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Abstract

Improving our earlier result we show that for every integer k ≥ 1 there exists
a c(k) such that in every 2-colored complete graph apart from at most c(k) ver-
tices the vertex set can be covered by 200k2 log k vertex disjoint monochromatic
k-th powers of cycles.

1 Monochromatic partitions and powers of cycles

Kn is the complete graph on n vertices and Kn,n is the complete bipartite graph
between two sets of n vertices each. If G1, G2, . . . , Gr are graphs, then the Ramsey
number R(G1, G2, . . . , Gr) is the smallest positive integer n such that if the edges
of a complete graph Kn are partitioned into r disjoint color classes giving r graphs
H1, H2, . . . , Hr, then at least one of the subgraphs Hi (1 ≤ i ≤ r) has a subgraph
isomorphic to Gi. In this paper we will deal with 2-color Ramsey numbers (so r = 2)
and we will think of color 1 as red and color 2 as blue. The k-th power of a cycle of
length n, denoted Ck

n, is the graph obtained from Cn by joining every pair of vertices
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with distance at most k (counting edges) in C. For simplicity let us call the k-th
power of a cycle a k-cycle.

Assume first that Kn is a complete graph on n vertices whose edges are colored
with r colors (r ≥ 1). How many monochromatic cycles are needed to partition the
vertex set of Kn? This question received a lot of attention in the last few years.
Throughout the paper, single vertices and edges are considered to be cycles. Let p(r)
denote the minimum number of monochromatic cycles needed to partition the vertex
set of any r-colored Kn. It is not obvious that p(r) is a well-defined function. That
is, it is not obvious that there always is a partition whose cardinality is independent
of the order of the complete graph. However, in [8] Erdős, Gyárfás and Pyber proved
that there exists a constant c such that p(r) ≤ cr2 log r (throughout this paper log
denotes natural logarithm). Furthermore, in [8] (see also [15]) the authors conjectured
the following.

Conjecture 1. p(r) = r.

The special case r = 2 of this conjecture was asked earlier by Lehel and for
n ≥ n0 was first proved by  Luczak, Rödl and Szemerédi [28]. Allen improved on the
value of n0 [1] and finally Bessy and Thomassé [4] proved the original conjecture for
r = 2. For general r the current best bound is due to Gyárfás, Ruszinkó, Sárközy and
Szemerédi [17] who proved that for n ≥ n0(r) we have p(r) ≤ 100r log r. For r = 3 an
approximate version of the conjecture was proved in [18] but surprisingly Pokrovskiy
[29] found a counterexample to that conjecture. However, in the counterexample all
but one vertex can be covered by r vertex disjoint monochromatic cycles. Thus a
slightly weaker version of the conjecture still may still be true, namely that apart
from a constant number of vertices the vertex set can be covered by r vertex disjoint
monochromatic cycles.

Conjecture 2. Let G be a r-colored graph. Then there exist a constant c = c(r) and
r vertex disjoint monochromatic cycles of G that cover at least n− c vertices.

Let us also note that the above problem was generalized in various directions; for
hypergraphs (see [19] and [31]), for complete bipartite graphs (see [8] and [20]), for
graphs which are not necessarily complete (see [3] and [30]) and for vertex partitions
by monochromatic connected k-regular subgraphs (see [32] and [33]).

Another area that attracted a lot of interest is powers of cycles; in particular the
famous Pósa-Seymour conjecture.

Conjecture 3. If the minimum degree of a graph G on n vertices is at least k
k+1

n,
then G contains the k-th power of a Hamiltonian cycle, i.e. a Hamiltonian k-cycle.
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After a sequence of partial results ([9], [10], [11], [12], [13], [24]) with an application
of the Regularity Lemma-Blow-up Lemma method we showed in [21] and [25] that
the conjecture is true for graphs with n ≥ n0. Since we used the Regularity Lemma,
the resulting n0 was huge. Later for k = 2 in [27] we “deregularized” the proof, i.e.
we eliminated the use of the Regularity Lemma from the proof and thus the resulting
n0 was much better. This was further improved in [7].

In [2] Allen, Brightwell and Skokan studied the Ramsey number R(Ck
n, C

k
n) where

again Ck
n is a k-cycle on n vertices. They proved the following lower bounds

R(Ck
(k+1)t, C

k
(k+1)t) ≥ t(k + 1)2 − 2k for k ≥ 2,

and

R(Ck
(k+1)t+r, C

k
(k+1)t+r) ≥ (k + 1)((k + 2)t + 2r − 2) + r for k ≥ 2, 1 ≤ r ≤ k,

and they conjectured that these bounds are, at least asymptotically, optimal. How-
ever, they were able to prove only the following upper bound

R(Ck
n, C

k
n) ≤

(
2χ(Ck

n) +
2

χ(Ck
n)

)
n + o(n), (1)

(where χ(G) denotes the chromatic number of graph G) which differs from the lower
bounds by a multiplicative factor slightly greater than 2.

A natural question (first asked by András Gyárfás) is to combine the above two
areas and ask how many monochromatic k-cycles are needed to partition the vertex
set of a 2-colored Kn. In an earlier paper [14] (as a consequence of a more general
theorem) we showed that 2ck log k monochromatic k-cycles are enough. Here we im-
prove this significantly to ck2 log k but the price we have to pay is that a constant
number of vertices might be left uncovered (similarly to Conjecture 2).

Theorem 1. For every integer k ≥ 1 there exists a c(k) such that in every 2-colored
complete graph apart from at most c(k) vertices the vertex set can be covered by
200k2 log k vertex disjoint monochromatic k-cycles.

Unfortunately, the number c(k) of uncovered vertices is quite large in terms of
k; it is a Regularity Lemma-type quantity. If possible, it would be desirable to
eliminate these uncovered vertices. Furthermore, we believe that in light of (1) (since
the Ramsey number is O(kn)) the right number of k-cycles is probably linear in k.
Finally, it would be interesting to extend this problem for more than 2 colors.
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2 Notation and tools

For basic graph concepts see the monograph of Bollobás [5].
V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B,E)
denotes a bipartite graph G = (V,E), where V = A∪B, and E ⊂ A×B. For a graph
G and a subset U of its vertices, G|U is the restriction to U of G. N(v) is the set of
neighbors of v ∈ V . Hence |N(v)| = deg(v) = degG(v), the degree of v. δ(G) stands
for the minimum, and ∆(G) for the maximum degree in G. For A ⊂ V (G) we write
N(A) = ∩v∈AN(v), the set of common neighbours. N(x, y, z, ...) is shorthand for
N({x, y, z, ...}). When A,B are subsets of V (G), we denote by e(A,B) the number
of edges of G with one endpoint in A and the other in B. In particular, we write
deg(v, U) = e({v}, U) for the number of edges from v to U . For non-empty A and B,

d(A,B) =
e(A,B)

|A||B|

is the density of the graph between A and B. The density of the graph G is d(G) =

|E(G)|/
(
n
2

)
. We say that the graph G is δ-dense if d(G) ≥ δ.

Definition 1. The bipartite graph G = (A,B,E) is ε-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B| imply |d(X,Y ) − d(A,B)| < ε,

otherwise it is ε-irregular.

We will often say simply that “the pair (A,B) is ε-regular” with the graph G implicit.

Definition 2. (A,B) is (ε, δ)-super-regular if it is ε-regular and

deg(a) > δ|B| ∀ a ∈ A, deg(b) > δ|A| ∀ b ∈ B.

Definition 3. Given a k-partite graph G = (V,E) with k-partition V = V1∪ . . .∪Vk,

the cylinder V1 × . . .× Vk is (ε, δ)-super-regular if all the
(
k
2

)
pairs of subsets (Vi, Vj),

1 ≤ i < j ≤ k, are (ε, δ)-super-regular. Given κ > 0, the cylinder V1 × . . .× Vk is
κ-balanced if |Vj| ≤ κ|Vi| for all 1 ≤ i, j ≤ k.

We need a 2-edge-colored version of the Regularity Lemma [34].1

Lemma 1. For every integer m0 and positive ε, there is an M0 = M0(ε,m0) such
that for n ≥ M0 the following holds. For any n-vertex graph G, where G = G1 ∪ G2

with V (G1) = V (G2) = V , there is a partition of V into ℓ + 1 clusters V0, V1, . . . , Vℓ

such that
1For background, this variant and other variants of the Regularity Lemma see [26].
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• m ≤ ℓ ≤ M , |V1| = |V2| = . . . = |Vℓ|, |V0| < εn,

• apart from at most ε
(
ℓ
2

)
exceptional pairs, all pairs Gs|Vi×Vj

are ε-regular, where
1 ≤ i < j ≤ ℓ and 1 ≤ s ≤ 2.

Our other main tool is the Blow-up Lemma (see [22, 23]).

Lemma 2. Given a graph R of order r and positive parameters δ,∆, κ, there exists
an ε > 0 such that the following holds. Let us replace the vertices of R with pairwise
disjoint sets V1, V2, . . . , Vr (blowing up) such that the resulting cylinder is κ-balanced.
We construct two graphs on the same vertex-set V = ∪Vi. The graph R(N) is obtained
by replacing all edges of R with copies of the complete bipartite graph KN,N , and a
sparser graph G is constructed by replacing the edges of R with some (ε, δ)-super-
regular pairs. If a graph H with ∆(H) ≤ ∆ is embeddable into R(N) then it is
already embeddable into G.

Note, that the original Blow-up Lemma was stated for balanced sets but it is not
hard to generalize the statement for κ-balanced sets (see e.g. the recent extended,
full version of the Blow-up Lemma, Theorem 1.4 in [6]).

In particular we will need the following consequence of the Blow-up Lemma.

Lemma 3. Given an integer k ≥ 2 and a positive parameter δ, there exist an ε > 0
and n0 such that the following holds. Let k′ = 4k(k − 1) and let G = (V,E) be a
k′-partite graph on n ≥ n0 vertices with k′-partition V = V1 ∪ . . . ∪ Vk′, where the
cylinder V1 × . . .× Vk′ is (ε, δ)-super-regular and 2-balanced. Let v1 ∈ Vj and v2 ∈ Vj′

where 1 ≤ j, j′ ≤ k′ and j ̸= j′. Then there is a Hamiltonian k-path in G connecting
v1 and v2.

A similar lemma is implicit in [25]. See also Lemma 7 in [14] for a similar lemma
(in a more general situation). To sketch the proof for completeness, note that by
the Blow-up Lemma (applied with R = Kk′ , ∆ = 2k and κ = 2) it is enough to
check this for the complete (k′)-partite graph. The statement is clearly true (since
k′ ≥ k+1) if the cylinder V1× . . .×Vk′ is perfectly balanced (i.e. 1-balanced). Indeed,
we think of the (k′)-partite graph as a cycle (V1, . . . , Vk′ , V1). By reordering the sets
we may assume that v1 ∈ V1 and v2 ∈ Vk′ . Then we go around the cycle |Vi| times
always selecting one vertex from the next Vi. If the cylinder is only 2-balanced, then
first we have to eliminate the discrepancies among the sizes of the sets. Assume by
reordering that v1 ∈ V1 and v2 ∈ Vk+2. First we equalize the number of vertices in
the first (k + 2) sets by moving vertices from Vi, i ≥ k + 3 to these sets. We have
enough vertices for this task, using 4k(k−1) ≥ 2(k+ 2) (k ≥ 2) and the fact that the
cylinder is 2-balanced and thus |Vi|+ |Vj| ≥ |Vl| for all 1 ≤ i, j, l ≤ k′. Then we move

5



more vertices from these sets in blocks of size (k + 2) such that we add one vertex to
each of the first (k+2) clusters and thus preserving the property that they have equal
sizes. Finally the remaining fewer than (k + 2) vertices are added to the first (k + 2)
sets in such a way that each set gets at most vertex. Thus now all the vertices are in
the first (k+ 2) sets and the difference in the sizes of the sets is at most 1. Finally we
can eliminate this difference by a simple greedy procedure by going around the cycle
(V1, . . . , Vk+2, V1) a few times and always leaving out the set with the smallest size
(this is where we need at least (k + 2) sets). Once the sizes are equal, we can follow
the approach above.

Furthermore, as in most applications of the Blow-up Lemma, the statement of
Lemma 3 remains true if we a priori restrict the possible positions of the first k
vertices of the k-path after v1 (and similarly for the last k vertices of the k-path
before v2) to subsets of clusters V (within the neighborhood of v1) that are still
sufficiently large compared to ε|V |. Again see the full version of the Blow-up Lemma,
Theorem 1.4 in [6], which includes this generalization.

We will also need (1). For completeness we restate it in the following lemma.

Lemma 4 (Theorem 12 in [2]). We have

R(Ck
n, C

k
n) ≤

(
2χ(Ck

n) +
2

χ(Ck
n)

)
n + o(n).

We will need to apply a similar statement in the reduced graph. However, as in
many applications of the Regularity Lemma, one has to handle a few irregular pairs
and the corresponding edges will not be present in the reduced graph. We say that
the graph G on n vertices is ε-perturbed if it is almost complete, (1 − ε)-dense, i.e.

at most ε
(
n
2

)
edges are missing. We cannot apply Lemma 4 in the reduced graph

because in Lemma 4 we have a 2-colored complete graph, yet the reduced graph will
be a 2-colored ε-perturbed graph only. Thus we need a perturbed version of Lemma
4, this was also worked out in [2].

Lemma 5 (Lemma 32 in [2]). For every integer k ≥ 1 there exist an ε > 0 and
n0 = n0(k), such that if we 2-color the edges of a (1 − ε)-dense graph G on n ≥ n0

vertices, then G will contain a monochromatic k-cycle of length at least n
2k+5

.

Note that in Lemma 32 in [2] this is stated for a graph G with minimum degree
at least (1 − ε)n instead of a (1 − ε)-dense graph, but with a standard “trimming”
lemma (see e.g. Lemma 9 in [16]) it is easy to move from the density condition to
the minimum degree condition. Furthermore, in Lemma 32 in [2] this is stated for a
k-path, but again it is easy to see that the proof goes through for a k-cycle as well.
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3 Sketch of the proof of Theorem 1

We will use the absorbing-greedy method introduced in [8] that is used in most of
the papers in this area. Here we have to iterate this technique as we will have an
inductive argument in k (similarly to [14]).

To prove Theorem 1 we apply the 2-edge-colored version of the Regularity Lemma
to our 2-edge-colored Kn. Then we introduce the so called reduced graph GR, the
(1− ε)-dense graph whose vertices are associated to the clusters and whose edges are
associated to pairs that are ε-regular in both colors. The edges of the reduced graph
will be colored with a color that appears on the majority of the edges between the
two clusters.

Iterating the proof technique in [8], we establish the bound on the number of
monochromatic k-cycles needed in the following steps.

• Step 1: Using Lemma 5 we find a sufficiently large monochromatic (say red)
k′-cycle Ck′

1 in GR with k′ = 4k(k − 1) (for technical reasons we need this k′

instead of k). We think of Ck′
1 as a collection of (k′ + 1)-cylinders.

• Step 2: We remove the vertices of Ck′
1 from GR and we go back to the original

graph (instead of the reduced graph). Using the Ramsey bound (Lemma 5)
repeatedly, we greedily remove a number (depending on k) of vertex disjoint
monochromatic k-cycles from the remainder in Kn until the number of leftover
vertices is much smaller than the number of vertices associated to Ck′

1 .

• Step 3: Then we want to iterate this procedure in the set of the leftover vertices
but the progress that we made is that now it is sufficient to partition into red
k-cycles and blue k- or (k − 1)-cycles. We can use some of the vertices from
Ck′

1 to “lift” a blue (k − 1)-cycle back into a blue k-cycle in the original graph.
In order to facilitate this lifting we need some special properties between the
leftover vertices and Ck′

1 . Indeed, we can guarantee that only those vertices
remain in the leftover set which have mostly blue edges to most of the clusters
in most of the cylinders. All other vertices are put back into the cylinders.
With this extra property now we can iterate the procedure in the set of leftover
vertices assuming that it has sufficiently many vertices so we can apply the
Regularity Lemma. If not, then we stop, these are the uncovered vertices and
indeed their number could be up to M0 in the Regularity Lemma (Lemma 1).
Otherwise we can continue with the iteration.

Let us say that we have to partition with the pair (k, k − 1), i.e. we have to
partition into red k-cycles and blue k- or (k − 1)-cycles. So initially we have
to partition with the pair (k, k) and in each iteration we decrease one of the
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components in the pair by 1. Thus in at most 2k − 1 iterations we arrive at a
pair where one of the components (say the blue) is 0.

• Step 4: This is where we have the lifting procedure. A 0-cycle is just an inde-
pendent set. Then first we lift this independent set into a blue cycle, then we
lift this cycle into a blue 2-cycle, etc. finally we get a blue k-cycle. Note that
all other cycles found in subsequent iterations will be k-cycles; we have to use
this lifting procedure only for the very last last cycle.

• Step 5: Using Lemma 3 repeatedly we find a monochromatic k-cycle spanning
the remaining vertices of each Ck′

i .

Thus in summary, either we will actually get a partition of the whole graph, or in
some iteration our leftover set is too small for the induction and then we are forced
to leave it uncovered. The rest of the paper follows this outline; we discuss each step
one by one.

4 Proof of Theorem 1

4.1 Step 1

We will assume that n is sufficiently large otherwise there is nothing to show. By
the result of [4] we assume throughout that k ≥ 2. We will use the following main
parameters

0 < ε ≪ 1

k
≤ 1

2
, (2)

where a ≪ b means that a is sufficiently small compared to b. In order to present the
results transparently we do not compute the actual dependencies, although it could
be done.

Consider an 2-edge coloring of Kn. Let the red and blue subgraphs be G1 and G2,
respectively. Apply the 2-color version of the Regularity Lemma (Lemma 1), with ε
as in (2) and get a partition of V (Kn) = V = ∪0≤i≤ℓVi, where |Vi| = m, 1 ≤ i ≤ ℓ. As
indicated above we define the reduced graph GR: The vertices of GR are p1, . . . , pl,
and we have an edge between vertices pi and pj if the pair {Vi, Vj} is (ε,Gs)-regular
for s = 1, 2. Thus we have a one-to-one correspondence f : pi → Vi between the
vertices of GR and the clusters of the partition. Then,

|E(GR)| ≥ (1 − ε)

(
ℓ

2

)
,

and thus indeed GR is a (1 − ε)-dense graph on ℓ vertices.
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Define an red-blue edge-coloring (GR
1 , G

R
2 ) of GR in the following way. The edge

(pi, pj) is colored with a color s that contains the majority of the edges from K(Vi, Vj),
thus clearly |EGs(Vi, Vj)| ≥ 1

2
|Vi||Vj|. Using Lemma 5 for our 2-colored (1 − ε)-dense

graph GR with k′ = 4k(k−1) we can find a monochromatic k′-cycle of length at least
ℓ

2k′+5
in GR. If this k′-cycle is red, then we denote it with Ck′

1,1, if it is blue then by

Ck′
2,1.

Assume that we have the former case, so Ck′
1,1. Thus we have

|f(Ck′

1,1)| ≥ (1 − ε)
n

2k′ + 5
≥ n

4k′ . (3)

We think of Ck′
1,1 as a collection of (k′+1)-cylinders: the first (k′+1) clusters form the

first such cylinder, the second (k′ + 1) clusters form the second cylinder, etc. the last
(k′ + 1) clusters we can select form the last cylinder. Denote the number of cylinders
by ℓ1, then

ℓ1 ≥ ⌊ ℓ

(k′ + 1)(2k′ + 5)
⌋ ≥ ℓ

4(k′)2
. (4)

Denote the clusters in the i-th cylinder by (V i
1 , V

i
2 , . . . , V

i
k′+1), where this is the order

of the clusters on Ck′
1,1.

First we have to make the cylinders super-regular (so we can apply the Blow-up
Lemma) by removing a small number of exceptional vertices. From each V i

j we remove
all exceptional vertices v for which

degG1(v, V
i
j′) <

(
1

2
− ε

)
m, for some j′ ̸= j.

ε-regularity in G1 guarantees that at most k′ε|V i
j | vertices are removed from each

cluster V i
j . The removed vertices are added back to the set of leftover vertices. Thus

the resulting cylinders are (ε′, (1/2−ε′))-super-regular and (1+ε′)-balanced for some
ε ≪ ε′ ≪ 1

k
.

Next we find connecting k-paths of length 2k between subsequent cylinders. The
vertices of the i-th connecting path between the i-th and (i+1)-st cylinder come from
the following clusters:

V i
k′−k+2, . . . , V

i
k′ , V

i
k′+1, V

i+1
1 , V i+1

2 , . . . , V i+1
k .

For i = ℓ1 we have i+1 = 1, so the connecting path may be a little longer as we might
have some clusters between the last cylinder and the first cylinder (if the length is
not divisible by (k′ + 1)).

Furthermore, for this connecting path we select a typical vertex from each of
these clusters. Then in addition to being a k-path (so vertices at a distance at most
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k are connected) the first k vertices on the connecting path will have a common
neighborhood of size at least (

1

2
− ε′

)k

|V |

in each cluster V in the i-th cylinder that is different from the k clusters where
these vertices come from and a similar statement holds for the last k vertices and
the (i + 1)-st cylinder. This property guarantees that we can continue the k-cycle
within the cylinders (see the remark after Lemma 3). These connecting paths will be
parts of the final k-cycle that spans the remainder of f(Ck′

1,1). We remove the internal
vertices of these connecting paths from the cylinders.

Note that at this point we could have a red k-cycle spanning all remaining ver-
tices of f(Ck′

1,1) by applying Lemma 3 in each cylinder. However, we postpone the
construction of this red k-cycle until Step 5, since in Step 4 in the lifting procedure
we might use some of the vertices from f(Ck′

1,1).

4.2 Step 2

Here we will use the Ramsey bound in Lemma 5 repeatedly. Indeed, in a 2-colored
complete graph on n′ vertices (where n′ is sufficiently large) we can find a monochro-
matic k-cycle of length at least

n′

2k + 5
(5)

(Note that by Lemma 5 this would be true even for a (1 − ε)-dense graph.)
We go back from the reduced graph to the original graph and we remove the

vertices in f(Ck′
1,1). We apply repeatedly the above to the 2-colored complete graph

induced by Kn \ f(Ck′
1,1). This way we choose t vertex disjoint monochromatic k-

cycles in Kn \ f(Ck′
1,1). We wish to choose t so that the remaining set R1 of vertices

in Kn \ f(Ck′
1,1) not covered by these t k-cycles has cardinality

|R1| ≤
|f(Ck′

1,1)|
(2k′)5

. (6)

Since after t steps at most

(n− |f(Ck′

1,1)|)
(

1 − 1

2k + 5

)t

vertices are left uncovered, we have to choose t to satisfy

(n− |f(Ck′

1,1)|)
(

1 − 1

2k + 5

)t

≤
|f(Ck′

1,1)|
(2k′)5

.
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Using (3) this inequality is certainly true if

(
1 − 1

2k + 5

)t

≤ 1

2(2k′)6
,

which in turn is true using 1 − x ≤ e−x if

e−
t

2k+5 ≤ 1

2(2k′)6
.

This shows that we can certainly choose t = 100k⌊log k⌋.

4.3 Step 3

We will iterate this procedure (Steps 1 and 2) in R1. However, before we start the
second iteration certain vertices will be removed from R1 and assigned back to the
cylinders in Ck′

1,1. We say that a vertex v ∈ R1 is good for the i-th cylinder if there
are at least k clusters V in the i-th cylinder such that v has a large red degree into
them, i.e.

degG1(v, V ) ≥ 1

2k2
|V |. (7)

We say that v ∈ R1 is good if it is good for at least 1
2k2

ℓ1 cylinders in Ck′
1,1 (otherwise v

is called bad). The good vertices are removed from R1 and assigned back to cylinders
for which they are good such that we distribute the good vertices among the cylinders
as equally as possible. We can clearly assign the good vertices to the cylinders in such
a way that each cylinder gets at most

|R1|
ℓ1
2k2

≤
(ℓ1 + 1)(k′ + 1)n

ℓ

(2k′)5
2k2

ℓ1
≤ 1

8(k′)2
n

ℓ
(8)

vertices (using (6)).
Next we will put the assigned good vertices on the connecting k-paths between

the cylinders. Assume that vertex v was assigned to the i-th cylinder. We can extend
the connecting k-path between the (i− 1)-st and the i-th cylinder by 3k + 1 vertices
such that (2k + 1)-st vertex is v. Indeed, by ε-regularity and (2) we can extend the
connecting path by k vertices from different clusters such that these k new vertices
have a large common red neighborhood within the red neighborhoods of v in the k
clusters V in the i-th cylinder that satisfy (7). Then we extend by k vertices from
these red neighborhoods NG1(v, V ) of v (one from each), then we add v, and finally
again k vertices from these red neighborhoods NG1(v, V ) in such a way that these last
k vertices have a large common red neighborhood in all other clusters. Furthermore,
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(7) and (8) imply that we may choose vertex disjoint extensions for the different good
vertices. Again we remove the internal vertices of these extended connecting paths
from the cylinders.

Note again that at this point we could have a red k-cycle spanning all remain-
ing vertices of f(Ck′

1,1) by applying Lemma 3 in each cylinder of Ck′
1,1. However, for

technical reasons again we postpone the construction of this red k-cycle.
For simplicity we still denote by R1 the set of remaining bad vertices. Thus for

each remaining vertex v ∈ R1 (since it is bad) we have the following property

• For at least
(
1 − 1

2k2

)
ℓ1 cylinders in Ck′

1,1, apart from at most (k − 1) clusters,
for all clusters V we have the following in blue

degG2(v, V ) ≥
(

1 − 1

2k2

)
|V |. (9)

This property will be important later in the lifting procedure.
We may assume that |R1| is sufficiently large (so we can apply Lemma 1 again in

R1) otherwise these will be the uncovered vertices in the statement of the theorem.
In fact, this is the only reason why we need the constant uncovered vertices in the
theorem. Then we may iterate the process again in R1. As indicated in Section 3
now it would be sufficient to partition into red k-cycles and blue k- or (k− 1)-cycles,
i.e. we have to partition with the pair (k, k − 1) as defined in Section 3. A blue
(k− 1)-cycle may be lifted into a k-cycle by using some vertices from Ck′

1,1. Note that
at most one blue (k−1)-cycle will be used; all other cycles will be red or blue k-cycles.

So we repeat Steps 1 and 2 in R1. We apply the 2-color Regularity Lemma (Lemma
1) in R1, define the 2-colored (1− ε)-dense reduced graph and apply Lemma 5 to find
a monochromatic k′-cycle in the reduced graph. Assuming we had Ck′

1,1 in the first

iteration, now if this k′-cycle is red, then we denote it with Ck′
1,2, if it is blue, then we

denote it with Ck′
2,1. In general in later iterations, if this regular k′-cycle is the i-th

red k′-cycle, then we denote it by Ck′
1,i, if it is the i-th blue k′-cycle, then we denote

it by Ck′
2,i.

Assume that we have Ck′
2,1 in the second iteration. We proceed as in Steps 1 and 2

but now we do everything in blue. We think of Ck′
2,1 as a collection of (k′+1)-cylinders,

we make them super-regular and we find connecting k-paths between subsequent
cylinders. Then we remove Ck′

2,1 from R1 and we greedily remove vertex disjoint
k-cycles from the leftover as in Step 2 until the remaining set R2 of vertices has
cardinality

|R2| ≤
|f(Ck′

2,1)|
(2k′)5

.

The number of monochromatic k-cycles used is again at most 100k log k.
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Again we define good vertices in R2 with respect to Ck′
2,1 and we remove them from

R2 and add them to the connecting k-paths between the cylinders in Ck′
2,1. For the

remaining bad vertices in R2 a similar property as (9) is true in red to Ck′
2,1. Again

we may assume that |R2| is sufficiently large (so we can apply Lemma 1 again in R2)
otherwise these will be the uncovered vertices in the statement of the theorem.

Next we repeat the procedure in R2, but now we have to partition with the pair
(k − 1, k − 1). We continue in this fashion, in each iteration we decrease one of the
components of the pair by one. Indeed, if the regular k′-cycle found is red, then we
decrease the blue component, if it is blue, then we decrease the red component by
one.

In i (≤ 2k − 1) iterations we arrive at a pair where one of the components (say
the blue) is 0.

4.4 Step 4

Consider the final remaining set Ri (again keeping only the bad vertices). Since the
blue component of the current pair is 0, and a 0-cycle is just an independent set, we
just cover Ri with one independent set (we can think of it as blue). Then through k
lifts we will lift this into a blue k-cycle by using vertices from Ck′

1,1, C
k′
1,2, . . . , C

k′
1,k.

Indeed, first we lift Ri into a blue 1-cycle (an ordinary cycle) by using vertices
from Ck′

1,k. We have

|Ri| ≤
|f(Ck′

1,k)|
(2k′)5

. (10)

Take an arbitrary cyclic ordering v1, v2, . . . , v|Ri| of the vertices in Ri. Between each
vj and vj+1, 1 ≤ j ≤ |Ri|, we will insert a vertex of Ck′

1,k in such a way that it is
connected in blue to both vj and vj+1 and thus resulting in a blue cycle. For each

vj ∈ Ri we have a similar property as in (9) to Ck′
1,k, i.e. for at least an

(
1 − 1

2k2

)
-

fraction of the cylinders in Ck′
1,k apart from at most (k− 1) clusters, for all clusters V

we have the following in blue

degG2(vj, V ) ≥
(

1 − 1

2k2

)
|V |. (11)

Take a cylinder such that this is satisfied for both vj and vj+1 and take a cluster
V such that (11) is true in V for both vj and vj+1 (we have at least k′ − 2(k − 1)

clusters to choose from). Then vj and vj+1 have at least
(
1 − 1

k2

)
|V | common blue

neighbors in V ; take one of them as the intermediate vertex between vj and vj+1.
Furthermore, using (10), we can clearly guarantee that from each cluster V in Ck′

1,k

we do not use more than 1
(2k′)4

|V | vertices and thus we may always select distinct

13



intermediate vertices between vj and vj+1. Note that this blue cycle has an even
number of vertices from the construction.

Then we lift this blue cycle into a blue 2-cycle by using vertices from Ck′
1,k−1,

etc. Finally we lift the blue (k − 1)-cycle into a blue k-cycle by using vertices from
Ck′

1,1. Indeed, we divide the blue (k − 1)-cycle into blocks of k vertices (from the
construction the length of the (k−1)-cycle is divisible by k) and we will insert a vertex
of Ck′

1,1 between two consecutive blocks of k vertices similarly as above. Consider two
consecutive blocks of k vertices, so 2k vertices altogether. For each of these vertices
(9) is satisfied, i.e. for at least

(
1 − 1

2k2

)
ℓ1 cylinders in Ck′

1,1, apart from at most

(k − 1) clusters, for all clusters V we have the following in blue

degG2(v, V ) ≥
(

1 − 1

2k2

)
|V |.

Take a cylinder such that this is satisfied for each of the 2k vertices. Indeed, we have
at least (

1 − 2k
1

2k2

)
ℓ1 =

(
1 − 1

k

)
ℓ1 ≥

ℓ1
2

cylinders to choose from (using k ≥ 2). Then in this cylinder we pick a cluster V such

that for each of the 2k vertices we have a blue neighborhood in V of size
(
1 − 1

2k2

)
|V |.

Indeed, we have at least k′− 2k(k− 1) = 2k(k− 1) clusters to choose from. Then the
2k vertices have at least(

1 − 2k
1

2k2

)
|V | =

(
1 − 1

k

)
|V | ≥ |V |

2

common blue neighbors in V ; take one of them as the intermediate vertex between
the two blocks of k vertices. Furthermore, using (10), we can clearly guarantee that
from each cluster V in Ck′

1,1 we do not use more than 1
(2k′)4

|V | vertices and thus we
may always select distinct intermediate vertices between the consecutive blocks of k
vertices. This lifts the blue (k − 1)-cycle into a blue k-cycle.

4.5 Step 5

Finally applying Lemma 3 within each cylinder we close the k-path such that we span
the remaining vertices. Indeed clearly the cylinders are still (ε′, 1/4)-super-regular and
2-balanced for some ε ≪ ε′ ≪ 1

k
.

Thus the total number of vertex disjoint monochromatic k-cycles used in the cover
is at most

(2k − 1)100k log k + 2k ≤ 200k2 log k,

finishing the proof. 2
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colored graphs by monochromatic paths and cycles.” Combinatorica 34 (2014),
pp. 507-526.
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[19] A. Gyárfás, G.N. Sárközy, Monochromatic path and cycle partitions in hyper-
graphs, Electronic Journal of Combinatorics 20 (2013), P18.

[20] P. Haxell, Partitioning complete bipartite graphs by monochromatic cycles, Jour-
nal of Combinatorial Theory, Ser. B, 69 (1997), pp. 210-218.
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[24] J. Komlós, G. N. Sárközy, E. Szemerédi, On the Pósa-Seymour conjecture, Jour-
nal of Graph Theory, 29 (1998), pp. 167-176.
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