86,395 research outputs found

    User Intent Prediction in Information-seeking Conversations

    Full text link
    Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201

    Geoinformation, Geotechnology, and Geoplanning in the 1990s

    Get PDF
    Over the last decade, there have been some significant changes in the geographic information available to support those involved in spatial planning and policy-making in different contexts. Moreover, developments have occurred apace in the technology with which to handle geoinformation. This paper provides an overview of trends during the 1990s in data provision, in the technology required to manipulate and analyse spatial information, and in the domain of planning where applications of computer technology in the processing of geodata are prominent. It draws largely on experience in western Europe, and in the UK and the Netherlands in particular, and suggests that there are a number of pressures for a strengthened role for geotechnology in geoplanning in the years ahead

    Algorithm Diversity for Resilient Systems

    Full text link
    Diversity can significantly increase the resilience of systems, by reducing the prevalence of shared vulnerabilities and making vulnerabilities harder to exploit. Work on software diversity for security typically creates variants of a program using low-level code transformations. This paper is the first to study algorithm diversity for resilience. We first describe how a method based on high-level invariants and systematic incrementalization can be used to create algorithm variants. Executing multiple variants in parallel and comparing their outputs provides greater resilience than executing one variant. To prevent different parallel schedules from causing variants' behaviors to diverge, we present a synchronized execution algorithm for DistAlgo, an extension of Python for high-level, precise, executable specifications of distributed algorithms. We propose static and dynamic metrics for measuring diversity. An experimental evaluation of algorithm diversity combined with implementation-level diversity for several sequential algorithms and distributed algorithms shows the benefits of algorithm diversity

    How explicit are the barriers to failure in safety arguments?

    Get PDF
    Safety cases embody arguments that demonstrate how safety properties of a system are upheld. Such cases implicitly document the barriers that must exist between hazards and vulnerable components of a system. For safety certification, it is the analysis of these barriers that provide confidence in the safety of the system. The explicit representation of hazard barriers can provide additional insight for the design and evaluation of system safety. They can be identified in a hazard analysis to allow analysts to reflect on particular design choices. Barrier existence in a live system can be mapped to abstract barrier representations to provide both verification of barrier existence and a basis for quantitative measures between the predicted barrier behaviour and performance of the actual barrier. This paper explores the first stage of this process, the binding between explicit mitigation arguments in hazard analysis and the barrier concept. Examples from the domains of computer-assisted detection in mammography and free route airspace feasibility are examined and the implications for system certification are considered
    • …
    corecore