59,412 research outputs found

    Human-machine interactions based on hand gesture recognition using deep learning methods

    Get PDF
    Human interaction with computers and other machines is becoming an increasingly important and relevant topic in the modern world. Hand gesture recognition technology is an innovative approach to managing computers and electronic devices that allows users to interact with technology through gestures and hand movements. This article presents deep learning methods that allow you to efficiently process and classify hand gestures and hand gesture recognition technologies for interacting with computers. This paper discusses modern deep learning methods such as convolutional neural networks (CNN) and recurrent neural networks (RNN), which show excellent results in gesture recognition tasks. Next, the development and implementation of a human-machine interaction system based on hand gesture recognition is discussed. System architectures are described, as well as technical and practical aspects of their application. In conclusion, the article summarizes the research results and outlines the prospects for the development of hand gesture recognition technology to improve human-machine interaction. The advantages and limitations of the technology are analyzed, as well as possible areas of its application in the future

    A comparative study of different image features for hand gesture machine learning

    Get PDF
    Vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition. Hand gesture recognition for human computer interaction is an area of active research in computer vision and machine learning. The primary goal of gesture recognition research is to create a system, which can identify specific human gestures and use them to convey information or for device control. In this paper we present a comparative study of seven different algorithms for hand feature extraction, for static hand gesture classification, analysed with RapidMiner in order to find the best learner. We defined our own gesture vocabulary, with 10 gestures, and we have recorded videos from 20 persons performing the gestures for later processing. Our goal in the present study is to learn features that, isolated, respond better in various situations in human-computer interaction. Results show that the radial signature and the centroid distance are the features that when used separately obtain better results, being at the same time simple in terms of computational complexity.(undefined

    End-to-End Multiview Gesture Recognition for Autonomous Car Parking System

    Get PDF
    The use of hand gestures can be the most intuitive human-machine interaction medium. The early approaches for hand gesture recognition used device-based methods. These methods use mechanical or optical sensors attached to a glove or markers, which hinders the natural human-machine communication. On the other hand, vision-based methods are not restrictive and allow for a more spontaneous communication without the need of an intermediary between human and machine. Therefore, vision gesture recognition has been a popular area of research for the past thirty years. Hand gesture recognition finds its application in many areas, particularly the automotive industry where advanced automotive human-machine interface (HMI) designers are using gesture recognition to improve driver and vehicle safety. However, technology advances go beyond active/passive safety and into convenience and comfort. In this context, one of America’s big three automakers has partnered with the Centre of Pattern Analysis and Machine Intelligence (CPAMI) at the University of Waterloo to investigate expanding their product segment through machine learning to provide an increased driver convenience and comfort with the particular application of hand gesture recognition for autonomous car parking. In this thesis, we leverage the state-of-the-art deep learning and optimization techniques to develop a vision-based multiview dynamic hand gesture recognizer for self-parking system. We propose a 3DCNN gesture model architecture that we train on a publicly available hand gesture database. We apply transfer learning methods to fine-tune the pre-trained gesture model on a custom-made data, which significantly improved the proposed system performance in real world environment. We adapt the architecture of the end-to-end solution to expand the state of the art video classifier from a single image as input (fed by monocular camera) to a multiview 360 feed, offered by a six cameras module. Finally, we optimize the proposed solution to work on a limited resources embedded platform (Nvidia Jetson TX2) that is used by automakers for vehicle-based features, without sacrificing the accuracy robustness and real time functionality of the system

    Hand gesture recognition for human computer interaction: a comparative study of different image features

    Get PDF
    Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition

    Hand gesture recognition system based in computer vision and machine learning

    Get PDF
    "Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"Hand gesture recognition is a natural way of human computer interaction and an area of very active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research applied to Human-Computer Interaction (HCI) is to create systems, which can identify specific human gestures and use them to convey information or controlling devices. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. This paper presents a solution, generic enough, with the help of machine learning algorithms, allowing its application in a wide range of human-computer interfaces, for real-time gesture recognition. Experiments carried out showed that the system was able to achieve an accuracy of 99.4% in terms of hand posture recognition and an average accuracy of 93.72% in terms of dynamic gesture recognition. To validate the proposed framework, two applications were implemented. The first one is a real-time system able to help a robotic soccer referee judge a game in real time. The prototype combines a vision-based hand gesture recognition system with a formal language definition, the Referee CommLang, into what is called the Referee Command Language Interface System (ReCLIS). The second one is a real-time system able to interpret the Portuguese Sign Language. Sign languages are not standard and universal and the grammars differ from country to country. Although the implemented prototype was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.(undefined

    Support Vector Machine based Image Classification for Deaf and Mute People

    Full text link
    A hand gesture recognition system provides a natural, innovative and modern way of nonverbal communication. It has a wide area of application in human computer interaction and sign language. The whole system consists of three components: hand detection, gesture recognition and human-computer interaction (HCI) based on recognition; in the existing technique, ANFIS(adaptive neuro-fuzzy interface system) to recognize gestures and makes it attainable to identify relatively complex gestures were used. But the complexity is high and performance is low. To achieve high accuracy and high performance with less complexity, a gray illumination technique is introduced in the proposed Hand gesture recognition. Here, live video is converted into frames and resize the frame, then apply gray illumination algorithm for color balancing in order to separate the skin separately. Then morphological feature extraction operation is carried out. After that support vector machine (SVM) train and testing process are carried out for gesture recognition. Finally, the character sound is played as audio output

    Generic system for human-computer gesture interaction

    Get PDF
    Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.(undefined

    Generic system for human-computer gesture interaction: applications on sign language recognition and robotic soccer refereeing

    Get PDF
    Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time

    Vision-based gesture recognition system for human-computer interaction

    Get PDF
    Hand gesture recognition, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. This work intends to study and implement a solution, generic enough, able to interpret user commands, composed of a set of dynamic and static gestures, and use those solutions to build an application able to work in a realtime human-computer interaction systems. The proposed solution is composed of two modules controlled by a FSM (Finite State Machine): a real time hand tracking and feature extraction system, supported by a SVM (Support Vector Machine) model for static hand posture classification and a set of HMMs (Hidden Markov Models) for dynamic single stroke hand gesture recognition. The experimental results showed that the system works very reliably, being able to recognize the set of defined commands in real-time. The SVM model for hand posture classification, trained with the selected hand features, achieved an accuracy of 99,2%. The proposed solution as the advantage of being computationally simple to train and use, and at the same time generic enough, allowing its application in any robot/system command interface
    corecore