃗⃗  

∗
‖
2

 (16a) 

 𝛽 =
4

𝑟𝑏
2 (16b) 

Subsequently, 𝑃𝑖 of the rest of the data is discounted by a function, 𝑒  −𝛽‖𝒙𝒊⃗⃗  ⃗−𝒙𝟏⃗⃗ ⃗⃗  
∗
‖
2

, which includes the 

distance between each data point to the first cluster centre 𝒙𝟏⃗⃗⃗⃗ 
∗
. According to this function, the data 

points near the first cluster centre are unlikely to be selected as the new cluster centre as its 𝑃𝑖  is 

significantly discounted. 

Next, the point with the highest revised 𝑃𝑖 is then located as the new cluster centre. 𝑃𝑖 of the rest of 

the points continues to decrease as new centres are found. When the 𝑘th centre of the cluster is located, 

𝑃𝑖 of the rest of the data points is updated as 

 𝑃𝑖 ← 𝑃𝑖 − 𝑃𝑘
∗𝑒  −𝛽‖𝒙𝒊⃗⃗  ⃗−𝒙𝒌⃗⃗ ⃗⃗  

∗
‖
2

, (17) 
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where 𝒙𝒌⃗⃗⃗⃗ 
∗
 is the kth cluster centre with potential value 𝑃𝑘

∗. The new cluster centres continue to be 

found until 𝑃𝑘
∗ < 𝜀𝑃1

∗ , where 𝜀  is the rejection ratio. The distance between each cluster centre is 

controlled by 𝛽. 

If there are k clusters located for input metric m, the set of cluster is represented by {𝑪𝒎 =

(𝑐1𝑚, 𝑐2𝑚, … , 𝑐𝑘𝑚)}. Similarity, the set of cluster centres is denoted as {𝒙𝒎⃗⃗ ⃗⃗  ⃗
∗
= (𝑥1𝑚, 𝑥2𝑚, … , 𝑥𝑘𝑚)} 

for the metric m cluster. The parameters related to subtractive clustering in this study are set as {𝛼 =

16, 𝛽 = 12, and 𝜀 = 0.005}.  

The subtractive clustering-based Q-learning algorithm is described by algorithm 1.  

 

Algorithm 1: Subtractive clustering-based Q-learning for UE 𝑖 in area 𝑙 

1 Input: historical data, that is, the RSRP, SINR, d, etc. 

2 Locate the cluster for each input data using Eqs. (14)-(17) 

3 Initialise Q(s,a) arbitrarily, ∀ 𝑠∈𝒮, 𝑎∈𝒜, and Q(terminal_state)=0 

4 for each epoch, do 

5      Initialise 𝒮 based on the cluster index 

6      for each time step 𝑡, do 

7           Update the UE location 

8           Compute the RSRP, SINR, and d from each BS to 𝑈𝐸𝑖  

9           Observe the input metric from the serving 𝐵𝑆 and convert it to state 𝑠𝑖,𝑡   from the cluster 

10           Choose 𝒜 from 𝒮 using ϵ-greedy policy 

11                 if 𝑎𝑖,𝑡 = execute handover process 

12                     Select the neighbouring BS with max(SINR) as the handover target 𝐵𝑆𝑗+1 

13                     Transfer the UE connection to the new 𝐵𝑆𝑗+1 and observe the reward from 𝐵𝑆𝑗+1 

14                 Else 

15                     Maintain the UE connection with the current 𝐵𝑆𝑗  and observe the reward from 𝐵𝑆𝑗 

16                 end if 

17            Update the Q value using Eq. (12) 

18            𝒮 ←  𝒮 

19            until 𝒮 is terminal 

20      End 

21 End 

22 Output: Q table with the optimum Q value 
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4.3 Handover triggering using the trained Q table 

After the proposed framework learns the optimal handover policy from a specific application scenario 

l, the trained Q table is utilised by the UE as the handover triggering mechanism. During the movement 

of UE i, the measuring data, that is, the RSRP, SINR, and d at time t, are first converted into state 

vector  𝑠𝑖,𝑙,𝑡  using Eq. (9). The UE then searches corresponding action 𝑎𝑖,𝑙,𝑡  with the maximum 

accumulated reward from the Q table based on 𝑠𝑖,𝑙,𝑡. If optimal action 𝑎𝑖,𝑙,𝑡 for state 𝑠𝑖,𝑙,𝑡 is execute the 

handover process, then the handover process is triggered by the UE. As shown in Fig. 3, once the 

handover process is triggered, the UE reports the handover event to its serving BS. Subsequently, the 

UE serving BS selects a neighbouring BS with the highest SINR and sends a handover request to it. 

The radio resource control (RRC) is reconfigured after target BS acknowledges the handover request. 

In this phase, the connection between the UE and its serving BS is transferred to the target BS, 

subsequently completing the RRC reconfiguration. If optimal action 𝑎𝑖,𝑙,𝑡 for state 𝑠𝑖,𝑙,𝑡 is maintain the 

UE connection, then the UE will maintain its connection with the current serving BS. 

 

 

Fig. 3 The signalling after handover triggering 

 

5. PERFORMANCE ANALYSIS 

5.1 Analysis design 

A simulation environment was built using MATLAB to test the mobility robustness of the UE under 

the proposed triggering mechanism. The environment designs are illustrated in Table 1. There are 16 
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small BSs and 2 macro BS deployed in a 1000 m ×1000 m scenario, and each small BS is 

approximately 350 m apart. The macro BS is deployed on the diagonal of the simulated environment. 

The 40 UEs move randomly at a speed of 30 km/h in the proposed environment. 

The RSRP, SINR, and transmission distance (d) modelled by Eqs. (1) and (2) are implemented as 

decision criteria for the proposed triggering mechanism. The average number of handovers (NOH) per 

UE, the probability of PPHO, the handover failure rate, throughput, and network latency calculated by 

Eqs. (3-8) are adopted as KPIs to test the effectiveness of the proposed algorithm as discussed in 

Section 2.  

The 160000 sets of data for each input metric are collected from the simulation environment to obtain 

a well-trained Q table. The 160000 sets cover all of the physical locations and are collected from all 

of the BSs deployed in this environment. The final trained Q table is utilised as the proposed handover 

triggering mechanism to be evaluated. There are two comparative approaches adopted, that is, 

traditional A3 event RSRP-based [2] and fuzzy logic-based triggering mechanisms [17] and [18]. As 

previously mentioned, the A3 event is based only on a single metric, that is, the RSRP that triggers 

the handover process. The fuzzy logic-based approach in this study also considers the RSRP, SINR, 

and d as input metrics. The approach based on Q-learning without clustering techniques (with states 

of equal lengths) is also adopted as a comparison group to show the advantage of this clustering 

technique. These four approaches work in the same test environment.  

Eq. (18) is utilised to quantify the improvement of each KPI (∆𝐾𝑃𝐼) under the proposed approach. 

𝐾𝑃𝐼1 means the evaluated KPI value under method 1, and 𝐾𝑃𝐼2 denotes the same logic. Each KPI is 

tested for at least 100 rounds in this study to ensure reliable evaluation results. 

 ∆𝐾𝑃𝐼 =
𝐾𝑃𝐼1−𝐾𝑃𝐼2

𝐾𝑃𝐼2
 %  (18) 

 

Table 1 Simulation parameters 

Parameters Specification 

Macro BS Small BS 

Carrier frequency (GHz) 1.5~2  28 

Subcarrier spacing (KHz) 15 30 

System bandwidth (MHz) 20 100 

Physical resource block 100 275 

Number of BSs 2 16 

BS transmitted power (dBm) 49 35 

Subcarriers per PRB 12 

Duration of simulation 10000 s 
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Mobility model Random direction 

Number of UE 40 

UE speed (km/h) 30  

Propagation model: Eq. (1) 

KPIs Eqs. (3-8) 

Type of noise AWGN, Rayleigh 

Handover preparation time (ms) 10ms 

Handover execution time (ms) 10 ms 

 

 

5.2 Results and analysis of comparison experiments 

Fig. 3 shows the training stage of Q-learning and accumulated rewards in each epoch with and without 

subtractive clustering. In the same training environment, the Q-learning with clustering approach 

(black solid line) converges at the 70th epoch, and the Q-learning only approach (green dash line) 

converges at the 20th epoch. After convergence, the accumulated Q-learning reward that optimised by 

subtractive clustering is approximately 3900, and the Q-learning only approach can receive 3400. 

Based on Eq. (18), the approach based on Q-learning with clustering can receive approximately 15% 

more rewards than the Q-learning only approach. The trained Q tables from both methods are utilised 

as the handover triggering mechanisms of the UE to be evaluated. The performance of these two 

mechanisms is shown in Fig. 5-9.  

 

Fig. 4 Accumulated rewards in each epoch 
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The KPIs in Fig. 5-7 are used to evaluate the mobility robustness of the UE based on different 

triggering mechanisms. According to the results in Fig. 5-6, the A3 event RSRP-based triggering 

mechanism (blue line with circle) has the highest NOH (4250) and PPHO ratio (0.24%), as it depends 

on only a single metric, the RSRP, to trigger the handover process. The RSRP fluctuates due to noise 

and interference, which can significantly reduce the triggering decision’s accuracy. The fuzzy logic 

(orange line with triangular) can consider multiple metrics as a decision criterion and thus has a lower 

NOH (2500) and PPHO ratio (0.21%) than the RSRP-based approach. Since the Q-learning-based 

approach has powerful learning capability and also considers multiple metrics in decision-making, the 

two proposed Q-learning-based approaches have the best performance. Based on the results in Fig. 5-

6 and Eq. (18), the Q-learning only approach (green dash line) can significantly reduce 70–90% of 

handovers and approximately 60% of PPHO ratios compared with the RSRP and fuzzy logic-based 

approaches. Moreover, the adoption of clustering (black solid line) can reduce another 22% of NOH 

and 20% of PPHO ratios compared with the Q-learning only approach. 

 

Fig. 5 Number of handovers by the different triggering mechanisms 
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Fig. 6 PPHO of the different triggering mechanisms 

 

As indicated in Fig. 7, the A3 event RSRP-based triggering mechanism (blue line with circle) has the 

second-lowest handover failure rate at 0.5%. This is because the RSRP is a key factor in determining 

the handover failure rate, and the A3 event RSRP-based approach will continue switching the UE 

connection to the neighbouring BS with the highest RSRP. As such, the A3 event RSRP-based 

approach can ensure a low handover failure rate. The fuzzy logic (orange line with triangular) and Q-

learning only approaches (green dash line) have relatively high handover failure rates of 5% and 1%, 

respectively. These two approaches consider multiple metrics to trigger the handover and weaken the 

weight of the RSRP in decision-making. The fuzzy membership functions used in fuzzy logic are not 

well designed for each input metric, which can cause the input to incorrectly convert to the 

corresponding level. The input metrics are also not well categorised into state vectors in the Q-learning 

only approach, which can degrade the effectiveness of the trained Q table. Therefore, these two factors 

degrade the handover failure rate. However, Q-learning with clustering (black solid line) outperforms 

the three other approaches, with a nearly zero handover failure rate of 0.1%. Compared with the Q-
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learning only approach (green dash line), the adoption of subtractive clustering can reduce the 

handover failure rate by approximately 75% based on Eq. (18).  

 

Fig. 7 Handover failure rates of the different triggering mechanisms 

 

The KPIs in Fig. 8-9 are used to evaluate the quality of service (QoS). Some existing approaches focus 

only on the improvement in mobility robustness but result in a degradation of other aspects, such as 

load balancing and QoS. Thus, the objective of this study is to increase the mobility robustness while 

maintaining the other KPIs at relatively high levels.  

Fig. 8 shows the network latency under the different handover triggering mechanisms. The A3 event 

RSRP and fuzzy logic-based approach have relatively high network latency of 16.7 ms and 15.2 ms, 

respectively. These two methods lead to many unnecessary handovers, which causes the accumulation 

of handover latency. The Q-learning only triggering mechanism also has a relatively high latency of 

14.3 ms. Although the Q-learning only approach has fewer handovers, they primarily occur at the edge 

of coverage. This can result in a high propagation latency. Q-learning with clustering outperforms the 

other three approaches again and has the lowest average network latency of 10.1 ms. Compared with 

the Q-learning only approach, subtractive clustering can further reduce handover latency by 

approximately 27.3%. 
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Fig. 8 Average network latency of the different triggering mechanisms 

 

As shown in Fig. 9, the RSRP-based approach has the highest sum throughput because the RSRP is 

also one of the key factors determining the system throughput. As such, fuzzy logic has the lowest 

throughput as it considers other metrics during decision-making. The throughput of the two Q-

learning-based approaches is slightly lower than the traditional methods but remains at a relatively 

high level. Compared with the Q-learning only approach, subtractive clustering can increase 

throughput by approximately 9.7%. 

 

Fig. 9. Total throughput of the different triggering mechanisms 
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Based on the simulation results, the proposed Q-learning with clustering-based approach outperforms 

the other three approaches in terms of the NOH, PPHO ratio, handover failure rate, and network 

latency while maintaining a relatively high level of system throughput. This good performance is due 

to the following advantages: first, the Q-learning framework has a powerful ability to learn the optimal 

policy from different environments. After obtaining the optimal policy, the trained Q table executes 

the action with the maximum reward based on the states it faces. Second, because subtractive 

clustering has a strong ability to process uncertain and imprecise information, the adoption of 

clustering minimises the effect of noise and inference during decision-making. Moreover, subtractive 

clustering can locate clusters for each input metric from the historical data. This approach ensures that 

input metrics can systematically be categorised as state vectors with respect to their actual data 

distribution. Therefore, the subtractive clustering technique ensures the accuracy and effectiveness of 

Q-learning to achieve training targets. The trained Q table can precisely and intelligently trigger the 

handover process based on the states it faces. 

 

6. CONCLUSION 

In this study, we proposed an intelligent handover triggering mechanism based on the Q-learning and 

subtractive clustering techniques to address the challenges of handovers in 5G-UDNs. In the proposed 

framework, Q-leaning can learn the optimal triggering policy from different application scenarios. The 

proposed framework’s trained Q table can be used in UE to precisely trigger the handover process 

based on the RSRP, SINR, and transmission distance. To further enhance the proposed approach’s 

performance, we adopted subtractive clustering to ensure accuracy and effectiveness of the training 

process. According to the simulation results, compared with the A3 event RSRP-based and fuzzy 

logic-based approaches, the proposed solution can effectively reduce the NOH, PPHO ratio, and 

handover failure rate while maintaining a high level of network latency and system throughput. The 

evaluation also indicated that the adoption of subtractive clustering techniques can further enhance the 

proposed approach’s performance by approximately 20% in terms of all of the evaluated KPIs. 

Moreover, the proposed solution has a low maintenance cost, as it can intelligently trigger the 

handover process without any additional handover parameters or conditions such as HHM and TTT.  
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An effort will be made in future works to develop energy efficient handover mechanism based on 

machine learning technique, which should reduce power consumption while retaining the mobility 

robustness for UE.  
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