54,273 research outputs found

    Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs

    Full text link
    P\'osa's theorem states that any graph GG whose degree sequence d1dnd_1 \le \ldots \le d_n satisfies dii+1d_i \ge i+1 for all i<n/2i < n/2 has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs GG of random graphs, i.e. we prove a `resilience version' of P\'osa's theorem: if pnClognpn \ge C \log n and the ii-th vertex degree (ordered increasingly) of GGn,pG \subseteq G_{n,p} is at least (i+o(n))p(i+o(n))p for all i<n/2i<n/2, then GG has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Dirac's theorem obtained by Lee and Sudakov. Chv\'atal's theorem generalises P\'osa's theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chv\'atal's theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of Gn,pG_{n,p} which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.Comment: To appear in the Electronic Journal of Combinatorics. This version corrects a couple of typo

    Distribution of Certain Sparse Spanning Subgraphs in Random Graphs

    No full text
    We describe a general approach of determining the distribution of spanning subgraphs in the random graph \G(n,p). In particular, we determine the distribution of spanning subgraphs of certain given degree sequences, which is a generalisation of the dd-factors, of spanning triangle-free subgraphs, of (directed) Hamilton cycles and of spanning subgraphs that are isomorphic to a collection of vertex disjoint (directed) triangles

    Degree-doubling graph families

    Full text link
    Let G be a family of n-vertex graphs of uniform degree 2 with the property that the union of any two member graphs has degree four. We determine the leading term in the asymptotics of the largest cardinality of such a family. Several analogous problems are discussed.Comment: 9 page

    Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

    Get PDF
    A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdos on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.Comment: new version includes a standalone version of the `robust decomposition lemma' for application in subsequent paper

    Counting Hamilton cycles in sparse random directed graphs

    Full text link
    Let D(n,p) be the random directed graph on n vertices where each of the n(n-1) possible arcs is present independently with probability p. A celebrated result of Frieze shows that if p(logn+ω(1))/np\ge(\log n+\omega(1))/n then D(n,p) typically has a directed Hamilton cycle, and this is best possible. In this paper, we obtain a strengthening of this result, showing that under the same condition, the number of directed Hamilton cycles in D(n,p) is typically n!(p(1+o(1)))nn!(p(1+o(1)))^{n}. We also prove a hitting-time version of this statement, showing that in the random directed graph process, as soon as every vertex has in-/out-degrees at least 1, there are typically n!(logn/n(1+o(1)))nn!(\log n/n(1+o(1)))^{n} directed Hamilton cycles

    Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D2n/41D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that Dn/2D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we show the following: suppose that GG is close to a complete balanced bipartite graph or to the union of two cliques of equal size. If we are given a suitable set of path systems which cover a set of `exceptional' vertices and edges of GG, then we can extend these path systems into an approximate decomposition of GG into Hamilton cycles (or perfect matchings if appropriate).Comment: We originally split the proof into four papers, of which this was the third paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 29 pages, 2 figure
    corecore