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Abstract— Hand gestures are a powerful way for human 

communication, with lots of potential applications in the area of 

human computer interaction. Vision-based hand gesture 

recognition techniques have many proven advantages compared 

with traditional devices, giving users a simpler and more natural 

way to communicate with electronic devices. This work proposes 

a generic system architecture based in computer vision and 

machine learning, able to be used with any interface for human-

computer interaction. The proposed solution is mainly composed 

of three modules: a pre-processing and hand segmentation 

module, a static gesture interface module and a dynamic gesture 

interface module. The experiments showed that the core of 

vision-based interaction systems can be the same for all 

applications and thus facilitate the implementation. In order to 

test the proposed solutions, three prototypes were implemented. 

For hand posture recognition, a SVM model was trained and 

used, able to achieve a final accuracy of 99.4%. For dynamic 

gestures, an HMM model was trained for each gesture that the 

system could recognize with a final average accuracy of 93.7%. 

The proposed solution as the advantage of being generic enough 

with the trained models able to work in real-time, allowing its 

application in a wide range of human-machine applications. 

Keywords— Human-computer interaction; Gesture interfaces; 

Generic systems; Computer Vision; Machine Learning 

I.  INTRODUCTION 

Hand gestures are a powerful way for human communication, 
with lots of potential applications in the area of human 
computer interaction. Vision-based hand gesture recognition 
techniques have many proven advantages compared with 
traditional devices, giving users a simpler and more intuitive 
way of communication between a human and a computer. 
Using visual input in this context makes it possible to 
communicate remotely with computerized equipment, without 
the need for physical contact. For gesture-based applications, 
we need to model them in the spatial and temporal domains, 
where a hand posture is the static structure of the hand and a 
gesture is the dynamic movement of the hand. Being hand-pose 
one of the most important communication tools in human’s 
daily life, and with the continuous advances of image and 

video processing techniques, research on human-machine 
interaction through gesture recognition led to the use of such 
technology in a very broad range of applications, like touch 
screens, video game consoles, virtual reality, medical 
applications, etc. There are areas where this trend is an asset, as 
for example in the application of these technologies in 
interfaces that can help people with physical disabilities, or 
areas where it is a complement to the normal way of 
communicating. 
The main objective of this work is to describe and propose a 
generic system architecture based in computer vision and 
machine learning, able to be used with any interface for 
human-machine interaction 
The rest of the paper is as follows. Firstly, the related work is 
review in section 2. Section 3 introduces the system 
architecture and describes each one of the proposed modules. 
Experimental methodology and results are explained in section 
4. Conclusions are drawn in section 5. 

II. RELATED WORK 

Hand gestures, either static or dynamic, for human computer 
interaction in real time systems is an area of active research and 
with many possible applications. However, vision-based hand 
gesture interfaces for real-time applications require fast and 
extremely robust hand detection, feature extraction and gesture 
recognition. Several approaches are normally used including 
Artificial Neural Networks (ANN), Support Vector Machines 
(SVM) and Hidden Markov Models (HMM).  
An Artificial Neural Networks is a mathematical / 
computational model that attempts to simulate the structure of 
biological neural systems. They accept features as inputs and 
produce decisions as outputs [1]. Maung et al [2] applied it in a 
gesture recognition system for real-time gestures in unstrained 
environments. Vicen-Buéno et al. [3] used it applied to the 
problem of traffic sign recognition. Bailador et al. [4] presented 
an approach to the problem of gesture recognition in real time 
using inexpensive accelerometers. Their approach was based 
on the idea of creating specialized signal predictors for each 
gesture class.  



A Support Vector Machines (SVM’s) is a technique based on 
statistical learning theory, which works very well with high-
dimensional data. The objective of this algorithm is to find the 
optimal separating hyper plane between two classes by 
maximizing the margin between them [5]. Faria [6, 7] used it to 
classify robotic soccer formations and the classification of 
facial expressions, Ke [8] used it in the implementation of a 
real-time hand gesture recognition system for human robot 
interaction, Maldonado-Báscon [9] used it for the recognition 
of road-signs and Masaki [10] used it in conjunction with SOM 
(Self-Organizing Map) for the automatic learning of a gesture 
recognition mode. He first applies the SOM to divide the 
sample into phases and construct a state machine, and then he 
applies the SVM to learn the transition conditions between 
nodes.  
Almeida [11] proposed a classification approach to identify the 
team's formation in the robotic soccer domain for the two 
dimensional (2D) simulation league employing Data Mining 
classification techniques.  
Trigueiros [12] has made a comparative study of four machine 
learning algorithms applied to two hand features datasets. In 
their study the datasets had a mixture of hand features. He has 
also made a comparative study of different image features for 
hand gesture machine learning [13] and proposed a vision-
based system for the Portuguese sign language recognition 
[14], based in a SVM model with an accuracy of 99.2%, and a 
Vision-based Gesture Recognition System for Human 
Computer Interaction [15] based in machine learning 
algorithms and able to do real-time hand gesture recognition. 
Hidden Markov Models (HMMs) have been widely used in a 
successfully way in speech recognition and hand writing 
recognition [16], in various fields of engineering and also 
applied quite successfully to gesture recognition.  
Oka [17] developed a gesture recognition system based on 
measured finger trajectories for an augmented desk interface 
system. They have used a Kalman filter for the prediction of 
multiple finger locations and an HMM for gesture recognition.  
Perrin [18] described a finger tracking gesture recognition 
system based on a laser tracking mechanism which can be used 
in hand-held devices. They have used HMM for their gesture 
recognition system with an accuracy of 95% for a set of 5 
gestures. Nguyen  [19] described a hand gesture recognition 
system using a real-time tracking method with pseudo two-
dimensional Hidden Markov Models. Chen [20] used it in 
combination with Fourier descriptors for hand gesture 
recognition using a real-time tracking method. Kelly [21] 
implemented an extension to the standard HMM model to 
develop a gesture threshold HMM (GT-HMM) framework 
which is specifically designed to identify inter gesture 
transition. Zafrulla [22] have investigated the potential of the 
Kinect depth-mapping camera for sign language recognition 
and verification for educational games for deaf children. They 
used 4-state HMMs to train each of the 19 signs defined in 
their study. Trigueiros [23] used HMM’s applied to a Vision-
based system capable of recognizing a set of referee commands 
for robotic soccer games. 

Cooper  [24] implemented an isolated sign recognition system 
using a 1st order Markov chain. In their model, signs are 
broken down in visemes (equivalent to phonemes in speech) 
and a bank of Markov chains are used to recognize the visemes 
as they are produced. Milosevic [25] implemented an HMM-
based continuous gesture recognition algorithm, optimized for 
lower power, low cost microcontrollers without float point unit. 
The proposed solution is validated on a set of gestures 
performed with the Smart Micrel Cube (SMCube), which 
embeds a 3-axis accelerometer and an 8-bit microcontroller. 
They also explore a multiuser scenario where up to 4 people 
share the same device. Elmezain [26] proposed a system able 
to recognize both isolated and continuous gestures for Arabic 
numbers (0-9) in real-time. To handle isolated gestures, an 
HMM using Ergodic (it is possible to go from every state to 
every state), Left-Right (LR) and Left-Right Banded (LRB) 
topologies with different number of states was applied. The 
LRB in conjunction with the Forward algorithm presented the 
best performance with an average recognition rate of 98.94% 
and 95.7% for isolated and continuous gestures. 

III. PROPOSED SYSTEM ARCHITECTURE 

The design of any gesture recognition system essentially 
involves the following three aspects: (1) data acquisition and 
pre-processing; (2) data representation or feature extraction 
and (3) classification or decision-making. Taking this into 
account, a possible solution to be used in any vision-based 
hand gesture recognition system for human-machine 
interaction is represented in the diagram of Fig. 1. 
In the following sections, we will describe the Static gesture 
module and the Dynamic gesture module. 

A. Static Gesture Module 

For static gesture classification, hand segmentation and feature 
extraction is a crucial step in vision-based hand gesture 
recognition systems. The obtained segmented hand in the pre-
processing module is used to extract hand features that are used 
later with classification algorithms [13]. The learned models 
for hand posture classification use feature vectors composed of 
centroid distance values. The centroid distance signature is a 
type of shape signature [27] expressed by the distance of the 
hand contour boundary points, from the hand centroid (xc, yc) 
and is calculated in the following manner: 

d�i� = ��x� − x
�� + �y� − y
��, i = 0, … . , N − 1 (1) 

This way, a one-dimensional function representing the hand 
shape is obtained. The number of equally spaced points N used 
in our implementation was 16. The feature vectors thus 
obtained were used to train the SVM used in system 
implementations. The SVM is a pattern recognition technique 
in the area of supervised machine learning, which works very 
well with high-dimensional data. When more than two classes 
are present, there are several approaches that evolve around the 
2-class case [28]. The one used in this system is the one-
against-all, where c classifiers have to be designed. Each one of 
them is designed to separate one class from the rest. 



 

Fig. 1. Generic system architecture for a human

 

B. Dynamic gesture module 

Dynamic gestures are time-varying processes, which show 
statistical variations, making HMMs a plausible choice for 
modelling the processes [29] [30]. So, for the recognition of 
dynamic gestures a HMM (Hidden Markov Model) model was 
trained for each possible gesture. A Markov Model is a typical 
model for a stochastic (i.e. random) sequence of a finite 
number of states [31]. 
A human gesture can be understood as a Hidden Markov 
Model where the true states of the model are hidden in the 
sense that they cannot be directly observed. HMMs have been 
widely used in a successfully way in speech recognition and 
hand writing recognition [16]. In this system the 2D motion 
hand trajectory points are labelled according to
the nearest centroid, based on Euclidean distance, and 
translated to origin resulting in a discrete feature 
feature vectors thus obtained are used to train the different 
HMMs and learn the model parameters: the initial state 
probability vector (Π), the state-transition probability matrix 
(A=[aij]) and the observable symbol probability matrix 
(B=[bj(m)]). In the recognition phase an output score for the 
sample gesture is calculated for each model, 
likelihood that the corresponding model generated the 
underlying gesture. The model with the highest output score 
represents the recognized gesture. In our system a Left
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likelihood that the corresponding model generated the 
underlying gesture. The model with the highest output score 
represents the recognized gesture. In our system a Left-Right 
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This kind of HMM has the states ordered in time so that as 
time increases, the state index increases or stays the same. This 
topology has been chosen, since it is perfectly suitable to model 
the kind of temporal gestures present 

IV. EXPERIMENTAL METHODOLOGY AND 

The experimental methodology was divided into three parts: a 
hand posture database creation with the selected features and 
SVM model training, a dynamic gesture database creation and 
HMM model training and an implementation of three 
prototypes, in order to test the proposed architecture and able to 
do hand posture recognition, integration of static and dynamic 
gesture recognition and sign language recognition.
For hand posture recognition an SVM model was trained based 
on a dataset build from data collected from four users making 
five pre-defined postures in front of a Kinect camera. In order 
to analyse the best parameters for SVM, the extracted features 
were analysed with the help of Rapid Miner 
The experiments were performed with parameter optimization 
for the cost parameter C, with a 10
we obtained an accuracy of 99.4% with a linear kernel with a C 
value equal to 1. 

 

(LR) HMM, like the one shown in Fig. 2, was used [32, 33]. 
This kind of HMM has the states ordered in time so that as 
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the kind of temporal gestures present in the system. 
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TABLE I. HIDDEN MARKOV MODELS ACCURACY FOR EACH GESTURE TRAINED 

Gesture  1 2 3 4 5 6 7 8 9 10 11 

Accuracy 75% 100% 100% 100% 92% 88% 92% 100% 100% 96% 88% 

 

 
Fig. 2. A 4-state Left-Right HMM model. 

 

TABLE II. CENTROID DISTANCE FEATURES CONFUSION MATRIX 

 Actual class 
1 2 3 4 5 

P
r
e
d
ic

te
d
 c

la
ss

 1 
455 0 0 2 0 

2 0 394 1 1 0 
3 0 0 401 1 0 
4 4 2 0 382 0 
5 0 0 1 0 439 

 
The obtained confusion matrix is shown in TABLE II. For 
model training, the Dlib [35] library was used. This is a 
general-purpose cross-platform C++ library capable of SVM 
multiclass classification. For dynamic gesture recognition, an 
HMM model was trained off-line for each one of the 11 
predefined gestures and the three parameters (the initial state 
probability vector, the state-transition probability matrix and 
the observable symbol probability matrix) were learned and 
saved. Once again four users were used to perform the 
predefined gestures and the extracted features were saved 
and used to train the models. The number of observation 
symbols (alphabet) and hidden states were learned by trial 
and error, and were defined to be 64 and 4 respectively. For 
model training and implementation it was decided to use an 
openFrameworks [36] add-on implementation of the HMM 
algorithm for classification and recognition of numeric 
sequences. This implementation is a C++ porting of a 
MATLAB code from Kevin Murphy [37]. 

The test datasets obtained were analysed with the learned 
models and the final accuracy results obtained are 
represented in TABLE I. 

So, for the dynamic gesture recognition an average accuracy 
of 93.7% was achieved. 
The first prototype (Fig. 3) is an application able to 
recognize in real-time a set of hand postures that can be used 
as commands to control any electronic device in a remote 
way. For that, the system uses the trained models to classify 
the hand feature vector as can be seen in the figure. The 
second one, is an application able to build a sequence of 
static and dynamic gestures that can be used also as a 
command in any human-machine interaction system as 
shown in Fig. 4. The final one, shown in Fig. 5, is a real-time 
system able to do sign language recognition. 

V. CONCLUSIONS 

This paper presented a system able to interpret dynamic and 
static gestures from a user with the goal of real-time human-
computer interaction. Although the machine learning 
algorithms used are not the only solutions, they were selected 
based on obtained performance with the selected features. 
Thus, for hand posture classification a SVM model was 
learned from centroid distance features and a recognition rate 
of 99.4% was achieved. For dynamic gesture classification, a 
HMM model was learned for each gesture and a final 
average accuracy of 93.7% was achieved. We were able to 
test the system in real time situations, and it was possible to 
prove from the experiments that the trained models were able 
to recognize all the trained gestures, proving that this kind of 
models, as was already seen in other references, works very 
well for this type of problem. The experimental results also 
showed, that the proposed system was able to reliably 
recognize the pre-defined commands. 
Prototype implementation was able to prove that the core of 
vision-based interaction systems can be the same for all 
application, and that the proposed generic system 
architecture is a solid foundation for the development of 
hand gesture recognition systems that can be integrated in 
any human-machine interface application. 
 

 

Fig. 3. Hand posture recognition prototype interface. 



Fig. 4. Static and dynamic gesture recognition prototype interface.

Fig. 5. Sign language recognition prototype interface. 
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