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Sequential Regression Multiple Imputation for

Incomplete Multivariate Data Using

Markov Chain Monte Carlo

Miguel Lacerda, Cally Ardington and Murray Leibbrandt

Abstract

This paper discusses the theoretical background to handling missing
data in a multivariate context. Earlier methods for dealing with item
non-response are reviewed, followed by an examination of some of the
more modern methods and, in particular, multiple imputation. One
such technique, known as sequential regression multivariate imputa-
tion, which employs a Markov chain Monte Carlo algorithm is de-
scribed and implemented. It is demonstrated that distributional con-
vergence is rapid and only a few imputations are necessary in order to
produce accurate point estimates and preserve multivariate relation-
ships, whilst adequately accounting for the uncertainty introduced by
the imputation procedure. It is further shown that lower fractions of
missing data and the inclusion of relevant covariates in the imputation
model are desirable in terms of bias reduction.

KEY WORDS: Missing data; Item non-response; Missingness mecha-
nism; Imputation; Regression; Markov chain Monte Carlo.
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1 Introduction

1.1 Problem Description

The collection and analysis of survey data is as much an art as it is a science.
In well-designed surveys, the choice of the sample follows careful deliberation
in order to ensure that inferences concerning the population of interest are
both reliable and straightforward to obtain [12]. Consideration must be
given to the design of the questionnaire, sampling types and procedures,
the cost of data collection, the subsequent statistical analyses of interest
and the affect of the complex sample design on these analyses to name but
a few of the pertinent issues. However, despite all the thought and effort
that may inform the selection of a sample, survey analysts will inevitably
encounter the problem of survey non-response, which threatens to distort
sample statistics and introduce biases that may render the observed sample
unrepresentative of the target population.

In many censuses and sample surveys, some of the units selected into the
sample may not respond to one or more of the items being asked of them.
Such datasets arise frequently in practice where the population of interest
consists of observational units such as people, households or businesses. The
problem created by non-response is, of course, that data values that were
intended to be observed by the sample design are in fact missing. These
missing values do not only imply a loss of efficiency in estimates due to the
reduced sample size, but also that standard complete-data methods cannot
be immediately used to analyse the data. Moreover, biases may arise due to
systematic differences between the respondents and non-respondents. Such
biases may be difficult to resolve in practice since the specific reasons for
non-response cannot usually be precisely known [12].

In practical terms, missingness is regarded as a nuisance, inhibiting the anal-
yses of real interest, rather than forming the main focus of inquiry. Handling
the problem of non-response in a principled manner, however, raises concep-
tual difficulties and computational challenges [15]. In an attempt to side step
such complications, practitioners frequently resort to ad hoc edits to force
the incomplete dataset to have an appearance of completeness such that
standard statistical methods may be utilised [13]. However, such methods
fail to reflect the inherent uncertainty surrounding the missing values. A
principled, yet computationally efficient, method for handling missing data
would therefore seem desirable.
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1.2 Background to the Investigation

The literature on the statistical analysis of incomplete data has flourished
since the early 1970s, spurred on by advances in computer technology that
made previously laborious numerical calculations a simple matter [6]. Prior
to this period, missing values were handled primarily be means of näıve,
editing procedures such as complete-case or available-case analysis. In 1976,
Donald B. Rubin developed the first framework of inference for incomplete
data that remains in use to date. The formulation of the Expectation-
Maximisation, or simply EM, algorithm by Dempster, Laird and Rubin in
1977 provided a method to compute maximum likelihood estimates in many
missing data problems [1]. Rather than deleting or filling in the missing
values, maximum likelihood treats the missing data as random variables to
be removed from the likelihood function as if they were never sampled [15].

Another approach to handling missing data that has developed considerably
over the last few decades is imputation; that is, filling in the missing values
with plausible substitutes such that complete-data based methods may be
employed to conduct the relevant statistical analyses [14]. However, if such
procedures are unprincipled, they may in fact cause more harm than good.
Consequently, Little and Rubin (2002) argue in favour of explicit imputation
models, rather than informal procedures such as the substitution of means.

In 1987, Rubin introduced the notion of multiple imputation in which each
missing value is replaced with m > 1 simulated values prior to analysis [15].
Such an approach is favoured over single imputation procedures, since the
uncertainty in the missing values is accounted for by the additional variation
between imputations. The creation of such multiple imputations was facil-
itated by the developments in computer technology and the new methods
for Bayesian iterative simulation, such as Markov chain Monte Carlo and
the data augmentation algorithm, discovered in the late 1980s [13]. The
maximum likelihood and multiple imputation methods for incomplete mul-
tivariate datasets have now become standard in many reputable statistical
software packages [15].

The 1990s saw many new developments in the field of incomplete data anal-
ysis. New lines of research focus on how to handle missing values while
avoiding the specification of a full parametric model for the population.
New methods for non-ignorable modelling, in which the probabilities of non-
response are allowed to depend upon the missing values themselves, are also
proliferating. Researchers are now also beginning to assess the sensitivity of
results to alternative hypotheses about the distribution of missingness [15].
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1.3 Purpose of the Research

This paper will describe and evaluate the technique for multiple imputation
proposed by Raghunathan et al (2001) and known as sequential regression
multivariate imputation. This method is an application of Markov chain
Monte Carlo which seeks to multiply impute missing entries with pseudo-
random draws from the posterior distribution of the missing data. Such
Markov chain Monte Carlo techniques have become increasingly popular in
recent years and notably so in the area of Bayesian inference, where ran-
dom draws from mathematically intractable posterior distributions are often
desired [14].

As with all iterative simulation methods, the number of iterations necessary
in order to ensure convergence is a question of both theoretical and practical
interest. This is a topic that will be examined extensively in this paper in
terms of the sequential regression multivariate imputation technique intro-
duced above. Given that this algorithm is stochastic, it will converge to
a probability distribution, rather than a point in the parameter space [14].
Consequently, this study will be concerned with assessing distributional con-
vergence. The empirical findings from this investigation will be compared to
the stance taken in the literature which suggests that convergence is rapid
in this context.

Another subject of interest is exactly how many imputations are necessary
in order for the multiple imputation model to produce unbiased and effi-
cient estimates that accurately reflect the uncertainty of the missing data
and preserve the multivariate relationships. The literature on this topic
would appear to be somewhat divided. Accordingly, this matter will also be
addressed in this paper in order to shed further light on the debate.

1.4 Layout of the Paper

This paper proceeds as follows. The next section provides an overview of
the available literature on handling missing data. The types and patterns
of non-response are explored and the various missingness mechanisms dis-
cussed. The section also considers some of the earlier methods used to
address the missing data problem as well as the more modern techniques
available to the analyst. Section 3 provides a guide as to the methods
employed in this paper. The sequential regression multivariate imputation
technique is discussed in depth, along with the methods employed to assess
convergence and the optimal number of imputations. The creation of the hy-
pothetical datasets utilised for these assessments is also described. Section 4
presents the empirical findings of this investigation. It begins by employing
a hypothetical dataset to assess distributional convergence and the optimal
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number of imputations. The robustness of the best model is then evaluated
by varying the amount of missing data and the number of covariates in-
cluded in the imputation model. Finally, conclusions and recommendations
for further research are presented in Section 5.
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2 Literature Review

Missing or incomplete data is a pervasive problem faced by most applied
researchers [9]. Although most practitioners often resort to data editing in
an attempt to create an artificial appearance of completeness, ad hoc edits
such as casewise deletion may actually do more harm than good. With or
without missing data, the goal of the analyst is to produce valid and efficient
estimates of the population of interest [15]. Simple data editing procedures
without further consideration for the missingness mechanism may result
in estimates which are not only biased, but do not adequately reflect the
uncertainty induced by the unobserved data. Put simply, the validity and
efficiency of complete-data based methods cannot be guaranteed when data
are incomplete [11]. Nonetheless, the data analyst’s primary focus does
not rest in the estimation, prediction or recovering of missing observations.
Indeed, dealing with missing data should rather be viewed as an aid in the
analyst’s quest for accurate inferences concerning the population of interest
[15].

This section will provide an overview of the missing data problem and
the methods that have been presented in the literature for handling non-
response. The next subsection will consider the types and patterns of non-
response that arise in different practical settings. This is followed by a
discussion of the three missingness mechanisms and their theoretical con-
sequences for data analysis. The early methods for dealing with missing
data are then assessed. Thereafter, a theoretical model for imputing miss-
ing data is presented, followed by an evaluation of the methods for creating
single and multiple imputations. The section is then concluded with a dis-
cussion of Markov chain Monte Carlo, an iterative procedure for multiple
imputation which has become increasingly popular in recent years.

2.1 Types and Patterns of Non-Response

Survey analysts have historically distinguished between unit non-response,
which occurs when the entire data collection procedure fails (possibly be-
cause the sampled person or household was unavailable or refused to partici-
pate at all), and item non-response, which implies that only partial data are
available where, for example, an individual declines to respond to a subset
of survey items. In practice, unit non-response is typically accounted for by
reweighting the sample, whilst item non-response is either ignored (casewise
deleted) or “resolved” by means of a single imputation [15]. The focus of
this paper is on the latter form of non-response where the modern litera-
ture typically favours multiple imputation as the superior approach to the
missing data problem.
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Most multivariate datasets can be arranged in a rectangular or matrix form
with rows corresponding to observational units and columns corresponding
to variables. With rectangular data, there are three important classes of
overall missing data patterns as illustrated graphically in Figure 1. In each
panel, there are p variables denoted Yi for i = 1, 2, . . . , p. A univariate
pattern of non-response is presented in the first panel where missing values
occur on Yp only, whilst Y1, Y2, . . . , Yp−1 are completely observed.

In the middle panel, the variables have been ordered such that if Yj is
missing for an observational unit, then Yj+1, . . . , Yp are also missing. Such a
missingness pattern is referred to as a monotone pattern and typically arises
in longitudinal studies with attrition, where Yj represents a set of variables
collected on the jth wave. Finally, the third panel displays an arbitrary
pattern of missingness in which any set of variables may be missing for any
observational unit [15]. Such a missingness pattern is characteristic of most
household survey data, including that which will be analysed in this paper.
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Figure 1: Patterns of non-response in rectangular datasets: (a) univariate
pattern, (b) monotone pattern, and (c) arbitrary pattern (Schafer and Gra-
ham, 2002, p. 150).

2.2 Missingness Mechanisms

To remain consistent with the previous nomenclature, let Y denote an n×p
data matrix with n observational units and p variables and let P (Y|θ) denote
the multivariate probability distribution of the p variables governed by the
parameter set of interest θ. One can then define a missingness indicator
matrix R to identify what is observed and what is missing. The form of this
latter matrix will clearly depend upon the missingness pattern inherent in
Y. For example, if the missingness pattern is univariate, R could represent
an n-dimensional column vector of binary variables indicating whether Yp

is observed or missing for each of the n observational units. On the other
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hand, if a monotone pattern is observed, R might be an n-dimensional
column vector of integer variables indicating the highest j = {1, 2, . . . , p}
for which Yj is observed [15]. More generally, however, R = {rij} can be
regarded as an n× p matrix of binary indicators such that

rij =
{

1 if yij is missing
0 if yij is observed.

This final model of missingness allows for the arbitrary pattern in Figure 1.

In modern missing data procedures, the missingness represented by R is re-
garded as a probabilistic phenomenon, where R is treated as a set of random
variables with a joint probability distribution [11]. In the statistical litera-
ture, this distribution is referred to as the missingness mechanism. For the
discussion to follow, let P (R|ξ,Y) denote the joint probability distribution
of the missingness indicator variables conditional on the response variables
Y and governed by the nuisance parameters ξ. By conditioning on Y, this
distributional form allows for the fact that the missingness R may be related
to the data. The missingness mechanism may then be classified into three
categories based on the nature of this relationship [15].

2.2.1 Missing Completely at Random

Using the notation YOBS and YMISS to represent the observed and missing
portions of the dataset Y respectively, the missingness mechanism is deemed
to be missing completely at random (MCAR) if

P (R|ξ,Y) = P (R|ξ). (2.1)

In this case, the distribution of missingness or equivalently, the propensity
to respond, is independent of both the observed and missing data. The
missing values for a variable are therefore akin to a simple random sample
of the data for that variable, such that the distribution of missing values is
the same as the distribution of observed values [19].

In terms of the univariate pattern of non-response mentioned earlier, the
MCAR mechanism implies that the probability that Yp is missing for a par-
ticipant does not depend upon that respondent’s own observed values on
Y1, Y2, . . . , Yp−1 nor does it depend upon his or her missing value on Yp.
Similarly, for the monotone pattern, MCAR means that Yj is missing with
probability unrelated to any variables in the system; that is, attrition is
independent of the responses at every occasion. Finally, where an arbitrary
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pattern of missingness persists, the MCAR assumption requires indepen-
dence between missingness and the p variables as is formalised in Equation
2.1 [15].

2.2.2 Missing at Random

The missingness mechanism is defined as missing at random (MAR) if

P (R|ξ,Y) = P (R|ξ,YOBS). (2.2)

The above expression implies that the missingness R is independent of the
missing responses YMISS, but is dependent upon some or all of the observed
variables in YOBS for each observational unit. Therefore, despite its name,
MAR does not suggest that the missing data values are merely a random
draw from the dataset Y as is the case for MCAR [13]. In contrast to
MCAR, MAR is a less restrictive assumption in that the missing values can
depend upon the response variables through the observed data. In this case,
the missing values for a variable are like a simple random sample of the data
for that variable within subgroups defined by the categories of the observed
variables which are related to the missingness R. Consequently, the distri-
bution of the missing values is assumed to be the same as the distribution of
the observed values within each subgroup defined by the observed variables
related to missingness [19]. The data are therefore purported to be missing
completely at random within each of these subgroups.

Returning to the missingness patterns discussed earlier, an MAR mechanism
in the presence of a univariate pattern would imply that the probability
of a response on variable Yp may be dependent upon one or more of the
observed variables Y1, Y2, . . . , Yp−1, but not upon Yp itself. In terms of a
monotone pattern, MAR means that the probability of response on the
variables Yj , Yj+1, . . . , Yp may be related only to Y1, Y2, . . . , Yj−1. Intuitively,
this implies that attrition may depend upon any or all of the responses
prior to the point at which the participant drops out. Consequently, MAR
is often referred to as non-informative attrition in a longitudinal context,
since the participant’s propensity to respond is not “informed” by his or her
missing values in the waves subsequent to dropout. Finally, with respect
to an arbitrary missingness pattern, the MAR assumption implies that a
participant’s probabilities of response may be related only to his or her set
of observed values, a set that may change from one participant to another
[15].
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2.2.3 Missing Not at Random

In the event that missingness is dependent not only upon the observed data,
but also upon that which is missing, the missingness mechanism cannot be
simplified further as was the case in Equations 2.1 and 2.2 [19]. Formally,
this implies that

P (R|ξ,Y) 6= P (R|ξ,YOBS). (2.3)

Such a missingness mechanism is termed missing not at random (MNAR)
since some residual dependence between the missingness R and YMISS re-
mains after accounting for YOBS. In terms of the univariate missingness
pattern above, MNAR would imply that the propensity to respond is de-
pendent upon Yp itself, even after accounting for the possible relationship
between missingness and Y1, Y2, . . . , Yp−1. In contrast to MAR, MNAR in
the presence of a monotone pattern implies that Yj is missing with probabil-
ity related to the unobserved responses on Yj , Yj+1, . . . , Yp subsequent to the
participant’s dropout. Unsurprisingly, this form of missingness mechanism
is often referred to as informative attrition in longitudinal studies. Finally
and more generally, in the presence of an arbitrary pattern of missingness,
MNAR would imply that a participant’s probability of response may de-
pend upon his or her set of observed values as well as his or her unobserved
values, where the set of observed and missing data is likely to differ between
observational units [15].

2.3 Implications of the Missingness Mechanisms

When dealing with complete data, most traditional statistical methods as-
sume that the data is a randomly drawn sample from the population distri-
bution P (Y|θ) governed by the parameter set θ. To the statistician, P (Y|θ)
has two very different interpretations. Firstly, from a frequentist or Fishe-
rian standpoint, P (Y|θ) is regarded as the repeated sampling distribution
of Y. In this context, the distribution describes the probability of observing
any specific dataset among all possible datasets that could arise over hypo-
thetical repetitions of the sampling procedure. The second interpretation
treats P (Y|θ) as a likelihood function for θ conditional on the observed
data, often denoted as L(θ|Y) to distinguish it from the first interpretation.
By substituting the realised values of Y into L(θ|Y), the likelihood function
summarises the data’s evidence about the parameters θ [15].

When data are incomplete, the full probability model to describe the data
becomes the joint probability function P (Y,R|θ, ξ). From the definitions
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of MCAR and MAR presented earlier, it follows immediately that the joint
probability distribution of the observed data may be simplified as

P (YOBS,R|θ, ξ) =
{
P (R|ξ)P (YOBS|θ) if MCAR
P (R|ξ,YOBS)P (YOBS|θ) if MAR.

(2.4)

In the case of MCAR, the separation of the joint distribution into the prod-
uct of its marginal distributions is allowed, because the missingness R is
assumed to be independent of the observed data YOBS. Similarly, for MAR,
the joint distribution may be separated into the product of the conditional
distribution of R given YOBS and the marginal distribution of YOBS, since
missingness only depends on the observed values.

For what follows, it is further assumed that the parameter set of interest
θ and the nuisance parameter set ξ are distinct; that is, knowledge of θ
provides no information about ξ and vice versa. Such an assumption would
appear to be intuitively appealing. The implication, however, is far more
profound. If θ and ξ are distinct, then it follows that the joint observed-
data distribution P (YOBS,R|θ, ξ) may simply be replaced by the marginal
observed-data distribution P (YOBS|θ) for the purpose of likelihood-based
inferences on θ, since clearly knowledge of ξ would have no influence on
such inferences. Consequently, the observed-data likelihood function for θ
may be obtained by integrating over the range of the marginal distribution
of Y with respect to the missing data as follows

L(θ|YOBS) = P (YOBS|θ) =
∫
P (Y|θ) dYMISS. (2.5)

Note, however, that it is not always true that this expression is the correct
sampling distribution for the observed data or the correct likelihood function
for θ. Donald B. Rubin (1976) was the first to identify the conditions under
which Equation 2.5 is a proper sampling distribution and a proper likelihood
function. Interestingly, these conditions are not identical. For Equation 2.5
to be a correct sampling distribution, the missingness mechanism should be
MCAR, whilst only the MAR assumption is necessary for the expression
to yield a proper likelihood function. The weaker condition for a proper
likelihood function as oppose to a proper sampling distribution suggests
that missing-data procedures based on likelihood principles are generally
more useful than those derived solely on the basis of repeated sampling
arguments. Many of the older data editing procedures such as complete-
case analysis bear no relationship to the likelihood function and may be
valid only under MCAR. Even in the unlikely event that MCAR does hold,
such methods may still be inefficient. Hence, methods which treat Equation
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2.5 as a likelihood tend to be more powerful and better suited to real world
applications in which MCAR is often violated [15].

From Equation 2.5, it follows that inferences on θ under MCAR or MAR
may be based solely on the observed-data likelihood function L(θ|YOBS)
without concern for the missingness mechanisms P (R|ξ) and P (R|ξ,YOBS)
respectively. Consequently, the MCAR and MAR missingness mechanisms
are said to be ignorable [19].

In contrast, an MNAR mechanism implies that Equation 2.5 is neither a
proper sampling distribution nor a proper likelihood function for θ. In order
to obtain either of these, one would instead need to evaluate the following
integral with respect to the missing data,

P (YOBS,R|θ, ξ) =
∫
P (R|Y, ξ)P (Y|θ) dYMISS, (2.6)

which clearly requires an explicit model for P (R|YOBS,YMISS, ξ). Conse-
quently, this form of missingness is often termed non-ignorable missingness
since the missingness mechanism cannot be ignored when drawing inferences
on θ. In most instances, the missingness model P (R|Y, ξ) is a nuisance
since questions of substantive interest usually pertain to the distribution of
Y rather than that of R. Nonetheless, the distinctness assumed between θ
and ξ under MCAR and MAR does not apply under MNAR, since by defini-
tion the model for R does contain information concerning θ. Consequently,
the evidence about θ from Equation 2.6 may in fact suggest a very different
story to that of Equation 2.5 [15].

2.4 Early Methods for Dealing with Missing Data

Prior to the mid 1970s, missing data was handled mostly by means of ad
hoc procedures which often express little concern if any for the underly-
ing missingness mechanism. Casewise deletion, also known commonly as
listwise deletion and complete-case analysis, was the most popular of such
procedures primarily due to its simplicity. This method quite simply dis-
cards any observational unit whose information is incomplete. Available-
case analysis is an extension of casewise deletion, but differs in that it uses
different sets of observational units to estimate different parameters. Whilst
casewise deletion eliminates all cases that have any missing values on any
variables regardless of the parameters being estimated, available-case anal-
ysis will only exclude those cases for which data is missing on the variables
necessary to estimate the parameters of interest. Available-case analysis
therefore makes more efficient use of the information contained in the sam-
ple relative to casewise deletion [15]. Indeed, available-case analysis is still
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the most common way in which analysts deal with missing data today and
is often the default in many statistical software packages.

Both complete-case and available-case analysis implicitly assumes that non-
response is missing completely at random and non-respondents are assumed
to be no different from respondents. If the missingness mechanism is in fact
MCAR, it follows that complete-data based methods applied to only the
observed data will produce unbiased estimates of the parameter set θ, albeit
subject to a loss in precision due to the smaller sample size. In practice,
however, an MCAR mechanism is unlikely and the observed cases could
therefore be unrepresentative of the target population. If the departures
from MCAR are not serious, the impact of the bias may not be important,
although it may be difficult to assess the magnitude and direction of such
biases. On the other hand, where such departures are substantial, parameter
estimates may be severely biased [15].

In some non-MCAR situations, it is possible to reduce biases from casewise
deletion by reweighting the sample. After the removal of incomplete cases,
the remaining complete cases are weighted so that their distribution more
closely resembles that of the full sample with respect to the weighting vari-
ables. Weights are derived by estimating the propensity to respond from
the data using, for example, logistic or probit regression models. Weighting
can reduce biases due to differential response related to the variables used
to model the probability of response, but it cannot account for biases that
arise from variables that are unused or unmeasured [15].

In fully parametric models, maximum likelihood estimates can often be cal-
culated directly from the incomplete data by specialised numerical methods.
An example of such a method is the Expectation Maximisation, or EM, al-
gorithm, which is a popular approach to incomplete data analysis. The key
idea of EM is to solve a difficult incomplete-data estimation problem by it-
eratively solving an easier complete-data problem. Intuitively, this involves
“filling in the missing data” with the best guess of what it might be under
the current estimate of the unknown parameters. The parameters are then
re-estimated from the observed and “filled-in” data. In this context, “filling
in the missing data” is not a literal process as is the case for the imputation
methods described next. Instead, it refers to filling in the complete data suf-
ficient statistics in the likelihood function. This method is therefore more
computationally efficient than the simulation-based imputation methods de-
scribed below. However, when missing data are a nuisance rather than the
focus of enquiry, a simple approximate solution with good properties may be
preferable to one that is more efficient, but problem specific and complicated
to implement [13].

12



2.5 The Imputation Model

Imputation, the practice of filling in missing data with plausible values, has
emerged in recent years as an attractive alternative to analysing incomplete
datasets [14]. Whilst both the complete-case and available-case analyses
blindly ignore the available information for each observational unit, impu-
tation procedures attempt to harness this information to provide reasonable
estimates of the missing data. These methods can be applied to impute
one value for each missing item or to impute several values to allow for the
inherent uncertainty in the imputation procedure. The former is referred to
as single imputation, whilst the latter is termed multiple imputation [6]. Op-
erationally, imputation resolves the missing data problem at the outset and
allows the analyst to proceed relying on familiar complete-data based sta-
tistical methods. However, a näıve or unprincipled imputation method may
actually create more problems than it solves, distorting estimates, standard
errors and multivariate relationships [14].

Imputations are means or draws from the predictive distribution of the miss-
ing values given the observed data and therefore require a method for cre-
ating this predictive distribution for the imputation [6]. Once the missing
values have been imputed, the analyst may then proceed to draw inferences
concerning θ. Theoretically, this idea may be presented in two ways. From
a frequentist perspective, imputation implies simulating a random draw or
mean from the conditional distribution,

P (YMISS|YOBS,θ) =
P (Y|θ)

P (YOBS|θ)
(2.7)

In practice, however, the parameter set θ is unknown and must be esti-
mated from the observed data. A draw or mean may then be taken from
P (YMISS|YOBS, θ̂) where θ̂ is an observed-sample estimate of θ [15].

The Bayesian perspective, on the other hand, allows for prior information
concerning θ to enter explicitly into the model such that the observed-data
posterior distribution on θ is proportional to the likelihood of θ given the
data multiplied by the prior information,

P (θ|YOBS) ∝ L(θ|YOBS)π(θ) (2.8)

where π(θ) represents the prior distribution of θ. Note that as the sam-
ple size increases, the sample estimate of θ will be weighted more heavily
relative to this prior information such that the prior distribution will ex-
ert less influence in inferences on θ [15]. Where no prior information is
assumed, a non-informative prior distribution may be used for θ such that
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the observed-data posterior distribution P (θ|YOBS) is proportional to the
likelihood function. The conditional distribution of YMISS given YOBS may
be obtained by averaging over the observed-data posterior distribution of θ
as follows

P (YMISS|YOBS) =
∫
P (YMISS|YOBS,θ)P (θ|YOBS) dθ (2.9)

where P (YMISS|YOBS,θ) is the conditional predictive distribution of YMISS

given YOBS and θ. It therefore follows that if the values for the parameters
θ can be drawn from their posterior distribution, then the corresponding
draws from the conditional predictive distribution given YOBS and θ are the
draws from the posterior predictive distribution P (YMISS|YOBS). Random
draws from or the posterior mean of this distribution may therefore be used
to impute missing values [19].

Irrespective of the perspective adopted, imputing under either Equation 2.7
or Equation 2.9 assumes that the missingness mechanism is ignorable; that
is, inferences concerning θ are assumed to be unrelated to the distribution
of missingness. Consequently, all methods which impute under this model
assume either MCAR or MAR or both [15].

Three types of uncertainties are involved in the imputation process, which
are best illustrated by recourse to the posterior predictive distribution dis-
cussed above. The first uncertainty is that which arises in the modelling
of the joint distribution of the response variables and the missingness in-
dicators P (Y,R|θ, ξ). This uncertainty includes any assumptions made
concerning the missingness mechanism itself. The second uncertainty per-
tains to the random sampling from the conditional predictive distribution
P (YMISS|YOBS,θ) when the values of YOBS and θ are known. The third
and final uncertainty arises because the value of θ in the conditional predic-
tive distribution is in fact unknown and therefore requires a random draw
from its posterior distribution P (θ|YOBS) [19]. In light of the first uncer-
tainty, the analyst has little option but to try different imputation models
and make his or her assumptions explicit. With respect to the latter two
uncertainties, however, the choice of imputation procedure has a large part
to play in ensuring that the uncertainties are adequately reflected at the
analysis stage.

2.6 Single Imputation

In light of the above theoretical foundation, some of the more popular single
imputation methods available to the analyst will now be reviewed.
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2.6.1 Imputing Means from Predictive Distributions

Unconditional mean substitution is a popular approach to imputation in
which missing values are replaced by the average of the observed values for
that variable. Whilst the average for the variable will clearly be preserved,
other properties of the distribution such as the variance and quantiles will
be altered with potentially serious ramifications. In particular, the precision
of estimates of θ will be overstated since the sample variance will be down-
wardly biased and the sample size will be artificially inflated. Moreover,
Schafer and Graham (2002) show that with 25% missing data, the coverage
of a 95% confidence interval on θ drops to only 86%, corresponding to a
Type 1 error rate that is nearly three times its nominal value. Further-
more, unconditional mean imputation disregards multivariate relationships
and therefore also corrupts the covariances and intercorrelations between
variables [15].

Cell mean substitution, by contrast, does attempt to take account of the
multivariate relationships in the dataset. Instead of imputing the observed-
data mean for each variable, respondents are divided into cells or classes on
the basis of several known variables and the mean values within these cells
are used for imputation [6]. For example, under the univariate missingness
pattern of Figure 1, cell mean imputation may be executed by estimating
a regression model based on the observed data and then using this model
to predict values for non-respondents on Yp, conditional on their observed
values for Y1, Y2, . . . , Yp−1. This form of cell mean imputation is often re-
ferred to as regression imputation and may be extended to other missingness
patterns. The technique allows for an individual’s response probability to de-
pend upon the observed data, but assumes that the missingness mechanism
is MCAR within cells. As with unconditional mean imputation, however,
this technique continues to understate the standard errors of estimates. Fur-
thermore, the method is not recommended for the analysis of covariances
or correlations as it overstates the strength of the relationship between the
dependent and predictor variables. Moreover, where no such relationship
exists, this method simply reduces to ordinary mean substitution [15].

2.6.2 Imputing Draws from Predictive Distributions

The conceptual basis of the mean substitution methods presented above,
i.e. to predict missing values, is somewhat misguided. It is generally more
desirable to preserve a variable’s distribution, or perhaps more accurately,
the multivariate distribution of the dataset. Consequently, a wide array of
single imputation methods has been developed to more effectively preserve
distributional shape [7]. One such class of procedures known as hot deck
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imputation involves substituting missing values with observed values drawn
from similar responding units. This non-parametric technique is common in
survey practice and may involve very elaborate schemes for selecting similar
observational units for imputation [6]. One such scheme involves dividing
observational units into cells and then replacing each missing value within
the cell with a random draw from the observed values. In some instances,
an entire observational unit may be drawn at random from within a cell to
impute for all the missing values on another observational unit within the
same cell. This method partially resolves the issue of understating uncer-
tainty, because the variance of each variable is not distorted to the same
degree as is the case with unconditional mean substitution. However, hot
deck imputation still corrupts correlations and other measures of association
[15].

Several single imputation methods have also evolved to exploit informa-
tion which may be available outside the realised sample. Substitution, a
method for dealing with unit non-response at the fieldwork stage of the sur-
vey, replaces non-responding units with alternative units not selected into
the sample. Erroneously, such datasets are often treated as if they are com-
plete. Although it is true that these data do not contain missing values,
this is only because non-respondents have been substituted or, equivalently,
imputed with the values of respondents. Hence, if the non-response mech-
anism is not MCAR such that respondents do differ systematically from
non-respondents, estimates of the population parameters may be seriously
biased [6].

A similar method to substitution is cold deck imputation where missing val-
ues are substituted by a constant value from an external source, such as a
value from a previous realisation of the same survey [6]. As with substitu-
tion, the imputed values of cold deck imputation are commonly regarded
as part of the complete sample, thereby subjecting inferences to the biases
that may arise from differences between the current sample and the external
source from which the imputations are extracted.

It was noted earlier that whilst unconditional mean substitution completely
disregards the possible relationships between the imputed variable and its
covariates, conditional or cell mean substitution will overstate these rela-
tionships to the extent that the R2 measure among the imputed values will
be unitary [15]. In an attempt to reach a compromise between these two
extremes, stochastic mean substitution might be employed whereby imputed
values are randomly generated from a specified theoretical distribution (usu-
ally Gaussian) with mean equivalent to the cell mean and variance equal to
the cell variance. By imputing random draws from the predictive distri-
bution rather than means, this method will not dilute or exaggerate the
relationship between the imputed variable and the covariates selected for
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the imputation. This method does not, however, resolve the understated
standard error of estimate and will continue to corrupt the multivariate
relationships within cells.

An immediate extension of this method is stochastic regression imputation.
In this case, missing values are replaced by a value predicted by regression
imputation plus a residual drawn to represent the uncertainty in the pre-
dicted value [6]. With an ordinary least squares model, this residual will be
a random draw from the Gaussian distribution with zero mean and variance
estimated by the mean squared error of the model. Stochastic regression
imputation is, however, not limited to the normal linear regression model
and may be implemented with generalised linear models such as Poisson and
generalised logistic regression. The technique allows for an MAR missing-
ness mechanism in that the propensity to respond may depend upon any of
the variables included in the appropriate regression model.

Stochastic regression imputation is essentially an attempt to address the
inherent uncertainty in sampling from the predictive distribution, an is-
sue that is disregarded when deterministic means are imputed. However,
once the missing values have been imputed, the dataset is treated as if it
were completely observed, ignoring the fact that the imputed values are not
much more than calculated guesses. Consequently, the standard errors of
estimates will not reflect the variability of each imputed value that would
arise from hypothetical repetitions of the imputation process. Recall that
this variability arises due to both the uncertainty surrounding the random
draw from the conditional predictive distribution P (YMISS|YOBS,θ) and
the uncertainty concerning the random draw of θ from its posterior distri-
bution. Failure to fully account for these uncertainties is the fundamental
flaw with most single imputation methods, a problem which has spurred on
the development of techniques for multiple imputation.

2.7 Multiple Imputation

Multiple imputation was first proposed by Rubin in the 1970s as a possible
solution to the problem of survey non-response and has since emerged as a
flexible alternative to likelihood methods for a wide variety of missing data
problems. This class of techniques retains the attractiveness of stochastic
single imputation from the predictive distribution of YMISS , whilst simul-
taneously addressing the problem of understating uncertainty [15]. Multiple
imputation is a principled method for handling missing data and consists
of three steps. The first step is to create m > 1 plausible versions of the
complete data by imputing each missing value m times using m independent
draws from an appropriate imputation model conditional on the observed
data. This procedure is presented schematically in Figure 2.
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Figure 2: Schematic representation of multiple imputation (Schafer and
Graham, 2002, p. 165)

Initially, m independent values of the parameters θ(1),θ(2), . . . ,θ(m) will
need to be simulated for use in the model for YMISS given YOBS. Treating
parameters as random, rather than fixed, is an essential part of multiple im-
putation and the technique therefore falls more naturally into the Bayesian
context [15]. In the second step, the m imputed datasets are treated as if
they were entirely observed and analysed individually by standard complete-
data methods [19]. Note that for m = 1, this procedure is akin to single
imputation. In the third and final step, the results from the m analyses are
combined in a simple and appropriate manner to obtain overall estimates
and standard errors that reflect not only sampling variation, but also the un-
certainty associated with the imputed values [15]. These estimates provide
the basis for what Rubin termed repeated imputation inference concerning
the parameter set θ [12].

In order to understand how multiple imputation accounts for the uncer-
tainty introduced by the imputation procedure, it is useful to consider the
rules for combining the results from the m imputed datasets. This set of
rules has been dubbed “Rubin’s rules” in the literature, after its devisor
Donald B. Rubin. After imputing YMISS with m sets of conditionally inde-
pendent draws from the posterior predictive distribution P (YMISS|YOBS),
or equivalently from P (YMISS|YOBS, θ̂) where θ̂ is an estimate of θ based on
the observed data, the repeated imputation inference is achieved as follows.
Suppose that Q ∈ θ represents a scalar population quantity to be estimated
and let Q̂(t) = Q̂(YOBS,Y

(t)
MISS) be the repeated estimates along with their

estimated squared standard errors Û (t) = Û(YOBS,Y
(t)
MISS) from the im-

puted datasets {YOBS,Y
(t)
MISS : t = 1, . . . ,m}. Then the overall estimate of
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Q is simply taken to be average of the repeated estimates,

Q̄ =
1
m

m∑
t=1

Q̂(t). (2.10)

In a multiple imputation context, the variance of the estimate Q̄ has two
components, namely the average within-imputation variance,

Ū =
1
m

m∑
t=1

Û (t) (2.11)

and between-imputation variance,

B =
1

m− 1

m∑
t=1

(Q̂(t) − Q̄)2. (2.12)

The total variance is then the adjusted sum of these two components given
by

T = Ū + (1 +m−1)B. (2.13)

By accounting for both within- and between-imputation variation, the un-
certainties in the imputed data are generally correctly incorporated into the
final inference. This overcomes the major drawback of single imputation,
which underestimates total variation because it has zero between-imputation
variance [19]. The uncertainties surrounding the random draws from the
conditional predictive distribution P (YMISS|YOBS,θ) and the posterior dis-
tribution P (θ|YOBS) are reflected in the estimated variation between impu-
tations. Furthermore, uncertainty in the choice of imputation model may
also be addressed by utilising two or more models for non-response. Dif-
ferences between imputation models will again be reflected in the between-
imputation variation, allowing the analyst to assess the sensitivity of infer-
ences across models. This may prove critical where the missingness mecha-
nism is non-ignorable [6].

Naturally, confidence intervals constructed with this larger standard error
of estimate will be wider, thereby increasing coverage in repeated sampling.
With respect to confidence intervals and hypothesis testing, Rubin (1987)
suggested the use of the Student-t approximation,

√
T (Q̄−Q) ∼ tv (2.14)
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with degrees of freedom

v = (m− 1)
[
1 +

Ū

(1 +m−1)B

]2

.

The degrees of freedom may vary from m− 1 to ∞, depending on the rate
of missing information. The fraction of information missing due to non-
response is given by

γ =
r + 2/(v + 3)

r + 1
, (2.15)

where

r =
(1 +m−1)B

Ū

is the relative increase in total variance due to non-response [12]. Note
that the fraction of missing information γ is not the same of the fraction
of missing data. A high rate of missing observations on a variable does
not automatically translate into high rates of missing information, since the
variable may be highly correlated with other variables that are more fully
observed such that little information is lost through missingness [13].

When the degrees of freedom are large, the Student-t distribution is approx-
imately normal, the total variance is well estimated and there is little to be
gained from increasing the number of imputations [15]. Rubin (1987) com-
puted a measure of efficiency based on the rate of missing information and
the number of imputations relative to the hypothetical case where m = ∞,

λ =
(
1 +

γ

m

)−1/2
. (2.16)

Note that λ is measured in units of standard errors. Table A1 in Appendix A
presents Rubin’s efficiency estimates for various values of γ and m, showing
that in cases with low levels of missing information, as few as two or three
imputations is “nearly fully efficient” (Rubin, 1987, p. 114). With 50% miss-
ing information, only five imputations are necessary to obtain an efficiency
of 95% or equivalently a standard error that is only

√
1 + 0.5/5 = 1.049

times as large as an imputation with m = ∞ [13]. Indeed, m = 5 would
appear to be the favourite choice in the literature and Schafer (1999) claims
that there is little to no practical benefit from using more than five to ten im-
putations. However, some authors have expressed concern over this rule-of-
thumb. For example, Royston (2004) argues that the coefficient of variation
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of the confidence coefficient tv
√
T is particularly high for such low values of

m, resulting in unreliable confidence intervals for Q. Consequently, Royston
proposes that the value of m should be chosen such that the coefficient of
variation for the confidence coefficient of the worst-case parameter is less
than 5%. In his empirical studies, this would require m to be at least 20
and possibly more [10]. Thus, there would appear to be no hard and fast
rule for the choice of m.

The validity of multiple imputation relies on the manner in which the im-
putations are created and how that procedure relates to the subsequent
analyses of the data [15]. If the imputation model does not preserve the
distributional relationships between the missing values and the observed val-
ues, it follows that inferences on these relationships from imputed complete
data will generally be biased. For example, if the imputation model does
not include variables to be used in the inferences from the imputed complete
data, correlations between these omitted variables and the imputed variables
will be attenuated to zero. Furthermore, if the multiple imputations are not
based on conditionally independent samples from the model for YMISS given
YOBS, the between-imputation variance will typically be understated [19].
Construction of an appropriate imputation model is therefore non-trivial and
will require careful consideration of the subsequent complete-data analyses
to be conducted.

2.8 Markov Chain Monte Carlo

In many missing data problems, the observed-data posterior distribution
P (θ|YOBS) is intractable and cannot be easily summarised or simulated.
The first step in multiple imputation, however, specifies that m parame-
ter sets be randomly drawn from this distribution, thereby allowing the
analyst to further simulate the draws of YMISS from its predictive distribu-
tion P (YMISS|YOBS). Consequently, it is critical that this apparent prob-
lem be resolved. It turns out that if the observed data is augmented by
an assumed set of values for YMISS , the resulting complete-data posterior
P (θ|YOBS,YMISS) becomes much easier to handle. This led to the develop-
ment of the data augmentation algorithm by Tanner and Wong in 1987 [17].
In recent years, this method has become increasingly popular for the purpose
of multiple imputation within a Markov chain Monte Carlo framework.

Markov chain Monte Carlo is an iterative sampling scheme and has been ap-
plied successfully to a broad range of statistical problems [19]. In contrast to
standard Monte Carlo methods that produce a set of independent simulated
values from a desired probability distribution, Markov chain Monte Carlo
produces chains in which each of the simulated values is mildly dependent on
the preceding value. Formally, a Markov chain is a stochastic process with
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the property that any specified state in the series θ(t) is dependent only on
the previous value in the chain θ(t−1) and is therefore conditionally inde-
pendent of all other previous states θ(1),θ(2), . . . ,θ(t−2). Hence, a Markov
chain wanders around the state space remembering only where it has been
in the last period. This property turns out to be enormously useful and is
exploited in the Markov chain Monte Carlo methods. The basic principle
behind Markov chain Monte Carlo is that once this Markov chain has run
through a sufficient number of iterations, it will find its way to the desired
posterior distribution of interest. By letting the chain wander around, it
will then produce a sample from this distribution that is only mildly non-
independent. These sample values may then be used to describe the limiting
distribution [3]. In a multiple imputation context, the target distribution
of interest is the joint conditional distribution of YMISS and θ given YOBS,
that is, P (YMISS,θ|YOBS).

The Markov chain Monte Carlo method suggests the following iterative sam-
pling scheme for the imputation of missing values. Given a current estimate
θ(t) of the parameter set, impute the missing data from the conditional
predictive distribution of YMISS ,

Y(t+1)
MISS ∼ P

(
YMISS|YOBS,θ

(t)
)
. (2.17)

Next, conditioning on Y(t+1)
MISS, a new value of θ can be drawn from its aug-

mented complete-data posterior distribution,

θ(t+1) ∼ P
(
θ|YOBS,Y

(t+1)
MISS

)
. (2.18)

Recall that it is generally easier to simulate this distribution, rather than the
observed-data posterior P (θ|YOBS). Repeating this process from a start-
ing value θ(0) yields the stochastic sequence {θ(t),Y(t)

MISS : t = 1, 2, . . .}
which converges in distribution to P (YMISS,θ|YOBS) as required. Note
further that the subsequences {θ(t) : t = 1, 2, . . .} and {Y(t)

MISS : t =
1, 2, . . .} have the posterior distribution P (θ|YOBS) and the predictive dis-
tribution P (YMISS|YOBS) as their marginal stationary distributions respec-
tively. For sufficiently large t, one can regard θ(t) as an approximate draw
from P (θ|YOBS) and Y(t)

MISS as an approximate draw from P (YMISS|YOBS).
Consequently, Tanner and Wong (1987) refer to Equation 2.17 as the Impu-
tation or I-step and Equation 2.18 as the Posterior or P-step. With respect
to the starting point θ(0), the maximum likelihood estimate based on the
observed data is typically regarded as a good choice [13].

Multiple imputations of YMISS should ideally be independent given YOBS.
However, even after a long run of the Markov chain, such multiple impu-
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tations cannot be acquired by successive iterations, because the successive
iterations of a single chain tend to be correlated. Instead, one may use
the values produced after every kth iteration of a single chain, where k is
large enough such that the dependence between the imputed values is neg-
ligible. Alternatively, one can generate m independent chains of length k
and take the final values of each chain as the m imputations for YMISS .
Again, the choice of k should be such so as to ensure that successive impu-
tations are statistically independent and distributional convergence in the
Markov chain {θ(t),Y(t)

MISS} has been reached. Monitoring distributional
convergence, however, is a far more complicated task than, for example,
monitoring pointwise convergence. This issue will be examined empirically
in this paper. Nonetheless, the value of Markov chain Monte Carlo lies in
the fact that it allows one to avoid the complicated analytical calculations of
the observed-data posterior distribution for the unknown parameters θ and
the posterior predictive distribution of YMISS given YOBS [19]. Indeed, the
Markov chain Monte Carlo approach to multiple imputation would appear
to be the most favourable means for handling missing data in the literature
at present.
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3 Methodology

Survey datasets such as Statistics South Africa’s Labour Force Survey consist
of large numbers of variables of a wide variety of distributional forms. These
variables may be continuous, counts, dichotomous, polytomous and even
semi-continuous. Moreover, missing values are likely to be dispersed across
the dataset, often resulting in the arbitrary missingness pattern presented
earlier. Postulating a full imputation model of the form P (YMISS|YOBS)
may be extremely difficult in such instances and is often unnecessary.

3.1 Imputation Technique

This paper will employ the multiple imputation technique proposed by
Raghunathan et al (2001) for dealing with complex data structures where
explicit full multivariate imputation models cannot be easily formulated.
The technique, known as sequential regression multivariate imputation, in-
volves imputing missing values on a variable-by-variable basis, conditioning
on all the observed and imputed variables. At the outset, all variables are
ordered with respect to the amount of missing data they contain. Begin-
ning with the variable with the least number of missing values, imputations
are then generated through random draws from the predictive distribution
of a generalised linear model with the observed variables as covariates and
parameters drawn randomly from their joint posterior distribution. After
imputing for the first variable, one then proceeds to impute the variable
with the second least number of missing values, conditioning on the pre-
viously imputed variable in addition to the fully observed variables. This
process is repeated for each variable in the order of missing data, varying the
type of regression model according to the type of dependent variable being
imputed. Independent variables include all other complete variables, either
observed or imputed, for each individual. The technique therefore assumes
an ignorable missingness mechanism. The imputations are defined as draws
from the posterior predictive distribution specified by the regression model
with a non-informative prior distribution for the regression parameters [9].

The aforementioned sequence of imputations is repeated in a cyclical man-
ner, each time replacing the previously drawn values with the latest updates.
In this sense, the technique may be viewed as an application of Markov chain
Monte Carlo. The imputations for YMISS on round t + 1 are taken as the
random draws from the predictive distribution P (YMISS|YOBS,θ

(t)), condi-
tioning on the parameter values obtained in the previous round. The re-
gression parameters θ are then updated by drawing from the complete-data
posterior distribution P (θ|YOBS,Y

(t+1)
MISS), augmented by the latest imputed

values for YMISS . The values for YMISS are then replaced by random draws
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from the predictive distribution, conditioning on the updated parameter
set θ [13]. This process is repeated until distributional convergence in the
parameters θ and YMISS is achieved. Although it is theoretically possi-
ble that the Markov chain may not converge to a stationary distribution,
Raghunathan et al (2001) have not encountered this problem in their empir-
ical work. Another issue of practical and theoretical interest is the optimal
length of this chain for imputation purposes. Surprisingly, this topic has not
received much attention in the literature and will be investigated further in
this paper. Once the chain has converged, the results are stored and the
entire procedure is repeated m times to produce m imputed datasets. The
results from these datasets may then be combined using Rubin’s rules to
provide repeated imputation inferences for θ.

3.2 Variables Included in the Imputation Model

The choice of variables to be included in an imputation model is informed
by three considerations. Firstly, the analyst must consider the nature of the
statistical analyses to be performed on the imputed dataset. As discussed
previously, failure to include variables in the imputation model that are to
be used for subsequent analyses will lead to biases in inferences concerning
the relationships between these omitted variables and the imputed variables
[19]. Secondly, the independent variables included in the imputation model
should be able to explain a reasonable proportion of the variation in the
target variable. Finally, all variables that are known to have influence on
the occurrence of missing data should appear in the model, such that the
missingness mechanism may be assumed to be MCAR within cells composed
of these variables [18].

For the current investigation, a hypothetical dataset was created based on
Statistics South Africa’s Labour Force Survey of September 2003. The orig-
inal dataset was first restricted to include only the variables displayed in
Table 1, which are all potential predictors for monthly earnings. Note that
the prevalence of missing data on all the variables except monthly earnings is
negligible, often of the order of less than 1% of the sample. By contrast, the
proportion of missing data on the monthly earnings variable is non-trivial,
with over one third of the sample failing to provide a point earnings value.
An imputation procedure would thus seem appropriate for this variable.

In order to address the questions raised earlier concerning the optimal length
of a Markov chain and the number of parallel chains required under each of
the three missingness mechanisms, three artificial datasets were created by
dropping all observational units with missing values on any of the variables
in Table 1 and then simulating missingness under each of the three mech-
anisms. On each of age, hours worked per week, skills training, years of
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Variables % Missing Data Type Model
Province – Polytomous –
Gender – Dichotomous –
Racial Group – Polytomous –
Age 0.15% Count Poisson
Hours Worked per Week 0.26% Count Poisson
Skills Training 0.33% Dichotomous Logistic
Years of Education 0.67% Count Poisson
Occupation and Sector 0.99% Polytomous Multinomial Logit
Employment Type 1.37% Polytomous Multinomial Logit
Monthly Earnings - Bands 8.75% Polytomous Ordered Logit
Monthly Earnings - Point 38.64% Continuous Lognormal

Table 1: Variables included in Imputation Model

education, occupation and sector and employment type, an MCAR mecha-
nism was simulated by setting a randomly selected sample to missing for each
variable in proportion to the missingness in the original dataset. Missing
values on monthly earnings were simulated under each of the three missing-
ness mechanisms in turn, holding the missing values constant on all other
variables.

An MCAR mechanism was simulated on monthly earnings by setting a sim-
ple random sample of earnings values to missing. For the MAR mechanism,
missingness was simulated so as to be dependent upon only a subset of co-
variates, namely province, racial group, gender, age and years of education.
Disproportionate random samples were drawn from each cell created by
these variables. Since some groups are clearly larger than others (for exam-
ple, Gauteng province has many more observations than Limpopo province),
sampling the same number of observational units from each group will in-
duce a relationship between the propensity to respond on earnings and the
covariates. The significance of these relationships was confirmed by means
of Pearson’s χ2 tests. Finally, an MNAR mechanism was simulated by draw-
ing random samples of similar size from each of the earnings bands provided
in the Labour Force Survey. This disproportionate sampling forces a depen-
dency between the propensity to respond and the earnings variable itself,
since monthly earnings are heavily skewed with very many individuals in
the lower earnings bands and much fewer numbers in the higher brackets.
Consequently, proportionately more wealthier individuals had their earnings
set missing relative to poorer individuals, effectively inducing a downward
bias on mean monthly earnings.

With reference to the prevalence of missing data in Table 1, the sequential
regression multivariate imputation technique was implemented in this study
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as follows. First, age was imputed using the completely observed variables,
province, gender and racial group, as predictors. After imputing age, hours
worked per week was imputed with province, gender, racial group and age as
covariates. The procedure continues in this fashion, proceeding down the list
and adding the newly imputed variables to the covariates until eventually
point monthly earnings is imputed, conditional on all the complete variables
that precede it. This process would comprise one run of the Markov chain
and should be looped until convergence is achieved. To multiply impute the
missing data, m such chains should be formed by choosing different starting
points for each chain.

3.3 Creating Imputations from Generalised Linear Models

As mentioned earlier, the type of regression model employed at each step in
the Markov chain will depend upon the data type of the dependent variable.
Table 1 indicates the data type of each variable and the generalised linear
model that is appropriate when imputing that variable. Note that since
province, gender and racial group do not require imputation, they will not
enter into the imputation model as dependent variables and consequently
no regression model is specified. It should be further noted that the choice
of a lognormal model for earnings is not obligatory. Indeed, there do exist
more sophisticated models for dealing with distributions that are restricted
to non-negative values, such as truncated and Tobit regression. Long (1997)
provides a detailed discussion of such models. A lognormal model will be
utilised here primarily for its simplicity and in light of the fact that earnings
are conventionally regarded as following a lognormal distribution.

More generally, let y denote the variable to be imputed, with observed
values yobs and missing values ymiss. Further, let X denote the most recently
updated predictor matrix containing both the completely observed variables
and the previously imputed variables. In addition, let that portion of X for
which Y is missing be represented as XMISS. Let β̂ denote the maximum
likelihood estimate of the k-dimensional set of regression parameters β. Let
V denote the variance-covariance matrix of β̂ and let T be the Cholesky
decomposition of V. The Cholesky decomposition produces the square root
of a symmetric positive definite matrix such that TT′ = V, where T is
a lower triangular matrix [9]. Finally, let z represent a column vector of
the same dimension as β̂ containing realisations from the standard normal
distribution. Imputations for ymiss may then be generated given each of the
following distributional assumptions for y [9].
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3.3.1 Gaussian Distribution

If y ∼ N (µ, σ2I), an ordinary least squares model of the form E[y] = Xβ is
appropriate for µ. Imputations for ymiss may thus be generated as follows
[9].

1. Generate a random draw from the posterior distribution of σ2. In
order to achieve this, note that

U =
(y −Xβ)′(y −Xβ)

σ2
∼ χ2

n−k. (3.1)

A random draw from the posterior distribution of σ2 may thus be
achieved by generating a realisation of U , say u, from a χ2

n−k distri-
bution and putting

σ2
? =

(y −Xβ)′(y −Xβ)
u

. (3.2)

2. Next, it is necessary to generate a random draw from the posterior
distribution of β defined as

β? = β̂ + Tz. (3.3)

Note that

E[β?] = E[β̂ + Tz]

= β̂ + T E[z]

= β̂ since E[z] = 0

and

Var[β?] = Var[β̂ + Tz]
= Var[Tz]
= TT′ since Var[z] = I

= σ2(X′X)−1.

From the normality of z, it therefore follows that β? has a multivariate
normal distribution β? ∼ N (β̂, σ2(X′X)−1).
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3. Missing values may now be imputed as random draws from the poste-
rior predictive distribution defined as

y?
miss = XMISSβ

? + σ?υ, (3.4)

where υ represents an independent column vector of the same dimen-
sion as ymiss containing random deviates from the standard normal
distribution. The predictive distribution of ymiss defined in this man-
ner is therefore multivariate normal with mean XMISSβ

? and variance
σ2

?I.

3.3.2 Poisson Distribution

If y ∼ Pois(λ), a generalised linear model of the form λ = exp(Xβ) is
appropriate with linear predictor g(λ) = Xβ and log link function g(·) [2].
The imputations for ymiss may thus be obtained as follows.

1. Generate a random draw of β? as per Equation 3.3 in the Gaussian
case.

2. Generate values of λ for the distribution of ymiss as

λ?
miss = exp(XMISSβ

?). (3.5)

3. Impute the missing values as independent draws from the Poisson dis-
tribution with parameters λ?

miss. Since the inverse cumulative distri-
bution function of a Poisson random deviate does not exist in closed
analytical form, an acceptance-rejection algorithm must be employed
in this regard [8].

3.3.3 Binomial Distribution

For y ∼ Binom(n,π), a logistic regression model is appropriate with

logit(π) = ln
(

π

1− π

)
= Xβ. (3.6)

Noting this, imputations for ymiss may be simulated as follows.

1. Generate a random draw of β? as per Equation 3.3.
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2. Predict the probability of a success for each element in ymiss as [5]

π?
miss = Pr[ymiss = 1|XMISS] =

exp(XMISSβ
?)

1 + exp(XMISSβ
?)
. (3.7)

3. Generate a random vector u of the same dimension as π?
miss from the

uniform distribution on [0, 1]. Impute a one if an element of u is less
than or equal to the corresponding element in π?

miss and impute zero
otherwise [9].

3.3.4 Multinomial Distribution

Although the multinomial distribution is not a member of the exponential
family, data which follow such a distribution may be modelled by a general-
isation of the logistic regression model presented above. More specifically, if
there are k categories to which a random variable may be classified, then one
could fit k − 1 logistic models to estimate the probability of being assigned
to category j = 1, . . . , k − 1 relative to the base category k. Formally, the
multinomial logistic model is defined as

logit(πj|k) = ln
(

πj

πk

)
= Xβj , (3.8)

where βj represents the coefficients corresponding to category j = 1, . . . , k−
1 relative to the omitted category. The ordered logit model, applicable to
polytomous random variables for which there exist a natural ordering of the
categories, is a special case of the multinomial logit and the same principles
apply for imputation purposes [5]. Imputations for polytomous variables
may be generated as follows.

1. Generate a random draw of β? as per Equation 3.3 where, in this
context, β? = (β?′

1 ,β
?′
2 , . . . ,β

?′
k−1)

′ and similarly for β̂.

2. Predict the probability that each observational unit belongs to each of
the k categories using the random draw of β? [5],

π?
miss,j = Pr[ymiss = j|XMISS] =

exp(XMISSβ
?
j )∑k

j=1 exp(XMISSβ
?
j )

where β?
k = 0.

(3.9)

3. Define φp =
∑p

j=1 π?
miss,j as the cumulative sum of the probabilities

with φ0 = 0 and φk = 1. To impute ymiss, generate a random vector
u ∼ U [0, 1] of the same dimension as ymiss and impute category j if
φj−1 ≤ u ≤ φj [9].
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3.4 Assessing Convergence

After imputing all variables with a chain of generalised linear models, it is
necessary to repeat the procedure k times until the sequence converges to
the limiting distribution P (YMISS,θ|YOBS). In practice, it is useful to know
roughly how large a value of k is necessary for θ(t+k) to be independent of
θ(t) for any θ(t) within a reasonable range of the posterior density. If such a
value were known, then a burn-in period of length k would be sufficient to
achieve stationarity, provided that the starting point of the algorithm was
not highly unusual with respect to P (θ|YOBS). Moreover, after the burn-in
period, every kth iterate of θ could be taken as an independent draw from
P (θ|YOBS) and every kth iterate of YMISS could be used for imputation
purposes [13].

The sequential regression multivariate imputation procedure was applied to
the aforementioned hypothetical datasets, varying the number of iterations
within a single chain and the number of chains themselves. Convergence
was assessed primarily by comparing the results obtained after each iter-
ation with the known results in the contrived dataset. Since the “true”
distribution of earnings is known, one can compare the distribution of the
imputed values to that of the true values in order to assess at what point
in the chain the former provides a satisfactory approximation of the latter.
The methods utilised to assess convergence in this study are described next.

3.4.1 Time Series Plots

A quick and dirty approach for assessing convergence is a time series plot of
a scalar component of θ over various iterations. For the present investiga-
tion, the pointwise convergence of mean earnings will be monitored in this
manner. Convergence is assumed where values of mean earnings fluctuate
within a relatively narrow horizontal band for successive iterations.

3.4.2 Autocorrelation Functions

In order to examine the relationships among successive iterates of mean
earnings, it is helpful to consider the autocorrelation functions for each of the
three missingness mechanisms. The lag-k autocorrelation for the stationary
series {µ(t) : t = 1, 2, . . . , n} is defined as

ρk =
Cov[µ(t), µ(t+k)]

Var[µ(t)]
. (3.10)
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Note that stationarity implies Var[µ(t)] = Var[µ(t+k)]. A sample estimate of
ρk is given by

rk =
∑n−k

t=1 (µ(t) − µ̄)(µ(t+k) − µ̄)∑n
t=1(µ(t) − µ̄)2

, (3.11)

where µ̄ is the mean earnings over the entire series in this case [13]. A plot of
rk versus the lags within a single chain is known as a sample autocorrelation
function or correlogram.

In testing the hypotheses

H0 : ρk = ρk+1 = ρk+2 = . . . = 0
H1 : ρk 6= 0,

the following condition would lead to the rejection of the null hypothesis

|rk| ≥ z1−α/2

[
1
n

(
1 + 2

k−1∑
t=1

r2t

)]1/2

, (3.12)

where α denotes the Type I error rate [13]. Consequently, one can infer
that the series has converged when rk does not exceed the right-hand-side
expression in Equation 3.12 for subsequent values of k.

3.4.3 Kernel Density Estimation

Although the methods discussed above are easy to understand and imple-
ment, they are not foolproof. Indeed, the primary concern of this inves-
tigation is distributional convergence, whilst the methods mentioned thus
far have been concerned with diagnosing stationarity pertaining to a scalar
element of θ , in particular mean monthly earnings. Moreover, whilst mon-
itoring the behaviour of individual components of θ is easier than assessing
its full multidimensional distribution, convergence in the marginal distribu-
tions of the components does not necessarily imply convergence in the joint
posterior. Furthermore, the marginal distributions will often converge at
different rates and there is thus always the possibility that some unknown
function of θ has not yet converged [13].

In addition to the above, it may be further argued that zero correlation does
not imply independence and that non-linear relationships may still exist
where autocorrelations are insignificant [13]. Consequently, it would seem
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appropriate to complement this analysis by evaluating the full distribution
of earnings after each iteration, rather than merely the first moment.

This was achieved by means of kernel density estimation, computed by
means of the Epanechnikov kernel function, at various points within the
chain for the three missingness mechanisms. The imputed densities were su-
perimposed over the true densities to determine at what point in the chain
the former distribution provides an adequate approximation of the latter.

3.4.4 Empirical Cumulative Distribution Functions

Distributional convergence was also assessed by plotting the empirical cumu-
lative distribution function of the imputed and true earnings values for each
of the three missingness mechanisms at various points within the Markov
chain. This method merely provides an alternative graphic display to the
comparison of probability density functions.

3.4.5 Gelman and Rubin’s Monitoring Statistic

An explicit monitoring statistic for distributional convergence was devised
by Gelman and Rubin in 1992. In order to compute this monitoring statis-
tic, it is necessary to simulate m > 1 sequences with various starting points.
The basic idea is then that convergence may be monitored by comparing the
variation between and within chains until within-variation roughly equals
between-variation. When this occurs, the distribution of each simulated se-
quence will be close to the distribution of all the sequences mixed together
and therefore all chains will approximate the target distribution [6]. Follow-
ing this principle, Gelman and Rubin’s monitoring statistic is computed as
follows.

Let ψ ∈ θ be a scalar quantity of interest and label the draws on this
estimand as ψm,k, where m = 1, 2, . . . ,M is the number of sequences and
k = 1, 2, . . . ,K is the number of iterations within chain m. The between-
sequence variation is computed as follows

B =
K

M − 1

M∑
m=1

(
ψ̄m· − ψ̄··

)2
, (3.13)

where

ψ̄m· =
1
K

K∑
k=1

ψm,k (3.14)
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is the mean of ψ within chain m and

ψ·· =
1
M

M∑
m=1

ψ̄m· (3.15)

is the grand mean across all chains.

The variation within a sequence is computed as

V̄ =
1
M

M∑
m=1

S2
m, (3.16)

where

S2
m =

1
K − 1

K∑
k=1

(
ψm,k − ψ̄m·

)2 (3.17)

is the variation within chain m.

The estimate of the marginal posterior variance of ψ is then given by the
weighted average of B and V̄ , namely

T̂ =
K − 1
K

V̄ +
1
K
B. (3.18)

Hence, when the length of the sequence K is finite, V̄ will be an underes-
timate of the true posterior variance T̂ , because the individual chains will
not have had adequate opportunity to wander through the entire range of
the target distribution. Consequently, variation within a sequence will be
less than variation between sequences. In the limit as K → ∞, within-
variation will tend to the true posterior variance of ψ, since the chain will
be producing values from the posterior distribution of ψ [6].

The above observations provide the basis from Gelman and Rubin’s moni-
toring statistic which is defined as

√
R̂ =

√
T̂

V̄
. (3.19)

The ratio T̂ /V̄ represents the factor by which variation within a chain is
under-representative of the posterior variance in ψ and declines to one as
the length of the chain tends to infinity. A value of the monitoring statistic
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close to one is therefore indicative of convergence in the sequence. Little and
Rubin (2002) suggest that values below 1.2 are acceptable for most practical
problems.

3.5 Assessing the Optimal Number of Imputations

For those who are unfamiliar with multiple imputation, the claim that three
to five imputations is often sufficient may be rather surprising; in other ap-
plications of Monte Carlo, hundreds or thousands of draws are often needed
to achieve an acceptable level of accuracy. In the literature, the small value
of m for multiple imputation purposes is justified for two fundamental rea-
sons [13].

Firstly, multiple imputation relies on simulation to solve only the missing
data aspect of the problem. As with any iterative simulation method, one
could effectively eliminate Monte Carlo error by choosing a sufficiently large
value of m. However, within a multiple imputation context, the result-
ing gain in efficiency is typically regarded as unimportant, since the Monte
Carlo error is a relatively small portion of the overall inferential uncertainty.
Consequently, it might be argued that the opportunity costs of the addi-
tional resources that would be required to create and store more than a few
imputations are too high [13].

The second reason why one can often obtain valid inferences for a small value
of m is that Rubin’s rules for combining the m complete datasets explicitly
account for Monte Carlo error. Confidence interval estimates based on these
rules take into account the fact that both the point and variance estimates
contain a predictable amount of simulation error due to the finiteness of m.
The width of the interval is therefore adjusted accordingly to maintain the
appropriate probability of coverage [13].

In order to establish whether or not the empirical evidence supports these
arguments, the bias, standard error of estimate and root mean squared er-
ror of mean earnings was computed for various values of m. The cover-
age in repeated sampling of 95% confidence intervals on mean earnings is
also assessed for alternative values of m. In addition to the accuracy of
scalar estimates, multiple imputation is also concerned with the preserva-
tion of multivariate relationships. In this respect, the relationship between
earnings and years of education will also be investigated in terms of bias,
efficiency and root mean squared error across the three missingness mecha-
nisms. In order to achieve this, the natural logarithm of monthly earnings
was regressed against province, gender, racial group, age, hours worked per
week, skills training, years of education, occupation and sector and employ-
ment type. The coefficient estimate on the years of education variable will
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provide the relevant proxy for multivariate relationships and has a natural
(approximate) interpretation as the rate of return to education.

Rubin’s measure of relative efficiency presented as Equation 2.16 on page
20 will also provide a basis for assessing the optimal number of imputations
under the three missingness mechanisms.

3.6 Assessing the Robustness of the Imputation Model

The robustness of the imputation model was assessed along two dimensions,
namely the fraction of missing data and the number of covariates included
in the model. In both instances, the bias, efficiency and root mean squared
error of mean earnings and returns to education were monitored for various
levels of these two factors. More specifically, the fraction of missing data
was varied between 10% and 70% in intervals of 10%. Three imputation
models were constructed varying the number of covariates. Recall that the
MAR missingness mechanism was simulated on the earnings variable with
respect to province, racial group, gender, age and years of education. The
first imputation model included all variables in Table 1 on page 26; that is,
the model included more variables than that which was actually responsi-
ble for missingness under MAR. This model was further employed to assess
distributional convergence and the optimal number of imputations. A sec-
ond imputation model was built including only the variables that induced
missingness. Finally, a third model containing only province, age and racial
group was also constructed; that is, the model contained less covariates than
actually induced missingness. Note that years of education was deliberately
omitted so as to assess the impact of the omission of key covariates on mul-
tivariate relationships. Together, these three models were utilised to assess
robustness with respect to the number of covariates included the imputation
model.

3.7 Statistical Software

All imputations, simulations and subsequent analyses were executed in stata
version 8. Specific programs were written to implement the imputation tech-
niques and various simulations. The complex sample design was taken into
account in all the analyses by means of stata’s suite of svy commands [16].
These commands use the Taylor series linearisation method to calculate
variance taking weighting, stratification and clustering into account.
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4 Empirical Findings

This section will attempt to address the theoretical questions raised ear-
lier concerning the optimal number of iterations and imputations that are
necessary to produce accurate results. The section will commence with an
application of the various methods for monitoring convergence to the hypo-
thetical complete datasets created from the Labour Force Survey of Septem-
ber 2003. This complete dataset will also provide the basis for monitoring
bias and efficiency, whilst varying the number of imputations. The section
will conclude by proposing an optimal imputation model and assessing the
robustness of this model with respect to the fraction of missing data and
the number of covariates included in the model.

4.1 Assessing Convergence

Mean earnings obtained after each iteration is illustrated in the time series
plots presented as Figures 3 to 5 for each of the three missingness mech-
anisms. Note that the true mean earnings for the complete dataset (with
no missing values) is R2 166 per month. After simulating missingness un-
der each of the three missingness mechanisms, the mean monthly earnings
ignoring missing data became R2 103, R1 722 and R1 318 for the MCAR,
MAR and MNAR mechanisms respectively.

None of the three time series plots appears to reveal any immediately discern-
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Figure 3: Estimated mean earnings after each iteration under the MCAR
mechanism. Red horizontal line indicates the true mean earnings.
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Figure 4: Estimated mean earnings after each iteration under the MAR
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Figure 5: Estimated mean earnings after each iteration under the MNAR
mechanism.
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able trends and fluctuations tend to be confined to fairly narrow horizontal
bands. Of the three, the MNAR missingness mechanism would appear to
produce the least stable estimates of mean earnings, although one could
argue that the seemingly large spike in mean earnings around the 100th
iteration is merely a random phenomenon. The evidence would therefore
suggest that pointwise convergence in mean earnings is achieved almost in-
stantaneously, irrespective of the missingness mechanism.

Note, however, that although mean earnings does converge quickly, it only
appears to converge to its true value under the MAR mechanism. For the
MAR plot, it is noted that estimated mean earnings tends to fluctuate
around the horizontal line, which represents its true value. In this respect,
it would appear to take as few as five iterations before the estimated mean
earnings provides a reasonable approximation of the true value.

In terms of the MCAR mechanism, however, mean earnings appears to have
converged to just over R2 100 per month, which is of the same magnitude as
the estimate ignoring missing data. This result is not particularly surprising
given that the missing values are simply a random sample which is assumed
to be no different from the observed values. The propensity to respond does
not depend upon the observed variables and hence one would not expect the
imputed values to differ systematically from the observed values. Indeed,
it was noted earlier in this paper that MCAR is the most restrictive of the
missingness mechanisms, as is clearly demonstrated here. Moreover, it must
be noted that the bias observed under the MCAR mechanism is purely a
result of the random sampling procedure used to set the data to missing. If
the mean earnings ignoring missing data was equivalent to the true mean for
the dataset without missing values, it follows that estimated mean earnings
would indeed have converged to its true value.

By contrast, a systematic bias in estimated mean earnings does arise when
imputing under the MNAR mechanism, even after a full 200 iterations. The
severity of this bias is quite substantial and is of the order of R580 in the
downward direction. This result is also not unexpected since the imputation
model does in fact assume ignorable missingness and cannot account for
the dependence of response probabilities on the earnings variable itself. It
should, however, be noted that the imputation procedure will produce a less
biased estimate of mean monthly earnings relative to the estimate obtained
by performing casewise deletion. Recall that the estimate of mean monthly
earnings ignoring missing data is R1 318, relative to the imputed estimates
which fluctuate around approximately R1 580 per month. Clearly, both
estimates are well below the parameter value of R2 166, although the results
after imputation would appear to be the lesser of two evils. In practice, the
missingness mechanism is likely to a combination of both MAR and MNAR,
with the imputation model accounting for that portion of the non-response
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bias that arises due to the former mechanism.

In addition to the time series plots, it is also useful to consider the autocorre-
lation functions for the three missingness mechanisms. These are presented
as Figures 6 to 8 for the first 100 lags of a single chain. In each plot, the
dashed line corresponds to the 0.05-level critical values for testing the null
hypothesis of no correlation at lag k or beyond against the alternative hy-
pothesis of significant serial dependence.

For the MCAR mechanism, it is observed that serial dependence is only
significant at a lag of one. This is to be expected since Markov chains, by
definition, produce estimates which are mildly dependent upon the previous
state [3]. Beyond this point, however, autocorrelation is insignificant at the
5% level, suggesting that convergence in mean earnings is reached rapidly
under this mechanism.

Under the MAR mechanism, successive iterates remain significantly corre-
lated until around the eighth lag, becoming insignificant for all lags there-
after. This would imply that a burn-in period of at least eight iterations
is necessary to achieve stationarity in the mean earnings µ, where an MAR
mechanism is assumed to be present. Hence, every eighth iterate of µ in a
single chain might be regarded as an independent draw from the posterior
distribution of this parameter.

Finally, with respect to the MNAR missingness mechanism, serial depen-
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Figure 6: Autocorrelation function for mean earnings in a single chain under
the MCAR mechanism. Dashed line corresponds to the 5% critical values
for the test of significant serial dependence.
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Figure 7: Autocorrelation function for mean earnings in a single chain under
the MAR mechanism. Dashed line corresponds to the 5% critical values for
the test of significant serial dependence.
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Figure 8: Autocorrelation function for mean earnings in a single chain under
the MNAR mechanism. Dashed line corresponds to the 5% critical values
for the test of significant serial dependence.

41



dence in the chain dies out more rapidly than would appear to be the case
for the MAR mechanism, with insignificant correlations beyond lag 3. How-
ever, significant autocorrelation is again observed after 27 and 28 lags, in
this case a significantly negative correlation coefficient. Schafer (1997) notes
that, in general, one would not expect negative autocorrelations and at-
tributes such estimates to fluctuations due to finite sample size. Indeed,
when this exercise was repeated by choosing different starting seeds for the
chain, the significant negative autocorrelation observed in Figure 8 disap-
peared entirely. Consequently, this phenomenon may be attributed purely
to sampling variability.

At this point, it is worth noting that the above analyses were conducted
for five chains of length 200 for each of the three missingness mechanisms.
The results presented here are typical of those obtained in repeated runs of
this nature, unless otherwise specified. In all simulations, it would appear
that a minimum of eight runs through the Markov chain is necessary to
achieve pointwise convergence of mean earnings across missingness mech-
anisms. Note, however, that from the time series plots presented at the
outset, this does not necessary imply convergence to the correct parameter
value.

In addition, Schafer (1997) notes that if the observed-data posterior dis-
tribution is oddly shaped, the chain may not have adequate opportunity
to wander around certain regions of the parameter space within a reason-
able number of iterations. This was in fact observed when earnings bands
were included as a variable in the imputation model and point earnings
was imputed from these bands. The imputation model was formulated as
before with the additional specification that earnings bands were imputed
prior to point earnings by means of a stochastic ordered logit model. Then,
conditioning on the bands in addition to all other imputed and observed
variables, point earnings were imputed using separate lognormal models for
each band. This resulted in a normal distribution for log earnings (imputed
and observed) within bands and hence a “lumpy” overall distribution of log
earnings. The chain appeared to demonstrate difficulty in convergence for
all missingness mechanisms. This result is presented in Figure 9 for the
MAR mechanism below. In this case, convergence is not obvious after as
many as 500 iterations. Furthermore, the algorithm is moving further away
from the true earnings of R2 166 as the number of iterations increase.

The kernel densities and empirical cumulative distribution functions of the
logarithm of earnings were plotted for each of the three missingness mech-
anisms at selected points in the chain. The distributions of the imputed
missing values (red) relative to that of the true values that were set to
missing (navy blue) are presented as Figures 10 and 11 on pages 44 and
45 respectively for the MAR missingness mechanism. Similar plots for the
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Figure 9: Non-convergence in mean earnings when imputing from bands
under MAR mechanism.

MCAR and MNAR missingness mechanisms are presented as Figures B1 to
B4 in Appendix B.

In all cases, there does not appear to be any major improvement in the
distributional shape of the imputed values relative to the true distribution
as the number of iterations increase. Indeed, the distributional form after,
say, ten iterations is no worse than that obtained after 200 iterations. This
observation would appear to confirm the results obtained earlier and suggests
that convergence is rapid with little benefit to be reaped from increasing
iterations.

As with the previous results, however, the mere fact that the distribution
has stabilised does not imply that it has converged to the correct distribu-
tion. In the case of the MCAR mechanism, this would not appear to be a
problem. The imputed values provide an extremely accurate approximation
of the true density after as few as five iterations. Convergence under the
MAR mechanism also does not raise any particular concern. Although the
distribution of imputed values does not mirror the “dip” that is observed
toward the centre of the true density, the approximation is fairly close for
five to ten iterations. With the exception of this abnormality in the true
density, the distribution of the imputed values lies very close to the true
distribution over most of its range and in particular near the tails.

The distribution of imputed values under the MNAR mechanism is, how-
ever, a cause for concern. In this case, the imputed values have certainly not
converged to the true density and do not even provide a reasonable approx-
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Figure 10: Distribution of missing log earnings after various iterations of the Markov
chain under the MAR mechanism. Red density indicates imputed earnings and blue
density indicates true earnings.
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Figure 11: Cumulative distribution function of missing log earnings after various itera-
tions of the Markov chain under MAR mechanism. Red curve is imputed earnings and
blue curve is true earnings.
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imation after 200 iterations. The true distribution of missing values under
MNAR is skewed to the left, reflecting the fact that wealthier individuals
were more likely to be set missing. The imputations, however, do not reflect
this reality. Instead, the distribution of imputed values is almost symmetric
and is less dense at both ends of its distribution relative to the true distri-
bution. This lower density is particularly notable toward the right of the
distribution, where the empirical distribution function with imputed values
lies well above the true curve for middle to upper earnings levels and falls
below the true curve toward the left of the distribution. The lower density
at the tails is thus balanced by the large gain in density toward the centre of
the distribution. Given that most of this shift in density is from the upper
tail to the middle of the distribution, mean earnings will be biased down-
wards, as was observed in the time series plot for the MNAR mechanism
presented earlier. These empirical results confirm the fact that the impu-
tation model is not suited to data characterised by an MNAR missingness
mechanism. Indeed, the model can only explain missingness that is depen-
dent upon the sampled observations, whilst an MNAR mechanism clearly
requires additional information beyond that which is contained within the
sample.

The discussion thus far has been concerned with the distribution of the im-
puted values and its approximation of the true distribution of the missing
values YMISS . In the case of the MCAR and MAR missingness mechanisms,
it was noted that the distribution of imputed values converges to the true dis-
tribution. By contrast, this was observed not to the case under the MNAR
mechanism. This empirical result is in fact consistent with the theory pre-
sented in the literature review. Recall from Equation 2.9 that imputations
are generated from the predictive posterior distribution of YMISS , condi-
tional on the observed data YOBS , given by P (YMISS|YOBS). Recall further
that this distribution is only valid for imputation purposes when inferences
concerning θ are unrelated to the distribution of missingness. This is the case
when the missingness mechanism is either MCAR or MAR. Consequently,
it should be unsurprising that the draws from P (YMISS|YOBS) provide a
good approximation to the true distribution of missing values under these
two mechanisms. On the other hand, since inferences on θ do rely on the
distribution of missingness under MNAR, likelihood-based inferences on θ
cannot be treated independently of the missingness mechanism, as was the
case in Equation 2.4. As a result, the predictive posterior P (YMISS|YOBS)
does not coincide with the actual distribution of the missing data. It there-
fore follows that draws from the former distribution will not be of the same
distributional form as the true values where the missingness mechanism is
MNAR.

Figures 12 to 14 present the kernel densities for the actual logarithm of earn-
ings (blue), imputed log earnings after ten iterations (red) and log earnings
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ignoring the missing data (green) for each of the missingness mechanisms.
Further kernel densities and empirical distribution functions at various it-
erations in the Markov chain for each of the three missingness mechanisms
are presented as Figures B5 to B10 in the appendix.
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Figure 12: Distribution of log earnings with imputation after ten iterations
and without imputation relative to the true distribution under an MCAR
mechanism.

0
.1

.2
.3

.4
.5

K
er

ne
l D

en
si

ty

2 4 6 8 10 12
Log Earnings

After Imputation No Imputation Actual Earnings

MAR Mechanism on Point Earnings
Distribution of Log Earnings

Figure 13: Distribution of log earnings with imputation after ten iterations
and without imputation relative to the true distribution under an MAR
mechanism.
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Figure 14: Distribution of log earnings with imputation after ten iterations
and without imputation relative to the true distribution under an MNAR
mechanism.

In terms of the MCAR mechanism, it is clear from Figure 12 that impu-
tation is not necessary to preserve distributional form. The distribution
of log earnings ignoring missing data coincides almost exactly with the true
distribution, as is to be expected since the missing units do not differ system-
atically from respondents. Imputing missing values has, however, provided a
better approximation of the true distribution relative to ignoring the missing
data for both the MAR and MNAR mechanisms. For the MAR mechanism,
ignoring missing values has resulted in a distribution which understates the
density to the right and overstates it in the centre. Imputation produces
a remarkable improvement to this by increasing the proportion of wealth-
ier individuals in the sample. Consequently, the density for earnings after
imputation lies above that which ignores missing data and only marginally
below the actual distribution on the right. This results in a lower observed
density in the centre of the distribution relative to the distribution ignoring
missing data. The imputation model has therefore performed well under the
MAR missingness mechanism.

On examination of Figure 14, it would also appear that imputation can pro-
vide some value where the missingness mechanism is MNAR. Although the
distribution of log earnings after imputation under MNAR does not provide
an accurate reflection of the true distribution, the graph would suggest that
imputing in the presence of an MNAR missingness mechanism is better than
not imputing at all. Indeed, the density of imputed earnings does lie closer
to the true distribution (particularly in the middle and to the right) relative
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to the density without imputations. Despite this observation, the imputed
density does still lie quite far away from the true distribution and hence
inferences based on the imputed data would still need to be treated with
caution.

The analysis of convergence has thus far been largely output-based and it
would seem appropriate to formalise this analysis by recourse to an explicit
monitoring statistic. Gelman and Rubin’s monitoring statistic presented
earlier will suffice in this regard. The monitoring statistic was computed for
mean monthly earnings at each iteration in chains of length k = 200. Since
calculation of the statistic requires M parallel sequences, m = 5 such chains
were constructed. This value of m was informed by the preferred choice
given in the literature on multiple imputation. The monitoring statistic
computed at each iteration is presented in Figures 15 to 17 for each of the
three missingness mechanisms. The red vertical line denotes ten iterations.

Under the MCAR mechanism, the monitoring statistic drops below 1.2 after
eight iterations and is very close to 1 after just ten iterations. A similar
pattern is observed under the MAR mechanism with the monitoring statistic
also dipping below the threshold after just eight iterations. Convergence was
extremely rapid in the presence of an MNAR missingness mechanism with
the monitoring statistic falling below the threshold 1.2 after as few as three
iterations. However, once below 1.2, the monitoring statistic takes at least
100 iterations to tend to 1.

In summary, the empirical evidence would suggest that convergence of the
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Figure 15: Gelman and Rubin’s monitoring statistic at each iteration under
an MCAR mechanism. Red vertical line corresponds to 10 iterations.
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Figure 16: Gelman and Rubin’s monitoring statistic at each iteration under
an MAR mechanism. Red vertical line corresponds to 10 iterations.
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Figure 17: Gelman and Rubin’s monitoring statistic at each iteration under
an MNAR mechanism. Red vertical line corresponds to 10 iterations.
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Markov chain to the posterior distributions of θ and YMISS given YOBS is
quite rapid for 30% missing data on the earnings variable. This would appear
to be the case for all three missingness mechanisms. It was noted, however,
that although convergence to the predictive posterior P (YMISS|YOBS) is
achieved readily in the presence of an MNAR missingness mechanism, this
distribution is not appropriate for imputing under MNAR. When the miss-
ingness mechanism is ignorable, the empirical evidence reveals that around
eight iterations will suffice for convergence to the correct posterior distri-
bution. This supports Schafer’s assertion that eight to ten iterations are
generally sufficient for most practical problems [13]. Indeed, ten iterations
would appear to be a reasonably conservative choice in light of the empirical
evidence and the additional computational power necessary to achieve this
would typically be regarded as negligible.

4.2 Assessing the Optimal Number of Imputations

Whilst the preceding section was concerned with the length of a single chain,
this section will focus on the number of chains that are necessary to produce
accurate estimates of θ that reflect the inherent uncertainty of the imputa-
tion process. According to the literature on this topic, a small value of m
such as three or five is usually sufficient for the purposes of multiple imputa-
tion. In order to assess whether or not the empirical evidence supports this
argument, the bias, standard error of estimate and root mean squared error
of mean earnings were computed for various values of m. These estimates
were obtained by applying Rubin’s rules for mean and variance estimation
and replicated for the three missingness mechanisms using ten iterations of
the chain in each case. The results are presented in the Table 2.

From the table, it is noted that mean earnings is biased downwards for all

No. MCAR MAR MNAR
Imps Bias Std Err RMSE Bias Std Err RMSE Bias Std Err RMSE

0 -62.97 29.84 69.68 -444.40 24.63 445.08 -848.57 10.94 848.64
1 -53.10 25.26 58.80 -41.09 27.14 49.24 -588.36 13.61 588.51
3 -60.23 26.51 65.80 -22.18 37.45 43.52 -595.71 15.39 595.91
5 -57.08 26.84 63.07 -16.60 40.08 43.38 -595.03 17.02 595.27
10 -56.33 27.22 62.56 -9.60 45.30 46.31 -599.24 16.20 599.46
15 -56.16 27.12 62.37 -4.16 41.93 42.13 -595.50 20.62 595.86
20 -55.49 27.33 61.86 -5.48 39.69 40.07 -596.24 19.38 596.56
50 -55.12 28.25 61.94 -5.65 40.78 41.17 -594.95 19.45 595.27
100 -56.66 28.51 63.43 -7.40 40.93 41.59 -594.63 18.77 594.92

Table 2: Bias, standard error of estimate and root mean squared error for
mean monthly earnings after m imputations for the three missingness mech-
anisms.
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three missingness mechanisms. The most notable observation is the large
reduction in the absolute bias after just a single imputation under the MAR
and MNAR mechanisms. More specifically, the absolute bias after one im-
putation under an MAR mechanism is less than 10% of that observed with
no imputation at all. The absolute bias continues to decline as the number
of imputations is increased to fifteen, although the marginal reduction in ab-
solute bias also decreases for successive imputations. For example, doubling
computational effort from five to ten imputations reduces absolute bias by
only R7 (42.17%), compared to the R403 (90.57%) reduction in absolute
bias observed when imputing once as oppose to not imputing at all. Indeed,
even the R19 (46.02%) reduction in absolute bias experienced when increas-
ing the number of imputations from one to three would seem negligible for
most real world problems.

With respect to the MNAR mechanism, the reduction in absolute bias from
imputing once is proportionately less than that achieved under an MAR
mechanism; the absolute bias after a single imputation is still more than
65% of that observed by ignoring the missing data all together. The de-
cline in absolute bias that is observed may be attributed to the multivari-
ate relationships between the earnings variable and the other variables in
the dataset. These associations induce an indirect relationship between the
propensity to respond and the observed variables. Since the imputation
model is able to account for such a relationship, bias may be partially re-
duced via this mechanism. Nonetheless, the absolute magnitude of the re-
maining bias is clearly much larger than the bias observed under the MCAR
and MAR mechanisms respectively. Interestingly, absolute bias under the
MNAR mechanism does not decline for successive imputations, but instead
remains fairly constant. Consequently, there is little to be gained from im-
puting more than once under an MNAR missingness mechanism. Moreover,
the bias is quite substantial even after imputation. Accounting for this
bias would rely on information beyond that which is contained within the
sample and consequently an imputation model based solely on the sample
information is inappropriate.

Under the MCAR mechanism, it is noted that imputation does not result
in reduced absolute bias. Indeed, even the R10 reduction in absolute bias
obtained by a single imputation is probably attributable to sampling vari-
ability, rather than the imputation model itself. This result should not be
surprising given the nature of the missingness mechanism. The missing data
is unrelated to the observed variables and hence any biases that exist prior
to imputation will persist post-imputation. Note, however, that the bias
of R63 was induced purely due to the sampling procedure used to set the
data to missing and is thus a random phenomenon. In repeated sampling of
this nature, one would expect zero bias. This point was noted earlier when
considering the convergence of point earnings under MCAR in Figure 3.
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The standard error of estimate rises initially with the number of imputa-
tions and then stabilises under the MAR and MNAR missingness mecha-
nisms. From the literature review, this pattern is to be expected. When
missing data is ignored or handled by means of a single imputation, the un-
certainty surrounding the missing values is also ignored in the computation
of the standard error. As a result, the standard errors will be downwardly
biased and the coverage of confidence intervals will be overstated. The em-
pirical evidence presented here would appear to support this notion. The
standard error of mean earnings under the MAR and MNAR mechanisms
is well below its true value of R41.20 when missing data is ignored or singly
imputed. The approximation is, however, particularly close after five impu-
tations under the MAR mechanism, with little to no improvement observed
from increasing the number of imputations beyond this point.

In terms of the MNAR missingness mechanism, the standard error of esti-
mate does not come close to its true value after as many as 100 imputations.
Instead, the standard error fluctuates close to R20 (around half of the actual
value) from five imputations onwards. Hence, in addition to the large bi-
ases observed under the MNAR mechanism, the variation in the estimate of
mean earnings will also be substantially understated. Confidence intervals
for the mean earnings will therefore be too narrow and centred around a
biased estimate, regardless of the number of imputations employed.

As is the case in terms of bias, the standard error of estimate under an
MCAR missingness mechanism does not appear to be altered significantly
by multiple imputation. A standard error of just below R30 is observed with
or without imputation. The contribution of between-imputation variation
to the total variance in monthly earnings is therefore offset by the increase in
the sample size relative to a complete-case analysis. The result is thus a rel-
atively constant standard error of estimate that cannot be improved through
imputation. This provides further evidence to the effect that MCAR is the
most restrictive missingness mechanism from an imputation perspective.

Finally, the root mean squared error (RMSE) provides a composite measure
of how close the estimated mean earnings is to its true value (bias), as well as
how widely dispersed these estimates are about their mean (standard error).
A low RMSE is clearly desirable since this would imply that the estimate
is a good approximation of the true value and is narrowly dispersed about
this value in repeated sampling. Since the bias and standard errors differ
only marginally for different values of m under the MCAR mechanism, the
RMSE too does not seem to exhibit any vast improvements as the num-
ber of imputations is increased. Under the MAR and MNAR mechanisms,
however, a large reduction in the RMSE of mean earnings is observed for a
single imputation relative to no imputations, brought about largely due to
the substantial decline in absolute bias at this point. In addition, a small
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reduction in RMSE is observed when the number of imputations is increased
from one to three. Increasing m beyond this point under either of the MAR
or MNAR missingness mechanisms does not appear to be particularly ben-
eficial in terms of the RMSE measure.

As a last observation, it should be noted that the RMSE after imputation
is consistently lower where the missingness mechanism is MAR, followed by
MCAR and finally MNAR. This finding is consistent with intuition. When
imputing under MCAR, the imputed values should not differ systematically
from the observed values and therefore any random deviations away from
the true mean and variance in the dataset with missing values will be pre-
served in the imputed dataset. Under an MNAR mechanism, it is impossible
to account for the systematic differences between the observed and missing
data without additional knowledge beyond the sample information. Fur-
thermore, the biases observed under an MNAR missingness mechanism will
be amplified by the fact that the propensity to respond depends on the earn-
ings variable itself. Consequently, large RMSEs are only to be expected. By
contrast, the imputation model is specifically constructed to account for the
fact that missingness may depend upon the observed variables. Since this is
the very definition of MAR, it is therefore not surprising that estimates of
mean earnings after imputation are the most accurate (lowest RMSE) under
this missingness mechanism.

The above evaluation considered the bias and efficiency of mean monthly
earnings. Indeed, the accuracy of such point estimates is an important
indicator of a good imputation model. Another desirable property of an
imputation model is that it should preserve the multivariate relationships
between variables. In order to assess this feature, returns to education will be
employed as a proxy for such relationships as described in the methodology
section. This estimate and its standard error were recorded for various
numbers of imputations and combined across imputations using Rubin’s
rules. The resulting bias, standard error of estimate and RMSE for returns
to education are presented in Table 3 for various numbers of imputations,
multiplied by a factor of 100 for clarity. Note that the true rate of return
to education is 7.9537% and the true standard error of estimate is 0.1650%
based on the hypothetical complete dataset.

Interestingly, Table 3 does not reveal any obvious associations between the
bias or efficiency of the estimated rate of return to education and the number
of imputations employed, irrespective of the missingness mechanism. Indeed,
there would appear to be no evidence in support of the claim that multiple
imputations improve the bias of this estimate. Under all mechanisms, the
bias observed without imputation is of approximately the same magnitude
as that observed with imputations. As expected, the absolute bias is largest
under the MNAR mechanism with the rate of return to education typically
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No. MCAR MAR MNAR
Imps Bias Std Err RMSE Bias Std Err RMSE Bias Std Err RMSE

0 0.0897 0.1997 0.2189 -0.4939 0.2039 0.5343 -1.9874 0.1776 1.9953
1 -0.1234 0.1645 0.2056 -0.5223 0.1620 0.5468 -1.8637 0.1459 1.8694
3 -0.0717 0.1738 0.1880 -0.5381 0.2133 0.5788 -1.8847 0.1550 1.8911
5 -0.0023 0.2090 0.2090 -0.5667 0.2033 0.6021 -1.9844 0.2132 1.9958
10 0.0660 0.2018 0.2123 -0.5179 0.2146 0.5605 -2.0016 0.1910 2.0107
15 0.0582 0.2012 0.2094 -0.5134 0.2105 0.5549 -2.0235 0.1889 2.0323
20 0.0545 0.2038 0.2110 -0.5210 0.2246 0.5673 -2.0405 0.1864 2.0490
50 0.0437 0.1950 0.1999 -0.5282 0.2064 0.5671 -2.0216 0.1812 2.0297
100 0.0469 0.1975 0.2030 -0.5373 0.2109 0.5772 -2.0283 0.1741 2.0357

Table 3: Bias, standard error of estimate and root mean squared error for
returns to education after m imputations for the three missingness mecha-
nisms. All figures multiplied by a factor of 100.

being underestimated by around 2%. A downward bias on the rate of return
to education of approximately a half a percentage point is observed for the
MAR missingness mechanism irrespective of the number of imputations.
Since returns to education is a positive quantity, the consistent downward
biases under the MAR and MNAR missingness mechanisms would imply
that multivariate relationships are attenuated. The bias observed under
the MCAR mechanism is negligible in magnitude and varies in direction
for different numbers of imputations. In the long run, one would therefore
expect the rate of return to education to be unbiased under this missingness
mechanism.

The standard error of estimate is typically larger than its true value of
0.1650% and does not seem to be related to the number of imputations. Fur-
thermore, the standard error is of much the same magnitude across the three
missingness mechanisms. It therefore follows that the RMSE measure is also
unrelated to the number of imputations and is worse for the MNAR mecha-
nism, followed by the MAR mechanism and finally the MCAR mechanism.
One may therefore conclude that increasing the number of imputations does
not necessarily improve the estimation of multivariate relationships within
the dataset.

Another means of assessing the optimal number of imputations is Rubin’s
relative measure of efficiency presented as Equation 2.16. This measure
explicitly accounts for the fraction of missing information present in the
dataset, as well as the finite number of imputations. The relative efficiency
measure was computed for successive values of m with ten iterations, the
results of which are displayed in Figure 18 for each of the three missingness
mechanisms.

After only five imputations, efficiency is observed to equal or exceed 95%
across all missingness mechanisms. More specifically, efficiency is computed

55



.8
5

.9
.9

5
1

E
ffi

ci
en

cy

0 20 40 60 80 100
Number of Imputations

MCAR MAR MNAR

Rubin's Measure of Relative Efficiency

Figure 18: Rubin’s relative efficiency measure after successive imputations
for the MCAR, MAR and MNAR missingness mechanisms.

as 98.95%, 95.00% and 96.21% after five imputations for the datasets with
MCAR, MAR and MNAR missing mechanisms respectively. This implies
that the standard error of estimated mean earnings after five imputations is
only 1.01, 1.05 and 1.04 times larger relative to that which could be obtained
with m = ∞ under the MCAR, MAR and MNAR missingness mechanisms
respectively. In the case of an MCAR mechanism, efficiency is almost 100%
after just ten imputations. For the MAR and MNAR mechanisms, achieving
full efficiency would require around 40 imputations, which is clearly not
worth the computational effort. Indeed, the respective efficiencies obtained
after only five imputations is more than adequate for most practical settings.

Surprisingly, the relative efficiency of the MNAR dataset is larger than that
of the MAR dataset for smaller values of m. This can only be the case if
the fraction of missing information is lower under the MNAR missingness
mechanism relative to that of the MAR mechanism. The fraction of missing
information γ for each missingness mechanism is illustrated graphically in
Figure 19 for successive values ofm. This graph does indeed confirm that the
percentage of missing information is less for the MNAR mechanism relative
to the MAR mechanism over the initial stretch of imputations, before both
converge to around 50% from 20 imputations onwards.

The percentage of missing information under the MCAR mechanism is
around 20%, which is somewhat less than that of both the MAR and MNAR
mechanisms, as is to be expected. Recall that the rate of missing observa-
tions for the earnings variable is 30%, which does not necessarily equate
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Figure 19: Fraction of missing information γ after successive imputations
for the MCAR, MAR and MNAR missingness mechanisms.

to the rate of missing information, as is the case here. The exact reason
as to why missing information is higher for MAR relative to MNAR for
small numbers of imputations is likely to be attributed to the multivariate
relationships within these specific samples. The rate of missing information
depends upon the strength of the correlations between the variable of in-
terest and the other variables that are more fully observed [13]. Since the
multivariate distribution of missingness differs between the two datasets, this
is suggested as the most probable cause of the observed phenomenon. It is
expected that in repeated sampling the dataset with an MNAR mechanism
will contain a larger amount of missing information relative to a dataset
with an MAR mechanism. Indeed, the sample does contain most of the
information that is necessary to impute under MAR, whilst imputing un-
der MNAR requires information beyond that which is contained within the
sample. Consequently, one would expect a priori that the latter missingness
mechanism would result in more missing information than the former.

Despite the aforementioned idiosyncrasy, the empirical results thus far sug-
gest that no more than five imputations are necessary to obtain a relatively
efficient estimate of mean earnings. It was noted earlier that the major
flaw of single imputation methods is that they do not adequately reflect the
uncertainty of the imputation procedure in the standard error of estimate.
This was confirmed in Table 2 where the standard errors are observed to be
consistently below the true value of R41.20 for all thee missingness mech-
anisms. Consequently, one would expect coverage to be below its nominal
value in repeated runs of a single imputation model.
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Multiple imputation seeks to overcome the aforementioned problem by in-
troducing a between-imputation component into the overall standard error
of estimate, thereby resulting in wider confidence intervals and hence greater
coverage. In order to assess whether actual coverage is in fact representative
of its nominal value for low values of m, 95% confidence intervals were con-
structed using Rubin’s rules for each of 100 runs of the imputation model
with ten iterations and one, three and five imputations respectively. The
results obtained under the MAR missingness mechanism are presented in
Figures 20 to 22.

As expected, under-coverage is observed in the case of single imputation.
In the 100 repeated imputations, only 91% of the confidence intervals in-
clude the true mean monthly earnings relative to the nominal value of 95%.
By contrast, the 95% confidence intervals constructed for the multiple im-
putation models with three and five imputations respectively include the
true mean in all 100 repeated imputations. This would imply that multiple
imputation does provide a remedy to the problem of under-coverage which
typifies single imputation methods for as few as three imputations. This
finding is consistent with that of Van Buuren, Boshuizen and Knook (1999)
whose simulation studies revealed that accurate results may be obtained
with m as low as three for 20% missing data. Indeed, the results obtained
here suggest that this conclusion still holds where 30% of entries are missing.

Although coverage would appear to be adequate for three to five imputa-
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Figure 20: 95% Confidence intervals for a single imputation with MAR
missingness mechanism. Red horizontal line denotes the true mean monthly
earnings.
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Figure 21: 95% Confidence intervals for three imputations with MAR miss-
ingness mechanism. Red horizontal line denotes the true mean monthly
earnings.
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tions, Royston (2004) contends that the confidence coefficient is highly vari-
able for such low values of m, resulting in unstable confidence intervals for
the scalar parameter of interest. The author’s empirical work shows that the
relationship between the coefficient of variation on the confidence coefficient
and the number of imputations is convex to the origin, with the coefficient
of variation declining gradually for successive imputations. Royston (2004)
suggests that the coefficient of variation (defined as the standard deviation
divided by the mean multiplied by 100) may be doubled in order to provide
a rough measure of uncertainty in confidence intervals for the parameter of
interest. For five imputations, his empirical study produced a coefficient
of variation in the region of 13%, corresponding to an unacceptably large
measure of uncertainty of approximately 26%. The author proposes that
m be chosen such that the coefficient of variation is of the order of 5% or
equivalently that uncertainty in the confidence intervals is roughly 10% or
less. In his study, this rule of thumb would require m to be at least 20 or
possibly more [10].

The 100 simulated confidence coefficients in the present study resulted in
coefficients of variation of 19.65% and 26.15% for m = 3 and m = 5 respec-
tively. This corresponds to uncertainty levels of 39.30% and 52.30% for the
two models. These results would appear to be particularly concerning in
light of Royston’s rule of thumb. Indeed, the figures obtained here are even
larger than those obtained in his study. These results therefore do provide
evidence in support of the notion that smaller values of m may result in
unreliable confidence intervals based on Royston’s measure of uncertainty.
However, Royston (2004) does not justify why doubling the coefficient of
variation should be an appropriate measure of uncertainty in the confidence
intervals and one may certainly question this approach. From the figures
presented earlier, it is noted that the upper 95% confidence limit seldom
peaks above R2 300, whilst the lower limit is largely in excess of R2 000.
The confidence intervals are therefore found to fluctuate mostly within this
range, which is certainly no cause for concern from a practical perspective.
Indeed, when the problem is contextualised in this manner, one would not
be led to question the reliability of the confidence coefficient.

4.3 Assessing the Robustness of the Imputation Model

The above findings suggest that a sequential regression multivariate imputa-
tion model with ten iterations and five imputations is a conservative choice
for the imputation of missing values. Indeed, it would appear that eight
iterations are sufficient for convergence and as few as three imputations are
desirable in terms of bias, efficiency and coverage. However, these results
were obtained for a fixed percentage of missing data (30%) and by including
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all variables from the artificial dataset in the imputation model. It would
therefore seem appropriate to assess the robustness of the imputation model
to changes in these factors. For the analyses to follow, the “conservative”
model will be employed.

4.3.1 Fraction of Missing Data

It is expected a priori that the imputation model will produce superior es-
timates of mean monthly earnings for lower percentages of missing data on
the earnings variable. Indeed, it was noted at the outset of this section that
the convergence of a single Markov chain will depend upon the fraction of
missing data, where convergence tends to be slower for larger percentages.
In order to assess the conditions under which the imputation model performs
well, it is useful to revisit the concepts of bias, standard error of estimate
and root mean squared error as presented in Table 2. The model employed
to generate that table was augmented by varying the percentage of miss-
ing data on the earnings variable to produce Table 4. Note that all other
variables in the hypothetical dataset have been utilised in this model and
that the same values were set to missing on the covariates for each round of
imputations. The bias, standard error and root mean squared error pertain
to mean monthly earnings, as computed using Rubin’s rules, relative to the
true mean monthly earnings of R2 166.24 in the artificial dataset.

Table 4 does indeed confirm that better estimates might be obtained for
lower fractions of missing data under the MAR and MNAR missingness
mechanisms. Examination of the RMSE measure for these two mechanisms
provides a clear indication that the accuracy of the estimate worsens con-
siderably as the percentage of missing data increases. Under the MNAR
mechanism, absolute bias rises consistently with the fraction of missing data
and is almost solely responsible for the increase in RMSE. Indeed, there does

% MCAR MAR MNAR
Missing Bias Std Err RMSE Bias Std Err RMSE Bias Std Err RMSE

10% 3.18 42.06 42.18 -29.56 37.62 47.85 -298.68 19.02 299.29
20% -56.53 26.56 62.45 -34.14 36.01 49.62 -430.51 25.55 431.26
30% -57.08 26.84 63.07 -16.60 40.08 43.38 -595.03 17.02 595.27
40% -68.39 26.61 73.38 31.78 80.42 86.48 -771.51 13.02 771.62
50% -75.13 32.16 81.73 -77.11 46.16 89.87 -907.72 20.99 907.96
60% -37.65 29.20 47.65 -108.08 46.78 117.77 -1011.60 11.38 1011.67
70% -66.26 38.93 76.85 -138.17 132.73 191.60 -1041.80 12.65 1041.83

Table 4: Bias, standard error of estimate and root mean squared error
in mean monthly earnings for various percentages of missing data on the
monthly earnings variable for the three missingness mechanisms (5 imputa-
tions, 10 iterations).
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not appear to be any immediately obvious relationship between the fraction
of missing data and the standard error of estimate.

Under the MAR missingness mechanism, the smallest absolute bias is actu-
ally observed with 30% missing data and mean earnings is upwardly biased
for 40% missing observations whereas elsewhere the direction of this bias is
downward. These two phenomena are likely to be attributed to sampling
variability encountered in setting the data to missing and do not detract from
the positive relationship observed between the rate of missing data and the
absolute bias. As with the MNAR missingness mechanism, the standard er-
ror of estimate does not appear to be influenced in any predictable manner
by the percentage of missing data. However, it is noted that the standard
error of estimate is substantially larger than its true value of R41.20 for 40%
and particularly 70% missing data.

Finally, in terms of the MCAR missingness mechanism, it is unclear as to
whether or not the percentage of missing data has any systematic influence
on the accuracy of the mean earnings estimate. It is noted that this estimate
and its standard error are extremely close to their respective true values
when missing data is at its lowest value of 10%. However, for higher rates of
missing data, the bias and standard error of estimate appear to be somewhat
random, with the best and worst estimates in terms of RMSE observed for
60% and 40% missing data respectively. One may therefore infer that the
number of missing observations does not affect the efficacy of the imputation
model with respect to the accuracy of point estimates in the presence of an
MCAR missingness mechanism. From the findings observed thus far in this
section, such a result should not be unexpected.

As was noted earlier, a sound imputation model should not only provide
accurate point estimates, but also preserve the relationships between the
variables in the dataset. In order to assess how the sequential regression
multivariate imputation model with five imputations and ten iterations per-
forms in this respect, the bias, standard error of estimate and RMSE for
returns to education were computed as before for various rates of missing
data on the earnings variable. The results, multiplied by 100, are presented
in Table 5 on page 63.

From Table 5, there is a clear increase in the absolute bias across all missing-
ness mechanisms as the percentage of missing data on the earnings variable
rises. In all instances, the coefficient estimates tend to zero as the rate
of missing data increases, implying that the strength of multivariate rela-
tionships are attenuated for high fractions of missing values. The observed
increase in absolute bias is most notable for the MNAR missingness mecha-
nism, followed by the MAR mechanism and finally the MCAR mechanism.
For the MNAR missingness mechanism, the rate of return to education is
underestimated by approximately 4% where the percentage of missing data

62



% MCAR MAR MNAR
Missing Bias Std Err RMSE Bias Std Err RMSE Bias Std Err RMSE

10% -0.0115 0.1756 0.1760 -0.2020 0.1803 0.2708 -0.7887 0.1656 0.8059
20% 0.0112 0.1735 0.1739 -0.4222 0.1753 0.4571 -1.2277 0.1985 1.2437
30% -0.0023 0.2090 0.2090 -0.5667 0.2033 0.6021 -1.9844 0.2132 1.9958
40% -0.0834 0.2546 0.2679 -0.5108 0.2522 0.5697 -2.9840 0.2465 2.9942
50% -0.0343 0.2084 0.2112 -0.8042 0.2320 0.8369 -3.6585 0.2177 3.6650
60% -0.2501 0.2946 0.3865 -1.1131 0.2054 1.1319 -4.3601 0.1857 4.3640
70% -0.2283 0.3042 0.3803 -1.2770 0.3082 1.3137 -4.4308 0.1258 4.4326

Table 5: Bias, standard error of estimate and root mean squared error in
returns to education for various percentages of missing data on the monthly
earnings variable for the three missingness mechanisms (5 imputations, 10
iterations). All figures multiplied by a factor of 100.

is 50% or more. The magnitude of this bias may be sufficient to affect policy
decisions. Under an MAR mechanism, this bias is only of the order of 1%,
whereas a downward bias in the region of only a quarter of a percent is
observed for the MCAR mechanism with 60% to 70% missing data.

Interestingly, there does appear to be a positive relationship between the
percentage of missing data and the absolute bias on the coefficient esti-
mate for years of education under the MCAR mechanism. Recall that no
such relationship could be established between the rate of missing data and
the absolute bias on the point estimate of earnings under this mechanism.
Hence, whilst increasing the number of missing entries does not influence the
accuracy of point estimates under an MCAR mechanism, it does adversely
attenuate the multivariate relationships in the dataset.

The standard error of estimate exceeds its true value of 0.1650% in all cases,
except under an MNAR missingness mechanism with 70% missing data. Un-
der the MAR mechanism, the standard error is almost double its true value
with 70% missing data, whilst this is the case for 60% and 70% missing data
under the MCAR missingness mechanism. In other instances, the depar-
ture for the true value does not raise any cause for concern. Nonetheless,
the standard error of estimate does appear to increase as the percentage of
missing data increases under the MCAR and MAR mechanisms. This may
be desirable in light of the added uncertainty that results from larger frac-
tions of missing data. Interestingly, however, the estimated standard errors
are surprisingly close to their true values for very low rates of missing data.

As is to be expected from the results discussed above, the RMSE measure
increases as the fraction of missing data rises. In the cases of the MCAR
and MAR missingness mechanisms, this increase is driven by both the rise in
absolute bias and the increase in the standard error of estimate. Under the
MNAR mechanism, the increase in RMSE results largely from the enormous
biases associated with the large rates of missing data.
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4.3.2 Number of Covariates in the Imputation Model

Recall that monthly earnings values were set to missing under the MAR
missingness mechanism based on the age, years of education, racial group,
province and gender variables. In addition to these variables, hours worked
per week, skills training, employment type and the occupation and sec-
tor variables were all used in imputing for monthly earnings. In practice,
however, it may be difficult to ascertain exactly which variables should be
included in the imputation model. Furthermore, fewer variables may be
desirable in terms of computational efficiency. Indeed, most household sur-
veys contain many variables and it would not be feasible to include all these
variables in the imputation model. Consequently, it would be useful to as-
sess the impact of the inclusion and exclusion of certain covariates in the
imputation model in terms of the bias and efficiency of estimates.

Table 6 presents the bias, standard error of estimate and root mean squared
error in the estimated mean monthly earnings under each of the three miss-
ingness mechanisms for various numbers of covariates. More specifically,
the covariates utilised were either the same as those used to set the data to
missing under the MAR mechanism (that is, age, years of education, racial
group, province and gender), less than those used to set the data to missing
(excluding the years of education and gender variables) or more than those
used to induce missingness (including all variables in the artificial dataset).
Five imputations and ten iterations with 30% missing data on the earnings
variable were utilised.

It is noted that the absolute bias is substantially larger for both the MAR
and MNAR mechanisms where fewer covariates were utilised. The standard
error of estimate is well below its true value of R41.20 under the MNAR
mechanism and therefore fails to provide an accurate reflection of the in-
herent uncertainty in the imputed values. Accordingly, the RMSE measure
is much larger for both the MAR and MNAR mechanisms when less co-
variates are included in the imputation model than those which actually
induced the missingness. This result is particularly interesting for the MAR
missingness mechanism. It illustrates that even where such an ignorable

No. MCAR MAR MNAR
Covariates Bias Std Err RMSE Bias Std Err RMSE Bias Std Err RMSE

Less -36.97 30.27 47.78 -111.44 36.82 117.37 -734.72 16.47 734.90
Same -55.01 27.01 61.28 -50.23 42.07 65.52 -666.19 18.23 666.44
More -57.08 26.84 63.07 -16.60 40.08 43.38 -595.03 17.02 595.27

Table 6: Bias, standard error of estimate and root mean squared error in
mean monthly earnings for various numbers of covariates for the three miss-
ingness mechanisms (5 imputations, 10 iterations).
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missingness mechanism persists, an imputation model that omits relevant
predictors may still result in large biases and potentially under-represent
uncertainty.

When all the covariates used to set the data to missing under the MAR
mechanism were included in the imputation model, the absolute bias under
the MAR mechanism was reduced by 54.93%. Furthermore, the standard
error of estimate of R42.07 is a far more accurate reflection of its true value
relative to the case with less covariates. By contrast, the observed reduction
in absolute bias under the MNAR mechanism when the same number of
covariates is utilised is only 9.33% and the standard error of estimate is still
less than half of its true value. Hence, although there is a large improvement
in RMSE for the MAR mechanism, the decrease is not nearly as dramatic
under the MNAR missingness mechanism.

Finally, it would appear that including more covariates than that which ac-
tually induced missingness improves bias under both the MAR and MNAR
mechanisms. Absolute bias decreases by 66.95% and 10.68% under the MAR
and MNAR missingness mechanisms respectively, which is proportionally
more than that observed in the preceding paragraph. Standard errors of
estimates remain relatively unchanged in comparison to the case where the
number of covariates equal that which induced missingness. The reduction
in RMSE is therefore attributable to the decrease in absolute bias. This
result implies that one should include all variables in the imputation model
that are able to explain a reasonable proportion of the variation in the target
variable, confirming the arguments of Van Buuren, Boshuizen and Knook
(1999). Although some of these variables may not be directly related to miss-
ingness, there are likely to be indirect associations induced by the complex
multivariate relationships between the variables in the dataset. Further-
more, the explanatory power of these independent variables with respect to
the variation in the response variable will facilitate better predictions of the
latter.

As was the case in assessing the influence of the fraction of missing data on
the accuracy of estimates, it is difficult to ascertain whether or not the in-
clusion or exclusion of various covariates actually affects bias and efficiency
under an MCAR missingness mechanism. From Table 6, it would appear
that absolute bias increases as the number of covariates increase, which is
clearly not consistent with the results under the MAR and MNAR mecha-
nisms or simple intuition. In addition, small decreases in the standard error
of estimate are observed as the number of covariates increase, becoming
less representative of the true value. In general, one would not expect such
relationships to exist on theoretical grounds and hence the small increases
in RMSE observed as the number of covariates increase under the MCAR
missingness mechanism are likely to be attributed to the randomness of the
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imputation procedure.

As before, it would also seem appropriate to consider the impact of the
number of covariates on the multivariate relationships within the dataset.
Table 7 presents the bias, standard error of estimate and RMSE for returns
to education under the three missingness mechanisms.

Table 7 clearly suggests that absolute bias in the relationship between ed-
ucation and monthly earnings may be reduced by increasing the number of
variables. This result is applicable for all three missingness mechanisms. In
particular, the large biases in returns to education observed when imputing
with less covariates is indicative of the consequences of omitting a variable
of interest in post-imputation analyses (in this case, years of education)
from the imputation model. Downward biases of the order of 3.5% (MAR)
or 4.5% (MNAR) in returns to education can have serious consequences
for policy decisions. Even the bias of approximately 2% under the MCAR
mechanism may be non-trivial. Including years of education and gender in
the imputation model reduces absolute bias by 36.14%, 80.11% and 58.91%
under the MCAR, MAR and MNAR missingness mechanisms respectively.
The reduction in absolute bias observed when including additional variables
beyond those directly related to missingness is, however, not as significant.
Indeed, a small (random) increase in absolute bias is observed under the
MNAR mechanism. This is not entirely unexpected since the inclusion of
further variables is unlikely to have a substantial impact on the relationship
between monthly earnings and years of education.

The fluctuations in the standard error of estimate do not appear to be re-
lated to the number of covariates included in the imputation model. Hence,
the RMSE is driven down by the reduction in absolute bias for larger num-
bers of covariates across all missingness mechanisms. Note that although
increasing the number of covariates appeared to have no systematic influ-
ence on the bias of the point estimate of mean monthly earnings under the
MCAR mechanism, this is certainly not the case when evaluating multi-
variate relationships under the same conditions. Increasing the number of
covariates to at least include all those that are related to response probabil-
ities is therefore justified from this perspective for the MCAR mechanism.

No. MCAR MAR MNAR
Covariates Bias Std Err RMSE Bias Std Err RMSE Bias Std Err RMSE

Less -2.2392 0.2474 2.2528 -3.5465 0.2236 3.5535 -4.4572 0.1990 4.4617
Same 1.4300 0.2263 1.4478 0.7053 0.1957 0.7319 -1.8313 0.1612 1.8384
More -0.0023 0.2090 0.2090 -0.5667 0.2033 0.6021 -1.9844 0.2132 1.9958

Table 7: Bias, standard error of estimate and root mean squared error in
returns to education for various numbers of covariates for the three missing-
ness mechanisms (5 imputations, 10 iterations).
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5 Conclusions

The empirical findings of this paper largely support the current literature on
incomplete multivariate data analysis. Irrespective of the missingness mech-
anism, it was established that only a few iterations are required in order to
achieve convergence to the posterior predictive distribution P (YMISS|YOBS).
In the worst-case scenario, convergence was attained after eight iterations.
Ten iterations is recommended as a conservative choice, especially since the
increase in computational power necessary to produce ten iterations as op-
pose to only eight is negligible. It should, however, be noted that although
convergence may be achieved, the stationary distribution may not necessar-
ily coincide with the actual distribution of the missing data. This will be
the case when likelihood-based inferences concerning θ are invalidated by
failing to consider the missingness mechanism. Hence, sequential regression
multivariate imputation is not appropriate when the missingness mechanism
is non-ignorable for inferences on θ.

The empirical findings revealed that as few as three imputations are nec-
essary when imputing under an MAR missingness mechanism. Following
Rubin’s (1987) advice, it is therefore recommended that five imputations
be utilised as the cautious choice. After five imputations under an MAR
mechanism, the bias of point estimates was found to be negligible, whilst
the standard error was large enough to adequately account for the uncer-
tainty associated with the imputation procedure. Consequently, coverage in
repeated sampling was found to accurately reflect the nominal percentage
under an MAR missingness mechanism. The imputation model is, however,
unable to account for the biases that may arise due to random (rather than
systematic) differences between respondents and non-respondents under the
MCAR mechanism, although one would expect zero bias in repeated sam-
pling under this mechanism. When the missingness mechanism is MNAR,
a single imputation was found to reduce bias, although by no means elim-
inate it. Multiple imputations did not result in further improvements in
bias and the standard error remained well below its true value. This finding
further attests to the imputation model’s inability to deal effectively with
non-ignorable missingness. Interestingly, the number of imputations was not
found to influence the multivariate relationships within the dataset.

The absolute bias increases with the percentage of missing values, becoming
quite severe where this figure exceeds 50%. There does not appear to be
any clear relationship between the fraction of missing data and the standard
error of estimate. These conclusions are applicable to both the MAR and
MNAR missingness mechanisms. As expected, neither the bias nor the stan-
dard error of point estimates appear to be influenced by the rate of missing
data under an MCAR missingness mechanism. Multivariate relationships,
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on the other hand, were distorted for higher fractions of missing data with
coefficient estimates becoming attenuated under all three missingness mech-
anisms.

Under the MAR and MNAR missingness mechanisms, it was established
that increasing the number of covariates to include more predictors than
the variables that actually induced missingness reduces the absolute bias in
point estimates. Under the MAR missingness mechanism, including fewer
covariates than those which were accountable for the missing values not
only resulted in a large absolute bias, but also produced a standard error
of estimate that was well below its true value. As with the rate of miss-
ing data, the point estimates obtained under an MCAR mechanism did not
exhibit sensitivity to the number of covariates. However, the relationships
between variables are affected by the number of covariates in the model un-
der all three missingness mechanisms, with severely attenuated coefficient
estimates observed when the imputation model did not include the indepen-
dent variable of interest. These results indicate the importance of including
all variables in the imputation model that are likely to be subjected to post-
imputation statistical analyses.

It is therefore recommended that the choice of independent variables to be
included in an imputation model be informed by the following three con-
siderations. Firstly, variables that are known to influence the occurrence of
missing data should clearly be included. These might be identified through
tabulation or a logistic regression model with a response indicator as the
dependent variable. Secondly, predictor variables should be able to explain
a significant proportion of the variation in the response variable. A correla-
tion analysis or regression model of the observed data may prove useful in
this respect. Finally, in order to avoid biases in the subsequent statistical
analyses to be performed on the multiply imputed data, it is necessary to
include all variables that may be utilised in such analyses [18]. This latter
consideration is likely to be the most arduous of the three where survey
data forms part of a large database serving many users with various inter-
ests. Even if all the observed variables are included in the imputation model
(which is clearly not feasible in practice), one may never by able to account
for all the possible variations of interaction terms and higher-order variables
that multiple users may wish to evaluate.

5.1 Further Research

Multiple imputation methods, facilitated by Markov chain Monte Carlo,
provide a valuable and flexible approach to statistical inference with incom-
plete multivariate data. The theory surrounding these methods and their
applications to missing data and related problems is among the most rapidly
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developing areas of modern statistical science [13]. Some of the promising
current and future areas of research in this field are outlined below, along
with some useful references for further reading.

5.1.1 Non-Ignorable Methods

The assumption of ignorable missingness is computationally convenient as
it allows the analyst to construct an imputation model without explicitly
specifying the distribution of missingness P (R|ξ). In many situations, how-
ever, this assumption is questionable and it would therefore be worthwhile
to investigate non-ignorable alternatives [13]. Two broad approaches have
been addressed in the literature and are certainly not exhaustive of all the
attempts made to tackle this problem. The first of these approaches is
the use of selection models, which seek to explicitly model the sample se-
lection process that determines why some values are observed and others
not. Adaptations of the Tobit model (the so-called Type II Tobit model)
and Heckman’s two-step method have been suggested in this respect. The
second approach to non-ignorable missingness is the adoption of pattern-
mixture models. Such models do not attempt to describe the individuals’
response probabilities, but instead classify individuals by their missingness
and use the observed data within each missingness group to extrapolate as-
pects of this behaviour to unseen portions of the data [15]. Chapter 15 of
Little and Rubin (2002) provides a rigorous discussion of these non-ignorable
models. The construction and evaluation of such models are an important
area for future study.

5.1.2 Models for Complex Survey Data

The sequential regression multivariate imputation technique assumes that
the dataset arises from a simple random sample. However, most surveys,
including the Labour Force Survey utilised here, employ complex sample
designs involving stratification, clustering and weighting [9]. Although the
complex sample design was taken into account when analysing the multi-
ply imputed data, the imputation technique itself does not account for the
important features of the sample design. Raghunathan et al (2001) sug-
gest that when used in conjunction with an appropriate variance estimation
technique, such as jackknife repeated replication, Taylor series linearisation
or balanced repeated replication, the sequential regression multivariate im-
putation model may have more appealing design-based properties. Other
popular alternatives to account for the complex sample design include ran-
dom effects models and generalised linear mixed models. Such models may
be quite complex in practice and further research needs to be conducted to
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formulate more flexible models and algorithms for imputation in a complex
design setting [13].

5.1.3 Models for Semicontinuous Variables

Semicontinuous variables arise in a wide variety of contexts. They are de-
fined as variables that take on a specific value (usually zero) with a positive
probability, but otherwise assume values that can be modelled by a continu-
ous distribution [4]. An example of such a variable is earnings, which takes
on a value of zero for unemployed persons and typically follows a lognormal
distribution for employed individuals. Since this study was concerned only
with the employed, the logarithmic transformation to normality necessary
for ordinary least squares regression did not prove problematic, since very
few employed persons have zero earnings. Consequently, the earnings vari-
able was treated as if it were continuous. However, in other contexts, the
normalising transformation may be infeasible due to the point mass at zero
[4]. When missing values occur on semicontinuous variables of this nature,
it is necessary to apply missing data methods that are explicitly designed
for them. Ad hoc approaches, such as imputing the variables as if they
were normally distributed and then truncating negative values to zero, do
not work well in practice [13]. More sophisticated methods, such as the
blocked general location model, are required for imputing these variables.
Javaras and Van Dyk (2003) provide a thorough discussion of such methods.

The aforementioned areas of enquiry are by no means exhaustive and pro-
vide only a taste of what is likely to transpire from research in this field in
the coming years. Indeed, the problem of non-response is here to stay and
the development of more sophisticated statistical methods for dealing with
incomplete datasets is likely to occupy statisticians for many years into the
future.
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Appendices

A Rubin’s Measure of Relative Efficiency

Fraction of Missing Information γ
m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 95 91 88 85 82 79 77 75 73
2 98 95 93 91 89 88 86 85 83
3 98 97 95 94 93 91 90 89 88
5 99 98 97 96 95 94 94 93 92
∞ 100 100 100 100 100 100 100 100 100

Table A1: Large sample relative efficiency (in percentage units of stan-
dard deviations) when using a finite number of imputations, rather than
an infinite number of imputations, as a function of the fraction of missing
information γ (Rubin, 1989, p. 114).
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B Assessing Distributional Convergence
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Figure B1: Distribution of missing log earnings after various iterations of the
Markov chain under the MCAR mechanism. Red density indicates imputed earn-
ings and blue density indicates true earnings.
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Figure B2: Distribution of missing log earnings after various iterations of the Markov
chain under the MNAR mechanism. Red density indicates imputed earnings and blue
density indicates true earnings.

75



0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

2 4 6 8 10 12
Log Earnings

After 1 Iteration

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

2 4 6 8 10 12
Log Earnings

After 5 Iterations

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

2 4 6 8 10 12
Log Earnings

After 10 Iterations

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

2 4 6 8 10 12
Log Earnings

After 20 Iterations

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

2 4 6 8 10 12
Log Earnings

After 50 Iterations

0
.2

.4
.6

.8
1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

2 4 6 8 10 12
Log Earnings

After 200 Iterations

MCAR Mechanism on Point Earnings
Cumulative Distribution Function of Missing Log Earnings

Figure B3: Cumulative distribution function of missing log earnings after various it-
erations of the Markov chain under MCAR mechanism. Red curve indicates imputed
earnings and blue curve indicates true earnings.
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Figure B4: Cumulative distribution function of missing log earnings after various it-
erations of the Markov chain under MNAR mechanism. Red curve indicates imputed
earnings and blue curve indicates true earnings.

77



0
.1

.2
.3

.4
K

er
ne

l D
en

si
ty

2 4 6 8 10 12
Log Earnings

After 1 Iteration

0
.1

.2
.3

.4
K

er
ne

l D
en

si
ty

2 4 6 8 10 12
Log Earnings

After 5 Iterations

0
.1

.2
.3

.4
K

er
ne

l D
en

si
ty

2 4 6 8 10 12
Log Earnings

After 10 Iterations

0
.1

.2
.3

.4
K

er
ne

l D
en

si
ty

2 4 6 8 10 12
Log Earnings

After 20 Iterations

0
.1

.2
.3

.4
K

er
ne

l D
en

si
ty

2 4 6 8 10 12
Log Earnings

After 50 Iterations

0
.1

.2
.3

.4
K

er
ne

l D
en

si
ty

2 4 6 8 10 12
Log Earnings

After 200 Iterations

MCAR Mechanism on Point Earnings
Distribution of Log Earnings

Figure B5: Distribution of missing log earnings after various iterations of the Markov
chain under the MCAR mechanism. Red density indicates imputed earnings and blue
density indicates true earnings.
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Figure B6: Distribution of missing log earnings after various iterations of the Markov
chain under the MAR mechanism. Red density indicates imputed earnings and blue
density indicates true earnings.
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Figure B7: Distribution of missing log earnings after various iterations of the Markov
chain under the MNAR mechanism. Red density indicates imputed earnings and blue
density indicates true earnings.
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Figure B8: Cumulative distribution function of log earnings after various iterations of
the Markov chain under MCAR mechanism. Red curve indicates imputed earnings and
blue curve indicates true earnings.
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Figure B9: Cumulative distribution function of log earnings after various iterations
of the Markov chain under MAR mechanism. Red curve indicates imputed earnings
and blue curve indicates true earnings.
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Figure B10: Cumulative distribution function of log earnings after various iterations of
the Markov chain under MNAR mechanism. Red curve indicates imputed earnings and
blue curve indicates true earnings.
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