34,562 research outputs found

    Exact enumeration of Hamiltonian circuits, walks, and chains in two and three dimensions

    Get PDF
    We present an algorithm for enumerating exactly the number of Hamiltonian chains on regular lattices in low dimensions. By definition, these are sets of k disjoint paths whose union visits each lattice vertex exactly once. The well-known Hamiltonian circuits and walks appear as the special cases k=0 and k=1 respectively. In two dimensions, we enumerate chains on L x L square lattices up to L=12, walks up to L=17, and circuits up to L=20. Some results for three dimensions are also given. Using our data we extract several quantities of physical interest

    Path Integral Methods in the Su-Schrieffer-Heeger Polaron Problem

    Full text link
    I propose a path integral description of the Su-Schrieffer-Heeger Hamiltonian, both in one and two dimensions, after mapping the real space model onto the time scale. While the lattice degrees of freedom are classical functions of time and are integrated out exactly, the electron particle paths are treated quantum mechanically. The method accounts for the variable range of the electronic hopping processes. The free energy of the system and its temperature derivatives are computed by summing at any TT over the ensemble of relevant particle paths which mainly contribute to the total partition function. In the low TT regime, the {\it heat capacity over T} ratio shows un upturn peculiar to a glass-like behavior. This feature is more sizeable in the square lattice than in the linear chain as the overall hopping potential contribution to the total action is larger in higher dimensionality. The effects of the electron-phonon anharmonic interactions on the phonon subsystem are studied by the path integral cumulant expansion method.Comment: to appear in "Polarons in Advanced Materials" ed. A.S. Alexandrov (Canopus Books, 2007

    Analysing Flow Free with Pairs of Dots In Triangular Graphs

    Get PDF
    In the puzzle game Flow Free, the player is given a n x n grid with a number of colored point pairings. In order to solve the puzzle, the player must draw a path connecting each pair of points so that the following conditions are met: each pair of dots is connected by a path, each square of the grid is crossed by a path, and no paths intersect. Based on these puzzles, this project examines pairs of points in triangular grid graphs obtained by hexagons for which Hamiltonian paths exist in order to identify which point configurations have solutions. We show that n ≥ 5, any pairs of endpoints admit a Hamiltonian path as they do not surround a corner. This is a solution when n=2 fails when n=3 or 4

    Optimizing Quantum Adiabatic Algorithm

    Full text link
    In quantum adiabatic algorithm, as the adiabatic parameter s(t)s(t) changes slowly from zero to one with finite rate, a transition to excited states inevitably occurs and this induces an intrinsic computational error. We show that this computational error depends not only on the total computation time TT but also on the time derivatives of the adiabatic parameter s(t)s(t) at the beginning and the end of evolution. Previous work (Phys. Rev. A \textbf{82}, 052305) also suggested this result. With six typical paths, we systematically demonstrate how to optimally design an adiabatic path to reduce the computational errors. Our method has a clear physical picture and also explains the pattern of computational error. In this paper we focus on quantum adiabatic search algorithm although our results are general.Comment: 8 pages, 9 figure

    Hamiltonian cycles in faulty random geometric networks

    Get PDF
    In this paper we analyze the Hamiltonian properties of faulty random networks. This consideration is of interest when considering wireless broadcast networks. A random geometric network is a graph whose vertices correspond to points uniformly and independently distributed in the unit square, and whose edges connect any pair of vertices if their distance is below some specified bound. A faulty random geometric network is a random geometric network whose vertices or edges fail at random. Algorithms to find Hamiltonian cycles in faulty random geometric networks are presented.Postprint (published version

    The Salesman's Improved Tours for Fundamental Classes

    Full text link
    Finding the exact integrality gap α\alpha for the LP relaxation of the metric Travelling Salesman Problem (TSP) has been an open problem for over thirty years, with little progress made. It is known that 4/3α3/24/3 \leq \alpha \leq 3/2, and a famous conjecture states α=4/3\alpha = 4/3. For this problem, essentially two "fundamental" classes of instances have been proposed. This fundamental property means that in order to show that the integrality gap is at most ρ\rho for all instances of metric TSP, it is sufficient to show it only for the instances in the fundamental class. However, despite the importance and the simplicity of such classes, no apparent effort has been deployed for improving the integrality gap bounds for them. In this paper we take a natural first step in this endeavour, and consider the 1/21/2-integer points of one such class. We successfully improve the upper bound for the integrality gap from 3/23/2 to 10/710/7 for a superclass of these points, as well as prove a lower bound of 4/34/3 for the superclass. Our methods involve innovative applications of tools from combinatorial optimization which have the potential to be more broadly applied
    corecore