5,216 research outputs found

    On Sharp Identification Regions for Regression Under Interval Data

    Get PDF
    The reliable analysis of interval data (coarsened data) is one of the most promising applications of imprecise probabilities in statistics. If one refrains from making untestable, and often materially unjustified, strong assumptions on the coarsening process, then the empirical distribution of the data is imprecise, and statistical models are, in Manski’s terms, partially identified. We first elaborate some subtle differences between two natural ways of handling interval data in the dependent variable of regression models, distinguishing between two different types of identification regions, called Sharp Marrow Region (SMR) and Sharp Collection Region (SCR) here. Focusing on the case of linear regression analysis, we then derive some fundamental geometrical properties of SMR and SCR, allowing a comparison of the regions and providing some guidelines for their canonical construction. Relying on the algebraic framework of adjunctions of two mappings between partially ordered sets, we characterize SMR as a right adjoint and as the monotone kernel of a criterion function based mapping, while SCR is indeed interpretable as the corresponding monotone hull. Finally we sketch some ideas on a compromise between SMR and SCR based on a set-domained loss function. This paper is an extended version of a shorter paper with the same title, that is conditionally accepted for publication in the Proceedings of the Eighth International Symposium on Imprecise Probability: Theories and Applications. In the present paper we added proofs and the seventh chapter with a small Monte-Carlo-Illustration, that would have made the original paper too long

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    Sequential Regression Multiple Imputation for Incomplete Multivariate Data using Markov Chain Monte Carlo

    Get PDF
    This paper discusses the theoretical background to handling missing data in a multivariate context. Earlier methods for dealing with item non-response are reviewed, followed by an examination of some of the more modern methods and, in particular, multiple imputation. One such technique, known as sequential regression multivariate imputation, which employs a Markov chain Monte Carlo algorithm is described and implemented. It is demonstrated that distributional convergence is rapid and only a few imputations are necessary in order to produce accurate point estimates and preserve multivariate relationships, whilst adequately accounting for the uncertainty introduced by the imputation procedure. It is further shown that lower fractions of missing data and the inclusion of relevant covariates in the imputation model are desirable in terms of bias reduction.Missing data; Item non-response; Missingness mechanism; Imputation; Regression; Markov chain Monte Carlo.

    Precautionary Effect and Variations of the Value of Information

    Get PDF
    For a sequential, two-period decision problem with uncertainty and under broad conditions (non-finite sample set, endogenous risk, active learning and stochastic dynamics), a general sufficient condition is provided to compare the optimal initial decisions with or without information arrival in the second period. More generally the condition enables the comparison of optimal decisions related to different information structures. It also ties together and clarifies many conditions for the so-called irreversibility effect that are scattered in the environmental economics literature. A numerical illustration with an integrated assessment model of climate-change economics is provided.Value of Information, Uncertainty, Irreversibility effect, Climate change

    Bargaining and the theory of cooperative games: John Nash and beyond

    Get PDF
    This essay surveys the literature on the axiomatic model of bargaining formulated by Nash ("The Bargaining Problem," Econometrica 28, 1950, 155-162).Nash's bargaining model, Nash solution, Kalai-Smorodinsky solution, Egalitarian solution
    • 

    corecore