11 research outputs found

    Hand-geometry recognition using entropy-based discretization

    Get PDF
    Author name used in this publication: Ajay Kumar2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Hand-Geometry Recognition Using Entropy-Based Discretization

    Full text link

    Software Fault Prediction Using Filtering Feature Selection in Cluster-Based Classification

    Get PDF
    The high accuracy of software fault prediction can help testing effort and improving software quality. Previous researchers had proposed the combination of Entropy-Based Discretization (EBD) and Cluster-Based Classification (CBC). However, the irrelevant and redundant features in software fault dataset tend to decrease the prediction accuracy value. This study proposes improvement of CBC outcomes by integrating filtering feature selection methods. Filtering feature selection methods that will be integrated with CBC i.e. Information Gain (IG), Gain Ratio (GR), and One-R (OR). Based on the research using 2 datasets NASA public MDP (i.e. PC2 and PC3), the result shows that the combination of CBC and IG yields the best average accuracy value compared to GR and OR. It generates 67.52% average of probability detection (pd) and 37.42% average of probability false alarm (pf). While CBC without feature selection yields 65.38% average pd and 49.95% average pf. It can be concluded that IG can improve CBC outcomes by increasing 2.14% average pd and reducing 12.53% average p

    A contactless identification system based on hand shape features

    Get PDF
    This paper aims at studying the viability of setting up a contactless identification system based on hand features, with the objective of integrating this functionality as part of different services for smart spaces. The final identification solution will rely on a commercial 3D sensor (i.e. Leap Motion) for palm feature capture. To evaluate the significance of different hand features and the performance of different classification algorithms, 21 users have contributed to build a testing dataset. For each user, the morphology of each of his/her hands is gathered from 52 features, which include bones length and width, palm characteristics and relative distance relationships among fingers, palm center and wrist. In order to get consistent samples and guarantee the best performance for the device, the data collection system includes sweet spot control; this functionality guides the users to place the hand in the best position and orientation with respect to the device. The selected classification strategies - nearest neighbor, supported vector machine, multilayer perceptron, logistic regression and tree algorithms - have been evaluated through available Weka implementations. We have found that relative distances sketching the hand pose are more significant than pure morphological features. On this feature set, the highest correct classified instances (CCI) rate (>96%) is reached through the multilayer perceptron algorithm, although all the evaluated classifiers provide a CCI rate above 90%. Results also show how these algorithms perform when the number of users in the database change and their sensitivity to the number of training samples. Among the considered algorithms, there are different alternatives that are accurate enough for non-critical, immediate response applications

    Unconstrained and Contactless Hand Geometry Biometrics

    Get PDF
    This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices

    Personal Authentication Using Finger Knuckle Surface

    Full text link

    Multimodal biometrics scheme based on discretized eigen feature fusion for identical twins identification

    Get PDF
    The subject of twins multimodal biometrics identification (TMBI) has consistently been an interesting and also a valuable area of study. Considering high dependency and acceptance, TMBI greatly contributes to the domain of twins identification in biometrics traits. The variation of features resulting from the process of multimodal biometrics feature extraction determines the distinctive characteristics possessed by a twin. However, these features are deemed as inessential as they cause the increase in the search space size and also the difficulty in the generalization process. In this regard, the key challenge is to single out features that are deemed most salient with the ability to accurately recognize the twins using multimodal biometrics. In identification of twins, effective designs of methodology and fusion process are important in assuring its success. These processes could be used in the management and integration of vital information including highly selective biometrics characteristic possessed by any of the twins. In the multimodal biometrics twins identification domain, exemplification of the best features from multiple traits of twins and biometrics fusion process remain to be completely resolved. This research attempts to design a new scheme and more effective multimodal biometrics twins identification by introducing the Dis-Eigen feature-based fusion with the capacity in generating a uni-representation and distinctive features of numerous modalities of twins. First, Aspect United Moment Invariant (AUMI) was used as global feature in the extraction of features obtained from the twins handwritingfingerprint shape and style. Then, the feature-based fusion was examined in terms of its generalization. Next, to achieve better classification accuracy, the Dis-Eigen feature-based fusion algorithm was used. A total of eight distinctive classifiers were used in executing four different training and testing of environment settings. Accordingly, the most salient features of Dis-Eigen feature-based fusion were trained and tested to determine the accuracy of the classification, particularly in terms of performance. The results show that the identification of twins improved as the error of similarity for intra-class decreased while at the same time, the error of similarity for inter-class increased. Hence, with the application of diverse classifiers, the identification rate was improved reaching more than 93%. It can be concluded from the experimental outcomes that the proposed method using Receiver Operation Characteristics (ROC) considerably increases the twins handwriting-fingerprint identification process with 90.25% rate of identification when False Acceptance Rate (FAR) is at 0.01%. It is also indicated that 93.15% identification rate is achieved when FAR is at 0.5% and 98.69% when FAR is at 1.00%. The new proposed solution gives a promising alternative to twins identification application
    corecore