436,340 research outputs found

    Stochastic Gradient Hamiltonian Monte Carlo

    Full text link
    Hamiltonian Monte Carlo (HMC) sampling methods provide a mechanism for defining distant proposals with high acceptance probabilities in a Metropolis-Hastings framework, enabling more efficient exploration of the state space than standard random-walk proposals. The popularity of such methods has grown significantly in recent years. However, a limitation of HMC methods is the required gradient computation for simulation of the Hamiltonian dynamical system-such computation is infeasible in problems involving a large sample size or streaming data. Instead, we must rely on a noisy gradient estimate computed from a subset of the data. In this paper, we explore the properties of such a stochastic gradient HMC approach. Surprisingly, the natural implementation of the stochastic approximation can be arbitrarily bad. To address this problem we introduce a variant that uses second-order Langevin dynamics with a friction term that counteracts the effects of the noisy gradient, maintaining the desired target distribution as the invariant distribution. Results on simulated data validate our theory. We also provide an application of our methods to a classification task using neural networks and to online Bayesian matrix factorization.Comment: ICML 2014 versio

    Hamiltonian structure of Hamiltonian chaos

    Get PDF
    From a kinematical point of view, the geometrical information of hamiltonian chaos is given by the (un)stable directions, while the dynamical information is given by the Lyapunov exponents. The finite time Lyapunov exponents are of particular importance in physics. The spatial variations of the finite time Lyapunov exponent and its associated (un)stable direction are related. Both of them are found to be determined by a new hamiltonian of same number of degrees of freedom as the original one. This new hamiltonian defines a flow field with characteristically chaotic trajectories. The direction and the magnitude of the phase flow field give the (un)stable direction and the finite time Lyapunov exponent of the original hamiltonian. Our analysis was based on a 1121{1\over 2} degree of freedom hamiltonian system

    Real Hamiltonian forms of Hamiltonian systems

    Get PDF
    We introduce the notion of a real form of a Hamiltonian dynamical system in analogy with the notion of real forms for simple Lie algebras. This is done by restricting the complexified initial dynamical system to the fixed point set of a given involution. The resulting subspace is isomorphic (but not symplectomorphic) to the initial phase space. Thus to each real Hamiltonian system we are able to associate another nonequivalent (real) ones. A crucial role in this construction is played by the assumed analyticity and the invariance of the Hamiltonian under the involution. We show that if the initial system is Liouville integrable, then its complexification and its real forms will be integrable again and this provides a method of finding new integrable systems starting from known ones. We demonstrate our construction by finding real forms of dynamics for the Toda chain and a family of Calogero--Moser models. For these models we also show that the involution of the complexified phase space induces a Cartan-like involution of their Lax representations.Comment: 15 pages, No figures, EPJ-style (svjour.cls

    Input-output decoupling of Hamiltonian systems: The linear case

    Get PDF
    In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems

    Automatic Hermiticity

    Full text link
    We study a diagonalizable Hamiltonian that is not at first hermitian. Requirement that a measurement shall not change one Hamiltonian eigenstate into another one with a different eigenvalue imposes that an inner product must be defined so as to make the Hamiltonian normal with regard to it. After a long time development with the non-hermitian Hamiltonian, only a subspace of possible states will effectively survive. On this subspace the effect of the anti-hermitian part of the Hamiltonian is suppressed, and the Hamiltonian becomes hermitian. Thus hermiticity emerges automatically, and we have no reason to maintain that at the fundamental level the Hamiltonian should be hermitian. If the Hamiltonian is given in a local form, a conserved probability current density can be constructed with two kinds of wave functions. We also point out a possible misestimation of a past state by extrapolating back in time with the hermitian Hamiltonian. It is a seeming past state, not a true one.Comment: 8 pages, references added, typos etc. corrected, the final version to appear in Prog.Theor.Phy
    • …
    corecore