1,224 research outputs found

    Delay compensation for nonlinear teleoperators using predictor observers

    Get PDF
    This paper presents a delay compensation technique for nonlinear teleoperators by developing a predictor type sliding mode observer (SMO) that estimates future states of the slave operator. Predicted states are then used in control formulation. In the proposed scheme, disturbance observers (DOB) are also utilized to linearize nonlinear dynamics of the master and slave operators. It is shown that utilization of disturbance observers and predictor observer allow simple PD controllers to be used to provide stable position tracking for bilateral teleoperation. Proposed approach is verified with simulations where it is compared with two state-of-the-art methods. Successful experimental results with a bilateral teleoperation system consisting of a pair of pantograph robots also validates the proposed method

    Planning and Real Time Control of a Minimally Invasive Robotic Surgery System

    Get PDF
    This paper introduces the planning and control software of a teleoperating robotic system for minimally invasive surgery. It addresses the problem of how to organize a complex system with 41 degrees of freedom including robot setup planning, force feedback control and nullspace handling with three robotic arms. The planning software is separated into sequentially executed planning and registration procedures. An optimal setup is first planned in virtual reality and then adapted to variations in the operating room. The real time control system is composed of hierarchical layers. The design is flexible and expandable without losing performance. Structure, functionality and implementation of planning and control are described. The robotic system provides the surgeon with an intuitive hand-eye-coordination and force feedback in teleoperation for both hands

    Central controller for hybrid control over network

    Get PDF
    In this paper, a central controller for position/force hybrid control over network is proposed. In the proposed method, the central controller receives position and force information from each plant. Then, the central controller generates acceleration references for each plant by using a hybrid controller and a dead time compensator. As an application, bilateral control with communication delay is implemented. And some simulations and experiments verify the validity of the proposed method

    Passivity-Based Control of Human-Robotic Networks with Inter-Robot Communication Delays and Experimental Verification

    Full text link
    In this paper, we present experimental studies on a cooperative control system for human-robotic networks with inter-robot communication delays. We first design a cooperative controller to be implemented on each robot so that their motion are synchronized to a reference motion desired by a human operator, and then point out that each robot motion ensures passivity. Inter-robot communication channels are then designed via so-called scattering transformation which is a technique to passify the delayed channel. The resulting robotic network is then connected with human operator based on passivity theory. In order to demonstrate the present control architecture, we build an experimental testbed consisting of multiple robots and a tablet. In particular, we analyze the effects of the communication delays on the human operator's behavior

    Intuitive Hand Teleoperation by Novice Operators Using a Continuous Teleoperation Subspace

    Full text link
    Human-in-the-loop manipulation is useful in when autonomous grasping is not able to deal sufficiently well with corner cases or cannot operate fast enough. Using the teleoperator's hand as an input device can provide an intuitive control method but requires mapping between pose spaces which may not be similar. We propose a low-dimensional and continuous teleoperation subspace which can be used as an intermediary for mapping between different hand pose spaces. We present an algorithm to project between pose space and teleoperation subspace. We use a non-anthropomorphic robot to experimentally prove that it is possible for teleoperation subspaces to effectively and intuitively enable teleoperation. In experiments, novice users completed pick and place tasks significantly faster using teleoperation subspace mapping than they did using state of the art teleoperation methods.Comment: ICRA 2018, 7 pages, 7 figures, 2 table

    Interest of the dual hybrid control scheme for teleoperation with time delays

    Get PDF
    A new scheme of teleoperation called "dual hybrid control" is described. It is shown that telepresence is increased compared to traditional force feedback schemes. It is particulary well suited for time delay teleoperation

    Man-machine interface issues in space telerobotics: A JPL research and development program

    Get PDF
    Technology issues related to the use of robots as man-extension or telerobot systems in space are discussed and exemplified. General considerations are presentd on control and information problems in space teleoperation and on the characteristics of Earth orbital teleoperation. The JPL R and D work in the area of man-machine interface devices and techniques for sensing and computer-based control is briefly summarized. The thrust of this R and D effort is to render space teleoperation efficient and safe through the use of devices and techniques which will permit integrated and task-level (intelligent) two-way control communication between human operator and telerobot machine in Earth orbit. Specific control and information display devices and techniques are discussed and exemplified with development results obtained at JPL in recent years

    Compensation of position errors in passivity based teleoperation over packet switched communication networks

    Get PDF
    Because of the use of scattering based communication channels, passivity based telemanipulation systems can be subject to a steady state position error between master and slave robots. In this paper, we consider the case in which the passive master and slave sides communicate through a packet switched communication channel (e.g. Internet) and we provide a modification of the slave impedance controller for compensating the steady state position error arising in free motion because of packets loss
    corecore