9,297 research outputs found

    Modeling Seamless Vertical Handovers in Heterogeneous Wireless Networks

    Get PDF
    Vertical handover in heterogeneous wireless networks provides customers with better Quality of Service (QoS) experience. For seamless handover, timely initiation of handover process plays a key role. Various vertical handover management protocols have been proposed and standardized to support mobility across heterogeneous networks. In Media Independent Handover (MIH) based schemes, distributed handover decision is made via certain predefined triggers that consider user context. In this paper, we present a comprehensive review of the modeling techniques used during management of vertical handover. We have also defined a novel architecture, HRPNS: Handoff Resolving and Preferred Network Selection module enabling vertical handover that ensures QoS. The construction of HRPNS module involves integration of fuzzy logic and Markov Decision Process (MDP) for providing precise decision of handover

    Handover Necessity Estimation for 4G Heterogeneous Networks

    Get PDF
    One of the most challenges of 4G network is to have a unified network of heterogeneous wireless networks. To achieve seamless mobility in such a diverse environment, vertical hand off is still a challenging problem. In many situations handover failures and unnecessary handoffs are triggered causing degradation of services, reduction in throughput and increase the blocking probability and packet loss. In this paper a new vertical handoff decision algorithm handover necessity estimation (HNE), is proposed to minimize the number of handover failure and unnecessary handover in heterogeneous wireless networks. we have proposed a multi criteria vertical handoff decision algorithm based on two parts: traveling time estimation and time threshold calculation. Our proposed methods are compared against two other methods: (a) the fixed RSS threshold based method, in which handovers between the cellular network and the WLAN are initiated when the RSS from the WLAN reaches a fixed threshold, and (b) the hysteresis based method, in which a hysteresis is introduced to prevent the ping-pong effect. Simulation results show that, this method reduced the number of handover failures and unnecessary handovers up to 80% and 70%, respectively

    Vertical Handover decision schemes using SAW and WPM for Network selection in Heterogeneous Wireless Networks

    Get PDF
    Seamless continuity is the main goal and challenge in fourth generation Wireless networks (FGWNs), to achieve seamless connectivity "HANDOVER" technique is used,Handover mechanism are mainly used when a mobile terminal(MT) is in overlapping area for service continuity. In Heterogeneous wireless networks main challenge is continual connection among the different networks like WiFi, WiMax, WLAN, WPAN etc. In this paper, Vertical handover decision schemes are compared, Simple Additive Weighting method (SAW) and Weighted product model (WPM) are used to choose the best network from the available Visitor networks(VTs) for the continuous connection by the mobile terminal. In our work we mainly concentrated to the handover decision phase and to reduce the processing delay in the period of handover. In this paper both SAW and WPM methods are compared with the Qos parameters of the mobile terminal (MT) to connect with the best network. Keywords: Handover, Vertical handover decision schemes, Simple additive weighting, Weight product method.Comment: arXiv admin note: substantial text overlap with arXiv:1108.014

    Handover Architectures for Heterogeneous Networks Using the Media Independent Information Handover (MIH)

    Get PDF
    In heterogeneous networks, network selection by nature is a multi-dimensional problem. Many parameters need to be considered for handover decision making. Apart from handover accuracy and efficiency, an important consideration is the scalability and signaling overhead of such handover algorithms. In this article we propose to break down a Simple Additive Weighting (SAW) based heterogeneous handover algorithm in two parts. The execution of the first part is carried out in an independent and proactive manner prior to the actual handover, assuming three different handover architectures. The handover architectures are differentiated based upon the level of the distribution of the handover algorithm among multiple network components. The Media Independent Handover (MIH) and its different services are used to retrieve and share information among MIH enabled nodes and for conformity among heterogeneous network standards. The proposed algorithm is evaluated with respect to handover accuracy, handover delay efficiency and signaling overhead. The evaluation is carried out for all three handover architectures using simulations. Only handovers between Wi-Fi (IEEE 802.11) and WiMAX (IEEE 802.16) networks are considered. But the handover framework is general and can be extended to consider other wireless and mobile communication networks

    Trusted Network Selection using SAW and TOPSIS Algorithms for Heterogeneous Wireless Networks

    Full text link
    Seamless continuity is the main goal in fourth generation Wireless networks (FGWNs), to achieve this "HANDOVER" technique is used, when a mobile terminal(MT) is in overlapping area for service continuity, Handover mechanism are mainly used. In Heterogeneous wireless networks main challenge is continual connection among the different networks like WiFi, WiMax, WLAN, WPAN etc. In this paper, Vertical handover decision schemes are compared and Multi Attribute Decision Making (MADM) is used to choose the best network from the available Visitor networks (VTs) for the continuous connection by the mobile terminal. In our work we mainly concentrated to the handover decision phase and to reduce the processing delay in the period of handover. MADM algorithms SAW and TOPSIS where compared to reduce the processing delay by using NS2 to evaluate the parameters for processing delay.Comment: arXiv admin note: substantial text overlap with arXiv:1106.240

    Multi-Criteria Handover Using Modified Weighted TOPSIS Methods for Heterogeneous Networks

    No full text
    Ultra-dense small cell deployment in future 5G networks is a promising solution to the ever increasing demand of capacity and coverage. However, this deployment can lead to severe interference and high number of handovers, which in turn cause increased signaling overhead. In order to ensure service continuity for mobile users, minimize the number of unnecessary handovers and reduce the signaling overhead in heterogeneous networks, it is important to model adequately the handover decision problem. In this paper, we model the handover decision based on the multiple attribute decision making method, namely Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The base stations are considered as alternatives, and the handover metrics are considered as attributes to selecting the proper base station for handover. In this paper, we propose two modified TOPSIS methods for the purpose of handover management in the heterogeneous network. The first method incorporates the entropy weighting technique for handover metrics weighting. The second proposed method uses a standard deviation weighting technique to score the importance of each handover metric. Simulation results reveal that the proposed methods outperformed the existing methods by reducing the number of frequent handovers and radio link failures, in addition to enhancing the achieved mean user throughput

    Performance Comparison of MADM Algorithms for Network Selection in Heterogeneous Networks

    Get PDF
    Vertical handover is a need of present era of heterogeneous networks comprising different network technologies. Lot of quality of service (QoS) parameters, user�s preferences, network conditions and other parameters participate in selection of appropriate network among available networks. This multi- criteria nature of vertical handover verifiesapplicability of multiple attribute decision making (MADM) algorithms to be used for network selection in heterogeneous networks. In this work, six MADM algorithms SAW, MEW, TOPSIS, GRA, AHP and VIKOR have been implemented. Performance of these algorithms has beenanalyzed for handover latency,number of handovers and optimum network selection. It was concluded that VIKOR algorithm is able to provide compromised solution in the light of these parameters
    • …
    corecore