UNIVERSITYOF BIRMINGHAM

Research at Birmingham

Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments

Kuhn, Daniela; Osthus, Deryk

DOI:
10.1016/j.aim.2013.01.005

Document Version

Peer reviewed version
Citation for published version (Harvard):
Kuhn, D \& Osthus, D 2013, 'Hamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments', Advances in Mathematics, vol. 237, pp. 62-146. https://doi.org/10.1016/j.aim.2013.01.005

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 4/08/2014

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
-Users may not further distribute the material nor use it for the purposes of commercial gain.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

HAMILTON DECOMPOSITIONS OF REGULAR EXPANDERS: A PROOF OF KELLY'S CONJECTURE FOR LARGE TOURNAMENTS

DANIELA KÜHN AND DERYK OSTHUS

Abstract

A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into $(n-1) / 2$ edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. This enables us to obtain numerous further results, e.g. as a special case we confirm a conjecture of Erdős on packing Hamilton cycles in random tournaments. As corollaries to the main result, we also obtain several results on packing Hamilton cycles in undirected graphs, giving e.g. the best known result on a conjecture of Nash-Williams. We also apply our result to solve a problem on the domination ratio of the Asymmetric Travelling Salesman problem, which was raised e.g. by Glover and Punnen as well as Alon, Gutin and Krivelevich.

1. Introduction

1.1. Kelly's conjecture. A graph or digraph G has a Hamilton decomposition if it contains a set of edge-disjoint Hamilton cycles which together cover all the edges of G. The study of Hamilton decompositions is one of the oldest and most natural problems in Graph Theory. For instance, in 1892 Walecki showed that the complete graph K_{n} on n vertices has a Hamilton decomposition if n is odd (see e.g. [4, 5, 39]). Tillson [47] solved the corresponding problem for complete digraphs. Here every pair of vertices is joined by an edge in each direction, and there is a Hamilton decomposition unless the number of vertices is 4 or 6 .

However, though there are several deep conjectures in the area, little progress has been made so far in proving results on Hamilton decompositions for general classes of graphs. Possibly the most well known problem in this direction is Kelly's conjecture from 1968 (see e.g. the monographs and surveys [7, 10, 36, 40]), which states that every regular tournament has a Hamilton decomposition. Here a tournament is an orientation of a complete (undirected) graph. It is regular if the indegree of every vertex equals its outdegree. This condition is clearly necessary for a Hamilton decomposition. Here, we prove this conjecture for all large tournaments. In fact, it turns out that we can prove a much stronger result - we can obtain a Hamilton

Date: May 10, 2013.
The authors were supported by the EPSRC, grant no. EP/J008087/1. D. Kühn was also supported by the ERC, grant no. 258345.
decomposition of any regular orientation of a sufficiently dense graph. More precisely, an oriented graph G is obtained by orienting the edges of an undirected graph. So it contains no cycles of length two (whereas in a digraph this is permitted).

Theorem 1.1. For every $\varepsilon>0$ there exists n_{0} such that every r-regular oriented graph G on $n \geq n_{0}$ vertices with $r \geq 3 n / 8+\varepsilon n$ has a Hamilton decomposition. In particular, there exists n_{0} such that every regular tournament on $n \geq n_{0}$ vertices has a Hamilton decomposition.

It is not clear whether the lower bound on r in Theorem 1.1 is best possible. However, as discussed below, there are oriented graphs whose in- and outdegrees are all very close to $3 n / 8$ but which do not contain even a single Hamilton cycle. Moreover, for $r<(3 n-4) / 8$, it is not even known whether an r-regular oriented graph contains a single Hamilton cycle (this is related to a conjecture of Jackson, see the survey [36] for a more detailed discussion). Both these facts indicate that any improvement in the lower bound on r would be extremely difficult to obtain.

Regular tournaments obviously exist only if n is odd, but we still obtain an interesting corollary in the even case. Suppose that G is a tournament on n vertices where n is even and which is as regular as possible, i.e. the in- and outdegrees differ by 1 . Then Theorem 1.1 implies that G has a decomposition into edge-disjoint Hamilton paths. Indeed, add an extra vertex to G which sends an edge to all vertices of G whose indegree is below $(n-1) / 2$ and which receives an edge from all others. The resulting tournament G^{\prime} is regular, and a Hamilton decomposition of G^{\prime} clearly corresponds to a decomposition of G into Hamilton paths.

The difficulty of Kelly's conjecture is illustrated by the fact that even the existence of two edge-disjoint Hamilton cycles in a regular tournament is not obvious. The first result in this direction was proved by Jackson [22], who showed that every regular tournament on at least 5 vertices contains a Hamilton cycle and a Hamilton path which are edge-disjoint. Zhang [48] then demonstrated the existence of two edge-disjoint Hamilton cycles. These results were improved by considering Hamilton cycles in oriented graphs of large in- and outdegree by Thomassen [46], Häggkvist [20], Häggkvist and Thomason [21] as well as Kelly, Kühn and Osthus [25]. Keevash, Kühn and Osthus [24] then showed that every sufficiently large oriented graph G on n vertices whose in- and outdegrees are all at least $(3 n-4) / 8$ contains a Hamilton cycle. This bound on the degrees is best possible and confirmed a conjecture of Häggkvist [20] (as mentioned above, there are extremal constructions which are almost regular). Note that this result implies that every sufficiently large regular tournament on n vertices contains at least $n / 8$ edge-disjoint Hamilton cycles, whereas Kelly's conjecture requires $(n-1) / 2$ edge-disjoint Hamilton cycles. The conjecture has also been proved for small values of n and for several special classes of tournaments (see e.g. [5, 8] for somewhat outdated surveys).

Recently, Kühn, Osthus and Treglown [38] proved an approximate version of Theorem 1.1 by showing that every r-regular oriented graph G on $n \geq n_{0}(\varepsilon)$ vertices with $r \geq 3 n / 8+\varepsilon n$ has an approximate Hamilton decomposition (i.e. a set of edge-disjoint Hamilton cycles covering almost all edges).
1.2. Robust outexpanders. In fact, we prove a theorem which is yet more general than Theorem 1.1. Moreover, rather than being based on a degree condition, it uncovers an underlying structural property which guarantees a Hamilton decomposition. As discussed in the next subsection, this property is shared by several well known classes of digraphs. Roughly speaking, this notion of 'robust expansion' is defined as follows: for any set S of vertices, its robust outneighbourhood is the set of vertices which receive many edges from S. A digraph is a robust outexpander if for every set S which is not too small and not too large, its robust outneighbourhood is at least a little larger than S. This notion was introduced explicitly in [37], and was already used implicitly in the earlier papers [24, 25]. In these papers, we proved approximate and exact versions of several conjectures on Hamilton cycles in digraphs.

More precisely, let $0<\nu \leq \tau<1$. Given any digraph G on n vertices and $S \subseteq V(G)$, the ν-robust outneighbourhood $R N_{\nu, G}^{+}(S)$ of S is the set of all those vertices x of G which have at least νn inneighbours in $S . G$ is called a robust (ν, τ)-outexpander if

$$
\left|R N_{\nu, G}^{+}(S)\right| \geq|S|+\nu n \text { for all } S \subseteq V(G) \text { with } \tau n \leq|S| \leq(1-\tau) n
$$

Our main result states that every sufficiently large regular robust outexpander has a Hamilton decomposition.
Theorem 1.2. For every $\alpha>0$ there exists $\tau>0$ such that for all $\nu>0$ there exists $n_{0}=n_{0}(\alpha, \nu, \tau)$ for which the following holds. Suppose that
(i) G is an r-regular digraph on $n \geq n_{0}$ vertices, where $r \geq \alpha n$;
(ii) G is a robust (ν, τ)-outexpander.

Then G has a Hamilton decomposition. Moreover, this decomposition can be found in time polynomial in n.

Since Lemma 13.1 states that every oriented graph G on n vertices with minimum in- and outdegree at least $3 n / 8+\varepsilon n$ is a robust outexpander (provided that n is sufficiently large compared to ε), Theorem 1.2 immediately implies Theorem 1.1.

Obviously, the condition that G is regular is necessary. The robust expansion property can be viewed as a natural strengthening of this property: Indeed, suppose that $\nu^{1 / 4} \leq \tau \leq \alpha$ and $|S| \geq \tau n$. Counting the edges from S to its ν-robust outneighbourhood shows that condition (i) already forces the ν-robust outneighbourhood of S to have size at least $(1-\sqrt{\nu})|S|$. Condition (ii) then ensures (amongst others) that G is highly connected, which is obviously also necessary.

The following result of Osthus and Staden [42] gives an approximate version of Theorem 1.2 and will be used in its proof.
Theorem 1.3. For every $\alpha>0$ there exists $\tau>0$ such that for all $\nu, \eta>0$ there exists $n_{0}=n_{0}(\alpha, \nu, \tau, \eta)$ for which the following holds. Suppose that
(i) G is an r-regular digraph on $n \geq n_{0}$ vertices, where $r \geq \alpha n$;
(ii) G is a robust (ν, τ)-outexpander.

Then G contains at least $(1-\eta) r$ edge-disjoint Hamilton cycles. Moreover, this set of Hamilton cycles can be found in time polynomial in n.

Note that Theorem 1.3 is a generalization of the approximate version of Theorem 1.1 proved in [38] (which was already mentioned at the end of the previous subsection). The approach in [38] is not algorithmic though. If we replace the use of Theorem 1.3 in our main proof by the result in [38], this yields exactly Theorem 1.1 (but not its algorithmic version). However, this would not result in a shorter proof of Theorem 1.2.
1.3. Further applications. In this section, we briefly discuss further applications of our main result.
1.3.1. Regular digraphs and TSP tour domination. As observed in Section 13, it is very easy to check that regular digraphs of sufficiently large degree are robust outexpanders. Together with Theorem 1.4 this implies the following result.
Theorem 1.4. For every $\varepsilon>0$ there exists n_{0} such that every r-regular digraph G on $n \geq n_{0}$ vertices with $r \geq(1 / 2+\varepsilon) n$ has a Hamilton decomposition. Moreover, such a decomposition can be found in time polynomial in n.

Surprisingly, this has an immediate application to the area of TSP tour domination. More precisely, the Asymmetric travelling salesman problem (ATSP) asks for a Hamilton cycle of least weight in an edge-weighted complete digraph (where opposite edges are allowed to have different weight). An algorithm A for the ATSP has domination ratio $p(n)$ if it has the following property. For any problem instance I let $w(I)$ be the weight of the solution produced by A. Then for all n and for all instances I on n vertices, there are at least $p(n)(n-1)$! solutions to instance I whose weight is also at least $w(I)$. (Note that the total number of possible solutions is $(n-1)!$.) This notion is of particular interest for the ATSP as it is not known whether there is a polynomial time algorithm for the ATSP whose approximation ratio is bounded by an absolute constant. Several well known TSP algorithms achieve a domination ratio of $\Omega(1 / n)$ for the ATSP but no better results are known. In particular, a long-standing open problem (see e.g. Glover and Punnen [18], Gutin and Yeo [19] as well as Alon, Gutin and Krivelevich [2]) asks whether there is a polynomial time algorithm which achieves a constant domination ratio for the ATSP. Gutin and Yeo [19] proved that the existence of a polynomial time algorithm with domination ratio $1 / 2-\varepsilon$ would follow from an algorithmic proof of Theorem 1.4. So the result of [19] together with Theorem 1.4 yields the following.
Corollary 1.5. For any $\varepsilon>0$, there is a polynomial time algorithm for the ATSP whose domination ratio is $1 / 2-\varepsilon$.
1.3.2. Random tournaments. Another application of Theorem 1.2 confirms a conjecture of Erdős (see [45]) which can be regarded as a probabilistic version of Kelly's conjecture. Given an oriented graph G, let $\delta^{+}(G)$ denote its minimum outdegree and $\delta^{-}(G)$ its minimum indegree. Clearly, the minimum of these two quantities is an upper bound on the number of edge-disjoint Hamilton cycles that G can have. Erdős conjectured that this bound is correct with high probability if G is a random tournament and one can use Theorem 1.1 to show this is indeed the case.
Theorem 1.6. Almost all tournaments G contain $\delta^{0}(G):=\min \left\{\delta^{+}(G), \delta^{-}(G)\right\}$ edge-disjoint Hamilton cycles.

More precisely, the term 'almost all' refers to the model where one considers the set \mathcal{T}_{n} of all tournaments on n vertices and shows that the probability that a random tournament in \mathcal{T}_{n} has the required number of Hamilton cycles tends to 1 as n tends to infinity. We prove Theorem 1.6 by showing that with high probability G contains a $\delta^{0}(G)$-regular spanning subdigraph G^{\prime} and apply Theorem 1.1 to G^{\prime} to find the required Hamilton cycles. As the first step requires some work, we defer this to a shorter companion paper [35].

The corresponding problem for the binomial random graph $G_{n, p}$ with edge probability p has a long history, going back to a result of Bollobás and Frieze [9], who showed that a.a.s. (asymptotically almost surely) $G_{n, p}$ contains $\left\lfloor\delta\left(G_{n, p}\right) / 2\right\rfloor$ edgedisjoint Hamilton cycles in the range of p where the minimum degree $\delta\left(G_{n, p}\right)$ is a.a.s. bounded. A striking conjecture of Frieze and Krivelevich [17] asserts that this result extends to arbitrary edge probabilities p. The range of p was extended in several papers, in particular due to recent results of Knox, Kühn and Osthus [26] as well as Krivelevich and Samotij [30], the conjecture remains open only in the (rather special) case when p tends to 1 fairly quickly. As we shall observe in [35], this case follows from Theorem 1.2 in a similar way as Theorem 1.6.
1.3.3. Undirected robust expanders. In [35], we also derive an undirected version of Theorem 1.2, where instead of the 'robust outneighbourhood' we consider the 'robust neighbourhood'. As an immediate corollary of this undirected version, we obtain the following approximate version of the 'Hamilton decomposition conjecture' of NashWilliams [41].

Theorem 1.7. For every $\varepsilon>0$ there exists n_{0} such that every r-regular graph G on $n \geq n_{0}$ vertices, where $r \geq(1 / 2+\varepsilon) n$ is even, has a Hamilton decomposition.

The conjecture of Nash-Williams asserts that the εn error term can be removed. Theorem 1.7 improves results by Christofides, Kühn and Osthus [13] as well as Perkovic and Reed [43].

Finally, the undirected version of Theorem 1.2 easily implies that every evenregular dense quasi-random graph has a Hamilton decomposition. An approximate version of this result was proved earlier by Frieze and Krivelevich [16]. Our undirected decomposition result implies e.g. a recent result of Alspach, Bryant and Dyer [6] that every Paley graph has a Hamilton decomposition (for the case of large graphs). Our undirected decomposition result also implies that with high probability, dense random regular graphs of even degree have a Hamilton decomposition. (Hamilton decompositions of random regular graphs of bounded degree have already been studied intensively.) These and other related results are discussed in more detail in [35].
1.3.4. The robust decomposition lemma. In a sequence of four papers $[14,15,32,33]$ we build on the results of the current paper to prove the long-standing ' 1 -factorization conjecture': Suppose that n is even and sufficiently large, and that $D \geq 2\lceil n / 4\rceil-$ 1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. (Equivalently, $\chi^{\prime}(G)=D$.) Moreover, we improve Theorem 1.7 to completely solve the Hamilton decomposition conjecture of Nash-Williams from [41].

Finally, we also solve another problem of Nash-Williams on optimal packings of edgedisjoint Hamilton cycles in graphs of large minimum degree (the latter also uses results from [31]). The proofs are based on (the undirected version of) Theorem 1.2 as well as the 'robust decomposition lemma', which can be viewed as a version of Theorem 1.2 which is more technical but has the advantage of being more widely applicable (see Lemma 11.2 or 12.1).

In the next section, we give a brief outline of our methods. The approach is a very general one and we are certain that it will have significant further applications.

2. A brief outline of the argument

2.1. The general approach. The basic idea behind the proof of Theorem 1.2 can be described as follows. Let G be a robustly expanding digraph as in Theorem 1.2. Suppose that inside G we can find a sparse regular digraph $H^{\text {rob }}$ which is robustly decomposable in the sense that it still has a Hamilton decomposition if we add a few edges to it. More precisely, H^{rob} is robustly decomposable if $H^{\mathrm{rob}} \cup H_{0}$ has a Hamilton decomposition whenever H_{0} is a very sparse regular digraph which is edge-disjoint from H^{rob} and such that $V(H)=V\left(H^{\mathrm{rob}}\right)$. Then Theorem 1.2 would be an immediate consequence of the existence of such an $H^{\text {rob }}$. Indeed, first we remove the edges of H^{rob} from G to obtain G^{\prime}. Then we apply Theorem 1.3 to G^{\prime} to find edge-disjoint Hamilton cycles covering almost all edges of G^{\prime}. Let H_{0} be the leftover - i.e. the set of edges of G^{\prime} which are not covered by one of these Hamilton cycles. Now apply the fact that $H^{\text {rob }}$ is robustly decomposable to obtain a Hamilton decomposition of $H^{\text {rob }} \cup H_{0}$ and thus of G. Essentially, this is what the 'robust decomposition lemma' (Lemma 11.2) achieves.

Unfortunately, we do not know how to construct such a digraph $H^{\text {rob }}$ directly the main problem is that we have almost no control over what H_{0} might look like. However, one key idea is that we can define and find several digraphs $H_{i}^{\text {rob }}$ which together play the role of $H^{\text {rob }}$. Indeed, suppose that we remove the edges of several H_{i}^{rob} at the start and let H_{0} be the leftover of the approximate decomposition as above. Then we can show that $H_{1}^{\text {rob }} \cup H_{0}$ contains a set of edge-disjoint Hamilton cycles so that the resulting leftover H_{1} has more structure than H_{0} (i.e. it has some useful properties). This in turn means that we can improve on the previous step and now find a set of edge-disjoint Hamilton cycles in $H_{2}^{\mathrm{rob}} \cup H_{1}$ so that the resulting leftover H_{2} has even more structure than H_{1}. After $\ell-1$ steps, $H_{\ell-1}$ will be a sufficiently 'nice' digraph so that $H_{\ell}^{\mathrm{rob}} \cup H_{\ell-1}$ does have a Hamilton decomposition. This very general approach was first introduced in [26], where we used it to find optimal packings of edge-disjoint Hamilton cycles in random graphs. In [26], the aim was that successive H_{i} become sparser. In our setting, the density is less relevant our aim is to obtain successively stronger structural properties for the H_{i}.

When finding Hamilton cycles in $H_{i}^{\text {rob }} \cup H_{i-1}$, we usually proceed as follows (except for the final step, i.e. when $i=\ell$). First we decompose H_{i-1} into edge-disjoint 1factors (where a 1 -factor is a spanning union of vertex-disjoint cycles). Each of these 1 -factors is then split into a set of paths in a suitable way (we call this a path system). In particular, the number of edges in each path system is small compared to n. Then we extend each path system into a suitable 1-factor F using edges of $H_{i}^{\text {rob }}$. Then we

Figure 1. An illustration of the structure of the proof of Theorem 1.2. The purpose of Lemmas 8.6, 9.4 and 10.5 is to find the preprocessing graph $P G$, the chord absorber $C A$ and the parity extended cycle absorber $P C A$ respectively. The purpose of Corollary 8.5, Lemmas 9.7 and 10.4 is to use these graphs to find suitable Hamilton cycles. In Section 12, we combine Lemmas 9.4, 10.5, 9.7 and 10.4 into a single 'robust decomposition lemma' (see Lemma 11.2 or 12.1).
transform F into a Hamilton cycle C, again using edges of $H_{i}^{\text {rob }}$. The resulting set of Hamilton cycles then covers all edges of H_{i-1}. In other words, H_{i-1} is 'absorbed' into the set of Hamilton cycles that we have constructed so far and the leftover H_{i} is a subgraph of H_{i}^{rob}. In particular, H_{i} inherits any structural properties that $H_{i}^{\text {rob }}$ has. When constructing the Hamilton cycle C, we will use the result of [37] that every robustly expanding digraph contains a Hamilton cycle, or one of its corollaries (see Section 6).
2.2. The main steps. The construction of the graphs $H_{i}^{\text {rob }}$ involves Szemerédi's regularity lemma. We apply this to G to obtain a partition of its vertices into clusters V_{1}, \ldots, V_{k} and a small exceptional set V_{0} so that almost all ordered pairs of clusters induce a pseudorandom subdigraph of G. As is well known, one can then define a 'reduced digraph' R whose vertex set consists of the clusters V_{i}, with an edge from V_{i} to V_{j}, if the subdigraph of G induced by the edges of G from V_{i} to V_{j} is pseudorandom and dense. R inherits many of the properties of G. In particular, R is also a robust outexpander. So it contains a Hamilton cycle C by the result mentioned above - without loss of generality $C=V_{1} V_{2} \ldots V_{k}$.

We can now define three digraphs playing the role of $H_{1}^{\text {rob }}, H_{2}^{\mathrm{rob}}, H_{3}^{\mathrm{rob}}$ above (so we have $\ell=3$ in our setting):

- the preprocessing graph $P G$;
- the chord absorber $C A$;
- the parity extended cycle absorber $P C A$.

We now describe the purpose of these three digraphs (see also Figure 1).

The preprocessing graph $P G$ has the following property: let H_{1} be the leftover of $P G \cup H_{0}$ after removing suitably chosen edge-disjoint Hamilton cycles. (So as discussed above, H_{1} is a subdigraph of $P G$.) Then H_{1} has no edges incident to V_{0}. Thus H_{1} is not a regular digraph (but it will be a regular subdigraph of $G-V_{0}$). This degree irregularity will be compensated for by constructing the chord absorber $C A$ in a suitable way.

The chord absorber $C A$ has the following property: let H_{2} be the leftover of $C A \cup H_{1}$ after removing suitably chosen edge-disjoint Hamilton cycles. Then H_{2} is a blow-up of C. In other words, for every edge e of H_{2}, there is a j so that the initial vertex of e is in V_{j} and the final one in V_{j+1}. (So the edges of H_{2} 'wind around' C.) H_{2} will be a subdigraph of $C A$. But $C A$ itself will not only consist of a blow-up $\mathcal{B}(C)$ of C, it will also contain a set of suitably chosen 'chord edges' between clusters which are not adjacent on C. These chord edges lie in a digraph $\mathcal{B}\left(U^{\prime}\right)$, which is a blow-up of a 'universal walk' U on the clusters V_{i}. To absorb H_{1}, we will split its edges into path systems M as described above. We would like to extend each M into a Hamilton cycle. This may be impossible using the edges of $\mathcal{B}(C)$ alone, e.g. if M contains an edge e_{1} from V_{1} to V_{3} but no other edges. So for each edge e of such a path system M, we then choose a set of chord edges from $\mathcal{B}\left(U^{\prime}\right)$ which 'balance out' this edge e to form a 'locally balanced sequence'. We extend (and balance) M in this way to obtain a path system M^{\prime}. We then further extend M^{\prime} to a Hamilton cycle using edges of $\mathcal{B}(C)$.

As an example, suppose again that $M=\left\{e_{1}\right\}$ with e_{1} being an edge from V_{1} to V_{3}. It turns out that a simple way of balancing e_{1} would be to add an edge e_{j} from V_{j} to V_{j+2} for all j with $1<j \leq k$, so that $e_{1}, e_{2}, \ldots, e_{k}$ form a matching M^{\prime}. It is easy to see that one can extend M^{\prime} into a Hamilton cycle using edges from $\mathcal{B}(C)$, i.e. edges which only wind around C. Indeed, start by traversing e_{1}, then wind around C to reach the initial vertex of e_{2}, then traverse e_{2}, then wind around C again, and eventually traverse e_{k}. Before returning to the initial vertex of e_{1}, wind around C sufficiently many times to visit every vertex in every cluster, thus obtaining a Hamilton cycle which contains M^{\prime}. Unfortunately, we cannot guarantee the existence of such edges e_{2}, \ldots, e_{k} in an arbitrary robust outexpander. So we will use sequences of balancing edges which involve more edges but can be found in any robust outexpander. (They will be based on the concept of 'shifted walks' which we introduced in [25]).

The crucial point is that we can carry out the balancing in such a way that we use up all edges of $\mathcal{B}\left(U^{\prime}\right)$ in the process of balancing out the path systems of H_{1}. In particular, the surprising feature of the argument is that we can choose $\mathcal{B}\left(U^{\prime}\right)$ in advance (i.e. without knowing H_{1}) so that it has this property.

In the above, we did not discuss edges incident to the exceptional set V_{0}. Obviously a Hamilton cycle has to contain these, whereas neither of $H_{1}, \mathcal{B}(C)$ and $\mathcal{B}\left(U^{\prime}\right)$ have any edges incident to V_{0}. To deal with this, we introduce the following trick: suppose for example that V_{0} contains a single exceptional vertex x. We find an outneighbour x^{+}of x and an inneighbour x^{-}in $V(G) \backslash V_{0}$. We can then define an 'exceptional edge' $x^{-} x^{+}$and add this edge $x^{-} x^{+}$to the chord absorber $C A$. Then a Hamilton cycle of $\left(C A \cup H_{1}\right)-V_{0}$ containing this exceptional edge corresponds to a Hamilton cycle of G. The systematic use of exceptional edges in this way allows us to ignore

Figure 2. Transforming the 1 -factors F and F^{\prime} consisting of two cycles into Hamilton cycles by switching edges.
the exceptional set V_{0} at many points of the argument. It might seem natural to apply this trick directly to H_{0} (i.e. replace pairs of edges of H_{0} incident to V_{0} with exceptional edges) with the aim of making the preprocessing step unnecessary. However, this approach would run into considerable difficulties. It turns out that working inside H_{0} (rather than the whole of G) when constructing the exceptional edges might not give us enough choice to find suitable sets of exceptional edges.

Finally, the parity extended cycle absorber PCA has the following property: let H_{2} be the leftover of $C A \cup H_{1}$ after removing suitable Hamilton cycles. Then $H_{2} \cup P C A$ has a Hamilton decomposition. We will find this Hamilton decomposition as follows: first we decompose $P C A \cup H_{2}$ into carefully chosen 1-factors (in particular, either half or all of the edges of each 1-factor are contained in $P C A$). When finding this decomposition, we use the fact that H_{2} is a blow-up of C. ($P C A$ will also be a blowup of C.) Our aim is then to turn this 1-factorization of $P C A \cup H_{2}$ into a Hamilton decomposition of $P C A \cup H_{2}$ by successively switching edges between 1-factors. As an illustration, suppose that we are given two 1 -factors F and F^{\prime} so that F contains the edges $x x^{+}$and $y y^{+}$. Similarly, suppose that F^{\prime} contains the edges $x y^{+}$and $y x^{+}$. Note that these edges form an orientation of a four-cycle C_{4}. Now perform a 'switch', which consists of removing $x x^{+}$and $y y^{+}$from F, adding $x y^{+}$and $y x^{+}$ to F and proceeding similarly for F^{\prime}. This yields two new 1-factors $F_{\text {new }}$ and $F_{\text {new }}^{\prime}$. Suppose that F consists of exactly two cycles and that $x x^{+}$and $y y^{+}$lie on different cycles. Then $F_{\text {new }}$ is a Hamilton cycle. The same holds for F^{\prime} (see Figure 2). These switches will always involve edges from $P C A$ and not from H_{2}. So if we ensure that $P C A$ has switches at the right places, we can eventually turn the 1-factorization of $P C A \cup H_{2}$ into a Hamilton decomposition after several switches.

This paper is organized as follows: In the next section, we introduce some notation. In Section 4, we collect tools which we will need in connection with Szemerédi's regularity lemma. Similarly, in Section 5 we collect general properties of robustly expanding digraphs. Section 6 is devoted to tools for finding Hamilton cycles (in robustly expanding digraphs). In Section 7, we introduce a systematic and convenient way of dealing with exceptional vertices which will be used throughout the remainder of the paper. This will be based on the concept of exceptional edges and 'balancing' edges via chord sequences. Section 8 deals with the preprocessing step, which involves the preprocessing graph $P G$. Then, in Section 9, we define, find and use the chord-absorber $C A$. Switches and the parity extended cycle absorber PCA
are then introduced in Section 10. In Section 11, we put everything together to prove Theorem 1.2. In Section 12, we state a standalone variant of the 'robust decomposition lemma', for use e.g. in [14, 32]. Finally, in Section 13 we derive Theorems 1.1 and 1.4 from Theorem 1.2.

3. Notation and probabilistic estimates

3.1. Notation. Given a graph or digraph G, we write $V(G)$ for its vertex set, $E(G)$ for its edge set, $e(G):=|E(G)|$ for the number of its edges and $|G|$ for the number of its vertices. Given $X \subseteq V(G)$, we write $G-X$ for the (di)graph obtained from G by deleting all vertices in X. Given $F \subseteq E(G)$, we write $G \backslash F$ for (di)graph obtained from G by deleting all edges in F. If H is a sub(di)graph of G, we write $G \backslash H$ for $G \backslash E(H)$.

Suppose that G is an undirected graph. We write $\delta(G)$ for the minimum degree of G and $\Delta(G)$ for its maximum degree. Whenever $X, Y \subseteq V(G)$, we write $e_{G}(X, Y)$ for the number of all those edges of G which have one endvertex in X and the other endvertex in Y. If $X \cap Y=\emptyset$, we denote by $G[X, Y]$ the bipartite subgraph of G with vertex sets X and Y whose edges are all the edges of G between X and Y. If G is a bipartite graph with vertex classes A and B, we often write $G=(A, B)$.

If G is a digraph, we write $x y$ for an edge directed from x to y. Unless stated otherwise, when we refer to paths and cycles in digraphs, we mean directed paths and cycles, i.e. the edges on these paths/cycles are oriented consistently. Given two vertices x and y on a directed cycle C, we write $x C y$ for the (directed) subpath of C from x to y. If x is a vertex of a digraph G, then $N_{G}^{+}(x)$ denotes the outneighbourhood of x, i.e. the set of all those vertices y for which $x y \in E(G)$. Similarly, $N_{G}^{-}(x)$ denotes the inneighbourhood of x, i.e. the set of all those vertices y for which $y x \in E(G)$. We write $d_{G}^{+}(x):=\left|N_{G}^{+}(x)\right|$ for the outdegree of x and $d_{G}^{-}(x):=\left|N_{G}^{-}(x)\right|$ for its indegree. We denote the minimum outdegree of G by $\delta^{+}(G):=\min _{x \in V(G)} d_{G}^{+}(x)$, the minimum indegree by $\delta^{-}(G):=\min _{x \in V(G)} d_{G}^{-}(x)$, the minimum degree by $\delta(G):=$ $\min _{x \in V(G)}\left(d^{+}(x)+d^{-}(x)\right)$ and the maximum degree by $\Delta(G):=\max _{x \in V(G)}\left(d^{+}(x)+\right.$ $\left.d^{-}(x)\right)$. The minimum semidegree of G is $\delta^{0}(G):=\min \left\{\delta^{+}(G), \delta^{-}(G)\right\}$. Whenever $X, Y \subseteq V(G)$, we write $e_{G}(X, Y)$ for the number of all those edges of G which have their initial vertex in X and their final vertex in Y. If $X \cap Y=\emptyset$, we denote by $G[X, Y]$ the bipartite subdigraph of G with vertex sets X and Y whose edges are all the edges of G directed from X to Y. In all these definitions we often omit the subscript G if the graph or digraph G is clear from the context. A subdigraph H of G is an r-factor of G if the outdegree and the indegree of every vertex of H is r. A path system is the union of vertex-disjoint directed paths.

Given a digraph R and a positive integer r, the r-fold blow-up of R is the digraph $R \times E_{r}$ obtained from R by replacing every vertex x of R by r vertices and replacing every edge $x y$ of R by the oriented complete bipartite graph $K_{r, r}$ between the two sets of r vertices corresponding to x and y in which all the edges are oriented towards the r vertices corresponding to y. Now consider the case when V_{1}, \ldots, V_{k} is a partition of some set V of vertices and R is a digraph whose vertices are V_{1}, \ldots, V_{k}. Then a blow-up $\mathcal{B}(R)$ of R is obtained from R by replacing every vertex V_{i} of R by the vertices in V_{i} and replacing every edge $V_{i} V_{j}$ of R by a certain bipartite graph with
vertex classes V_{i} and V_{j} in which all the edges are oriented towards the vertices in V_{j}. Usually, these bipartite graphs will be ε-regular or superregular (as defined in Section 4). If R is a directed cycle, say $R=C=V_{1} \ldots V_{k}$ and G is a digraph with $V(G) \subseteq V=V_{1} \cup \cdots \cup V_{k}$, we say that (the edges of) G wind(s) around C if for every edge $x y$ of G there exists an index j such that $x \in V_{j}$ and $y \in V_{j+1}$. So if $V(G)=V$ then G winds around C if and only if G is a blow-up of C.

In order to simplify the presentation, we omit floors and ceilings and treat large numbers as integers whenever this does not affect the argument. The constants in the hierarchies used to state our results have to be chosen from right to left. More precisely, if we claim that a result holds whenever $0<1 / n \ll a \ll b \ll c \leq 1$ (where n is the order of the graph or digraph), then this means that there are nondecreasing functions $f:(0,1] \rightarrow(0,1], g:(0,1] \rightarrow(0,1]$ and $h:(0,1] \rightarrow(0,1]$ such that the result holds for all $0<a, b, c \leq 1$ and all $n \in \mathbb{N}$ with $b \leq f(c), a \leq g(b)$ and $1 / n \leq h(a)$. We will not calculate these functions explicitly. Hierarchies with more constants are defined in a similar way. Moreover, we will often assume that certain numbers involving these constants, e.g. b / a^{2} or $a n$ are integers. We will only make this assumption if our hierarchy guarantees that these numbers are sufficiently large since then by adjusting the constants slightly one can actually guarantee that these numbers are integers. However, all our results will hold if n is sufficiently large, i.e. we will make no divisibility assumptions on n. (Note that if we assume that an is an integer then this can be achieved by adjusting the constant a slightly.)
3.2. Probabilistic estimates, derandomization and algorithmic aspects. We will use the following standard Chernoff type bound (see e.g. Corollary 2.3 in [23] and Theorem 2.2 in [44]).

Proposition 3.1. Suppose X has binomial distribution and $0<a<1$. Then

$$
\mathbb{P}(X \geq(1+a) \mathbb{E} X) \leq \mathrm{e}^{-\frac{a^{2}}{3} \mathbb{E} X} \text { and } \mathbb{P}(X \leq(1-a) \mathbb{E} X) \leq \mathrm{e}^{-\frac{a^{2}}{3} \mathbb{E} X} .
$$

To obtain an algorithmic version of Theorem 1.2, we need to 'derandomize' our applications of Proposition 3.1. This can be done via the well known 'method of conditional probabilities', which is based on an idea of Erdős and Selfridge, and which was further developed e.g. by Spencer as well as Raghavan. The following result of Srivastav and Stangier (Theorem 2.10 in [44]) is also based on this method. Given a probabilistic existence proof of some structure based on polynomially many applications of Proposition 3.1, it guarantees an algorithm which finds this structure.

Suppose we are given N independent $0 / 1$ random variables X_{1}, \ldots, X_{N} where $\mathbb{P}\left(X_{j}=1\right)=p$ and $\mathbb{P}\left(X_{j}=0\right)=1-p$ for some rational $0 \leq p \leq 1$. Suppose that $1 \leq i \leq m$. Let $w_{i j} \in\{0,1\}$. Denote by ϕ_{i} the random variables $\phi_{i}:=\sum_{j=1}^{N} w_{i j} X_{j}$. Fix β_{i} with $0<\beta_{i}<1$. Now let E_{i}^{+}denote the event that $\phi_{i} \geq\left(1+\beta_{i}\right) \mathbb{E}\left[\phi_{i}\right]$ and let E_{i}^{-}denote the event that $\phi_{i} \leq\left(1-\beta_{i}\right) \mathbb{E}\left[\phi_{i}\right]$. Let E_{i} be either E_{i}^{+}or E_{i}^{-}. Suppose that

$$
\begin{equation*}
\sum_{i=1}^{m} \mathrm{e}^{-\beta_{i}^{2} \mathbb{E}\left(\phi_{i}\right) / 3} \leq 1 / 2 \tag{3.1}
\end{equation*}
$$

Theorem 3.2. [44] Let E_{1}, \ldots, E_{m} be events such that (3.1) holds. Then

$$
\mathbb{P}\left(\bigcap_{i=1}^{m} E_{i}\right) \geq 1 / 2
$$

and a vector $x \in \bigcap_{i=1}^{m} E_{i}$ can be constructed in time $O\left(m N^{2} \log (m N)\right)$.
In general, it will usually be clear that the proofs can be translated into polynomial time algorithms. Where this is not obvious, we will add a corresponding remark. We make no attempt to prove an explicit bound on the time needed to find the Hamilton decomposition (beyond the fact that it is polynomial in n).

4. Regularity

4.1. The Regularity Lemma. We will use of a directed version of Szemerédi's regularity lemma. If $G=(A, B)$ is an undirected bipartite graph with vertex classes A and B, then the density of G is defined as

$$
d(A, B):=\frac{e_{G}(A, B)}{|A||B|} .
$$

For any $\varepsilon>0$, we say that G is ε-regular if for any $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right| \geq \varepsilon|A|$ and $\left|B^{\prime}\right| \geq \varepsilon|B|$ we have $\left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right|<\varepsilon$. We say that G is $(\varepsilon, \geq d)$-regular if it is ε-regular and has density d^{\prime} for some $d^{\prime} \geq d-\varepsilon$.

Given disjoint vertex sets X and Y in a digraph G, recall that $G[X, Y]$ denotes the bipartite subdigraph of G whose vertex classes are X and Y and whose edges are all the edges of G directed from X to Y. We often view $G[X, Y]$ as an undirected bipartite graph. In particular, we say $G[X, Y]$ is ε-regular or $(\varepsilon, \geq d)$-regular if this holds when $G[X, Y]$ is viewed as an undirected graph.

Next we state the degree form of the regularity lemma for digraphs. A regularity lemma for digraphs was proved by Alon and Shapira [3]. The degree form follows from this in the same way as the undirected version (see [34] for a sketch of the latter). An algorithmic version of the (undirected) regularity lemma was proved in [1]. An algorithmic version of the directed version can be proved in essentially the same way (see [12] for a sketch of the argument proving a similar statement).

Lemma 4.1 (Regularity Lemma for digraphs). For all $\varepsilon, M^{\prime}>0$ there exist M, n_{0} such that if G is a digraph on $n \geq n_{0}$ vertices and $d \in[0,1]$, then there exists a partition of $V(G)$ into V_{0}, \ldots, V_{k} and a spanning subdigraph G^{\prime} of G satisfying the following conditions:
(i) $M^{\prime} \leq k \leq M$.
(ii) $\left|V_{0}\right| \leq \varepsilon n$.
(iii) $\left|V_{1}\right|=\cdots=\left|V_{k}\right|=: m$.
(vi) $d_{G^{\prime}}^{+}(x)>d_{G}^{+}(x)-(d+\varepsilon) n$ for all vertices $x \in V(G)$.
(v) $d_{G^{\prime}}^{-}(x)>d_{G}^{-}(x)-(d+\varepsilon) n$ for all vertices $x \in V(G)$.
(vi) For all $i=1, \ldots, k$ the digraph $G^{\prime}\left[V_{i}\right]$ is empty.
(vii) For all $1 \leq i, j \leq k$ with $i \neq j$ the pair $G^{\prime}\left[V_{i}, V_{j}\right]$ is either empty or ε-regular of density at least d. Moreover, if $G^{\prime}\left[V_{i}, V_{j}\right]$ is nonempty then $G^{\prime}\left[V_{i}, V_{j}\right]=$ $G\left[V_{i}, V_{j}\right]$.

We refer to V_{0} as the exceptional set and to V_{1}, \ldots, V_{k} as clusters. $V_{0}, V_{1}, \ldots, V_{k}$ as above is also called a regularity partition for G. Given a digraph G on n vertices, we form the reduced digraph R of G with parameters ε, d and M^{\prime} by applying the regularity lemma to G with these parameters to obtain V_{0}, \ldots, V_{k}. R is then the digraph whose vertices are the clusters V_{1}, \ldots, V_{k} and whose edges are those (ordered) pairs $V_{i} V_{j}$ of clusters for which $G^{\prime}\left[V_{i}, V_{j}\right]$ is non-empty.

Given $d \in[0,1]$ and a bipartite graph $G=(A, B)$, we say that G is (ε, d) superregular if it is ε-regular and furthermore $d_{G}(a) \geq(d-\varepsilon)|B|$ for every $a \in A$ and $d_{G}(b) \geq(d-\varepsilon)|A|$ for every $b \in B$. (This is a slight variation of the standard definition of (ε, d)-superregularity where one requires $d_{G}(a) \geq d|B|$ and $d_{G}(b) \geq d|A|$.)

We say that a bipartite graph $G=(A, B)$ is $[\varepsilon, d]$-superregular if it is ε-regular and $d_{G}(a)=(d \pm \varepsilon)|B|$ for every $a \in A$ and $d_{G}(b)=(d \pm \varepsilon)|A|$ for every $b \in B$. So if G is $[\varepsilon, d]$-superregular, then it is (ε, d)-superregular. We say that G is $[\varepsilon, \geq d]$ superregular if it is $\left[\varepsilon, d^{\prime}\right]$-superregular for some $d^{\prime} \geq d$. As for ε-regularity, these definitions extend naturally to bipartite graphs where all edges are oriented towards the same vertex class.

The following well known observation states that in an ε-regular bipartite graph almost all vertices have the expected degree and almost all pairs of vertices have the expected codegree (i.e. the expected number of common neighbours). Its proof follows immediately from the definition of regularity.

Proposition 4.2. Suppose that $0<\varepsilon \leq d \leq 1$. Let G be an ε-regular bipartite graph of density d with vertex classes A and B of size m. Then the following conditions hold.

- All but at most $2 \varepsilon m$ vertices in A have degree $(d \pm \varepsilon) m$.
- All but at most $4 \varepsilon m^{2}$ pairs $a \neq a^{\prime}$ of distinct vertices in A satisfy $\mid N(a) \cap$ $N\left(a^{\prime}\right) \mid=\left(d^{2} \pm \varepsilon\right) m$.
- The vertices in B satisfy the analogues of these statements.

The following simple observation states that the removal of a small number of edges and vertices from a bipartite graph does not affect its ε-regularity (and superregularity) too much.

Proposition 4.3. Suppose that $0<1 / m \ll \varepsilon \leq d^{\prime} \leq d \ll 1$. Let G be a bipartite graph with vertex classes A and B of size m. Suppose that G^{\prime} is obtained from G by removing at most $d^{\prime} m$ vertices from each vertex class and at most d'm edges incident to each vertex from G.
(i) If G is ε-regular of density at least d then G^{\prime} is $2 \sqrt{d^{\prime}}$-regular of density at least $d-2 \sqrt{d^{\prime}}$.
(ii) If G is (ε, d)-superregular then G^{\prime} is $\left(2 \sqrt{d^{\prime}}, d\right)$-superregular.
(iii) If G is $[\varepsilon, d]$-superregular then G^{\prime} is $\left[2 \sqrt{d^{\prime}}, d\right]$-superregular.

Proof. Let us first prove (i). Let d^{*} denote the density of G. Let $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ denote the vertex classes of G^{\prime}. Suppose that $S \subseteq A^{\prime}, T \subseteq B^{\prime}$ are such that
$|S| \geq 2 \sqrt{d^{\prime}}\left|A^{\prime}\right|$ and $|T| \geq 2 \sqrt{d^{\prime}}\left|B^{\prime}\right|$. So $|S|,|T| \geq \sqrt{d^{\prime}} m \geq \varepsilon m$ and thus

$$
\begin{aligned}
e_{G^{\prime}}(S, T) & \geq\left(d^{*}-\varepsilon\right)|S||T|-|S| d^{\prime} m \geq\left(d^{*}-\varepsilon\right)|S||T|-|S| d^{\prime} \cdot|T| / \sqrt{d^{\prime}} \\
& \geq\left(d^{*}-2 \sqrt{d^{\prime}}\right)|S||T| .
\end{aligned}
$$

Since clearly $e_{G^{\prime}}(S, T) \leq e_{G}(S, T) \leq\left(d^{*}+\varepsilon\right)|S||T|$, (i) follows. To see (ii) and the lower bound on the vertex degrees for (iii), note that in G^{\prime} the degrees of the vertices in A^{\prime} are still at least $(d-\varepsilon) m-2 d^{\prime} m \geq\left(d-\varepsilon-2 d^{\prime}\right)\left|B^{\prime}\right| \geq\left(d-\sqrt{d^{\prime}}\right)\left|B^{\prime}\right|$. Similarly, the degrees in G^{\prime} of the vertices in B^{\prime} are still at least $\left(d-\sqrt{d^{\prime}}\right)\left|A^{\prime}\right|$.

To see (iii), note that in G^{\prime} the degrees of the vertices in A^{\prime} are still at most $(d+\varepsilon) m \leq(d+\varepsilon)\left|B^{\prime}\right| /\left(1-d^{\prime}\right) \leq\left(d+\sqrt{d^{\prime}}\right)\left|B^{\prime}\right|$. Similarly, the degrees in G^{\prime} of the vertices in B^{\prime} are still at most $\left(d+\sqrt{d^{\prime}}\right)\left|A^{\prime}\right|$.

The following lemma is also well known in several variations.
Lemma 4.4. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll d, 1 / \Delta \leq 1$. Let G be a digraph on n vertices. Let \mathcal{P}_{0} be a partition of $V(G)$ into k clusters $V_{1}^{\prime}, \ldots, V_{k}^{\prime}$ and an exceptional set V_{0}^{\prime} such that $m^{\prime}:=\left|V_{1}^{\prime}\right|=\cdots=\left|V_{k}^{\prime}\right|$. Let R be a digraph whose vertices are $V_{1}^{\prime}, \ldots, V_{k}^{\prime}$ and such that whenever $V_{i}^{\prime} V_{j}^{\prime} \in E(R)$ the pair $G\left[V_{i}^{\prime}, V_{j}^{\prime}\right]$ is $(\varepsilon, \geq d)$-regular. Let H be a subdigraph of R of maximum degree Δ. Then there is a partition of $V(G)$ into V_{0}, \ldots, V_{k} such that the following holds:
(i) For each $i=1, \ldots, k, V_{i}$ is obtained from V_{i}^{\prime} by moving exactly $\sqrt{\varepsilon} m^{\prime}$ vertices into V_{0}^{\prime}. V_{0} is then the set consisting of V_{0}^{\prime} and these additional vertices.
(ii) Whenever $V_{i}^{\prime} V_{j}^{\prime} \in E(H)$, the pair $G\left[V_{i}, V_{j}\right]$ is $\left[2 \varepsilon^{1 / 4}, \geq d\right]$-superregular.

Proof. For each edge $V_{i}^{\prime} V_{j}^{\prime}$ of H, let $d_{i j}$ denote the density of $G\left[V_{i}^{\prime}, V_{j}^{\prime}\right]$. So $d_{i j} \geq$ $d-\varepsilon$. Call a vertex x in V_{i}^{\prime} bad if at least one of the following two conditions hold:

- There is an edge $V_{i}^{\prime} V_{j}^{\prime}$ of H so that the degree of x in $G\left[V_{i}^{\prime}, V_{j}^{\prime}\right]$ is not $(1 \pm 2 \varepsilon) d_{i j} m^{\prime}$.
- There is an edge $V_{j}^{\prime} V_{i}^{\prime}$ of H so that the degree of x in $G\left[V_{j}^{\prime}, V_{i}^{\prime}\right]$ is not $(1 \pm 2 \varepsilon) d_{j i} m^{\prime}$.
Note that V_{i}^{\prime} contains at most $2 \Delta \varepsilon m^{\prime} \leq \sqrt{\varepsilon} m^{\prime}$ bad vertices. Let V_{i} be obtained from V_{i}^{\prime} by removing all bad vertices (and some additional ones if there are fewer than $\sqrt{\varepsilon} m^{\prime}$ of these). Now suppose that $V_{i}^{\prime} V_{j}^{\prime}$ is an edge of H. Then Proposition 4.3(i) implies that $G\left[V_{i}, V_{j}\right]$ is $2 \varepsilon^{1 / 4}$-regular. Together with the choice of V_{i} and V_{j} this implies that $G\left[V_{i}, V_{j}\right]$ is $\left[2 \varepsilon^{1 / 4}, \geq d\right]$-superregular.

The following result is proved in Section 3.1 of [16] by a simple application of the Max-Flow-Min-Cut theorem (similarly to that in Lemma 5.2 below). In particular, the subgraph of G guaranteed by this result can be found in time polynomial in m.

Lemma 4.5. Let $0<1 / m \ll \varepsilon \ll d \leq 1$. Suppose that G is a bipartite graph with vertex classes U and V of size m and with minimum degree at least dm. Also suppose that $|d(A, B)-d| \leq \varepsilon m$ for all $A \subseteq U$ and $B \subseteq V$ with $|A|,|B| \geq \varepsilon m$. Define $d^{\prime}:=(1-4 \varepsilon) d$. Then G contains a spanning $d^{\prime} m$-regular subgraph.

Lemma 4.6. Let $0<1 / m \ll \varepsilon \ll d \ll 1$. Let $d^{\prime}:=(1-12 \varepsilon)(d-\varepsilon)$. Suppose that G is a $[\varepsilon, d]$-superregular bipartite graph with vertex classes of size m. Then G contains a spanning $d^{\prime} m$-regular subgraph which is also $\left[4 \sqrt{\varepsilon}, d^{\prime}\right]$-superregular.

Proof. Note that the assumptions imply that G satisfies the conditions of Lemma 4.5 with ε replaced by 3ε and d replaced by $d-\varepsilon$. So we can apply Lemma 4.5 to obtain a $d^{\prime} m$-regular subgraph G^{\prime} with $d^{\prime}=(1-12 \varepsilon)(d-\varepsilon)$. Note that G^{\prime} is obtained from G by removing at most $3 \varepsilon m$ edges at every vertex. Thus Proposition 4.3(i) (with 3ε playing the role of d^{\prime}) implies that G^{\prime} is also $\left[4 \sqrt{\varepsilon}, d^{\prime}\right]$-superregular.
4.2. Uniform refinements. Let G be a digraph and let \mathcal{P} be a partition of $V(G)$ into an exceptional set V_{0} and clusters of equal size. Suppose that \mathcal{P}^{\prime} is another partition of $V(G)$ into an exceptional set V_{0}^{\prime} and clusters of equal size. We say that \mathcal{P}^{\prime} is an ℓ-refinement of \mathcal{P} if $V_{0}=V_{0}^{\prime}$ and if the clusters in \mathcal{P}^{\prime} are obtained by partitioning each cluster in \mathcal{P} into ℓ subclusters of equal size. (So if \mathcal{P} contains k clusters then \mathcal{P}^{\prime} contains $k \ell$ clusters.) \mathcal{P}^{\prime} is an ε-uniform ℓ-refinement of \mathcal{P} if it is an ℓ-refinement of \mathcal{P} which satisfies the following condition:
(URef) Whenever x is a vertex of G, V is a cluster in \mathcal{P} and $\left|N_{G}^{+}(x) \cap V\right| \geq \varepsilon|V|$ then $\left|N_{G}^{+}(x) \cap V^{\prime}\right|=(1 \pm \varepsilon)\left|N_{G}^{+}(x) \cap V\right| / \ell$ for each cluster $V^{\prime} \in \mathcal{P}^{\prime}$ with $V^{\prime} \subseteq V$. The inneighbourhoods of the vertices of G satisfy an analogous condition.

Lemma 4.7. Suppose that $0<1 / m \ll 1 / k, \varepsilon \ll \varepsilon^{\prime}, d, 1 / \ell \leq 1$ and that $m / \ell \in \mathbb{N}$. Suppose that G is a digraph on $n \leq 2 k m$ vertices and that \mathcal{P} is a partition of $V(G)$ into an exceptional set V_{0} and k clusters of size m. Then there exists an ε-uniform ℓ-refinement of \mathcal{P}. Moreover, any ε-uniform ℓ-refinement \mathcal{P}^{\prime} of \mathcal{P} automatically satisfies the following conditions:
(i) Suppose that V, W are clusters in \mathcal{P} and V^{\prime}, W^{\prime} are clusters in \mathcal{P}^{\prime} with $V^{\prime} \subseteq V$ and $W^{\prime} \subseteq W$. If $G[V, W]$ is $\left[\varepsilon, d^{\prime}\right]$-superregular for some $d^{\prime} \geq d$ then $G\left[V^{\prime}, W^{\prime}\right]$ is $\left[\varepsilon^{\prime}, d^{\prime}\right]$-superregular.
(ii) Suppose that V, W are clusters in \mathcal{P} and V^{\prime}, W^{\prime} are clusters in \mathcal{P}^{\prime} with $V^{\prime} \subseteq V$ and $W^{\prime} \subseteq W$. If $G[V, W]$ is $(\varepsilon, \geq d)$-regular then $G\left[V^{\prime}, W^{\prime}\right]$ is $\left(\varepsilon^{\prime}, \geq d\right)$-regular.

Proof. To prove the existence of an ε-uniform ℓ-refinement of \mathcal{P}, let \mathcal{P}^{*} be a partition obtained by splitting each cluster $V \in \mathcal{P}$ uniformly at random into ℓ subclusters. More precisely, the probability that a vertex $x \in V$ is assigned to the i th subcluster is $1 / \ell$, independently of all other vertices. Consider a fixed vertex x of G and a cluster $V \in \mathcal{P}$ with $d^{+}:=\left|N_{G}^{+}(x) \cap V\right| \geq \varepsilon m$. Given a cluster $V^{\prime} \in \mathcal{P}^{*}$ with $V^{\prime} \subseteq V$, we say that x is out-bad for V^{\prime} if the outdegree of x into V^{\prime} is not $(1 \pm \varepsilon / 2) d^{+} / \ell$. Then Proposition 3.1 implies that the probability that x is out-bad for V^{\prime} is at most $2 \mathrm{e}^{-\varepsilon^{2} d^{+} / 3 \cdot 4 \ell} \leq 2 \mathrm{e}^{-\varepsilon^{4} m}$. Since \mathcal{P}^{*} contains $k \ell \leq n$ clusters, the probability that G contains some vertex which is out-bad for at least one cluster $V^{\prime} \in \mathcal{P}^{*}$ is at most $n^{2} \mathrm{e}^{-\varepsilon^{4} m}<1 / 8$. We argue analogously for the inneighbourhoods of the vertices in G (by considering 'in-bad' vertices).

We now say that a cluster V^{\prime} of \mathcal{P}^{*} is good if $\left|V^{\prime}\right|=\left(1 \pm \varepsilon^{2} / 2\right) m / \ell$. A similar argument as above shows that the probability that \mathcal{P}^{*} has a cluster which is not
good is at most $1 / 4$. So with probability at least $1 / 2$, all clusters of \mathcal{P}^{*} are good, and no vertices are out-bad or in-bad.

Now obtain \mathcal{P}^{\prime} from \mathcal{P}^{*} as follows: for each cluster V of \mathcal{P}, equalize the sizes of the corresponding ℓ subclusters in \mathcal{P} by moving at most $\varepsilon^{2} m / 2 \ell$ vertices from one subcluster to another. So whenever x is a vertex of G, V is a cluster in \mathcal{P} and $\left|N_{G}^{+}(x) \cap V\right| \geq \varepsilon|V|$, it follows that we have

$$
\left|N_{G}^{+}(x) \cap V^{\prime}\right|=(1 \pm \varepsilon / 2)\left|N_{G}^{+}(x) \cap V\right| / \ell \pm \varepsilon^{2} m / 2 \ell
$$

for each cluster $V^{\prime} \in \mathcal{P}^{\prime}$ with $V^{\prime} \subseteq V$. The inneighbourhoods of the vertices of G satisfy an analogous condition. So (URef) holds and so \mathcal{P}^{\prime} is an ε-uniform ℓ refinement of \mathcal{P}.

To prove (i), suppose that \mathcal{P}^{\prime} is any ε-uniform ℓ-refinement of \mathcal{P} and that $G[V, W]$ is $\left[\varepsilon, d^{\prime}\right]$-superregular for some $d^{\prime} \geq d$ (where V and W are clusters in \mathcal{P}). Let V^{\prime} and W^{\prime} be clusters in \mathcal{P}^{\prime} with $V^{\prime} \subseteq V$ and $W^{\prime} \subseteq W$. Then $G\left[V^{\prime}, W^{\prime}\right]$ is $\varepsilon \ell$-regular and thus ε^{\prime}-regular. Consider any $x \in V^{\prime}$ and let $d^{+}:=\left|N_{G}^{+}(x) \cap W\right|$. Thus $d^{+}=\left(d^{\prime} \pm \varepsilon\right) m$ since $G[V, W]$ is $\left[\varepsilon, d^{\prime}\right]$-superregular. Together with the ε-uniformity of \mathcal{P}^{\prime} this implies that $\left|N_{G}^{+}(x) \cap W^{\prime}\right|=(1 \pm \varepsilon) d^{+} / \ell=\left(d^{\prime} \pm \varepsilon^{\prime}\right) m / \ell$. The inneighbourhoods in V^{\prime} of the vertices in W^{\prime} satisfy the analogous property. Thus $G\left[V^{\prime}, W^{\prime}\right]$ is $\left[\varepsilon^{\prime}, d^{\prime}\right]$-superregular.

The proof of (ii) is almost the same.

Note that Theorem 3.2 (with $p=1 / \ell$) implies that the above applications of Proposition 3.1 can be derandomized to find \mathcal{P}^{\prime} in polynomial time.
4.3. A sparse notion of ε-regularity. We will also use a 'sparse' version of ε -(super)-regularity, which is defined below. In particular, this definition allows for $d<\varepsilon$. We will need this notion mainly in Section 8 , where we will have to work with graphs for which we cannot guarantee $(\varepsilon, \geq d)$-regularity with $\varepsilon \leq d$. In general, one useful consequence of $(\varepsilon, \geq d)$-regularity is that sets of size between εm and $(1-\varepsilon) m$ expand robustly. With our sparse version, we will also be able to guarantee that even sets of size less than εm expand robustly. This will follow from condition (Reg2) below.

More precisely, let G be a bipartite graph with vertex classes U and V, both of size m. Given $0<\varepsilon, d, c<1$, we say that G is (ε, d, c)-regular if the following conditions are satisfied:
(Reg1) Whenever $A \subseteq U$ and $B \subseteq V$ are sets of size at least εm, then $d(A, B)=$ $(1 \pm \varepsilon) d$.
(Reg2) For all $u, u^{\prime} \in U$ we have $\left|N(u) \cap N\left(u^{\prime}\right)\right| \leq c^{2} m$. Similarly, for all $v, v^{\prime} \in V$ we have $\left|N(v) \cap N\left(v^{\prime}\right)\right| \leq c^{2} m$.
(Reg3) $\Delta(G) \leq c m$.
We say that G is $\left(\varepsilon, d, d^{*}, c\right)$-superregular if it is (ε, d, c)-regular and in addition the following condition holds:
$(\operatorname{Reg} 4) \delta(G) \geq d^{*} m$.
The next result gives an analogue of Proposition 4.3 for the above notion of (super)-regularity.

Proposition 4.8. Suppose that $0<1 / m \ll d^{*}, d, \varepsilon, c \ll 1$. Let G be a bipartite graph with vertex classes U and V of size m. Suppose that G^{\prime} is obtained from G by removing at most $\varepsilon^{2} d m$ edges incident to each vertex from G.
(i) If G is (ε, d, c)-regular then G^{\prime} is $(2 \varepsilon, d, c)$-regular.
(ii) If G is $\left(\varepsilon, d, d^{*}, c\right)$-superregular then G^{\prime} is $\left(2 \varepsilon, d, d^{*}-\varepsilon^{2} d, c\right)$-superregular.

Proof. Let us first prove (i). Clearly G^{\prime} still satisfies (Reg2) and (Reg3). So we only need to check that it also satisfies (Reg1). Suppose that $S \subseteq U, T \subseteq V$ are such that $|S|,|T| \geq \varepsilon m$. Then
$e_{G^{\prime}}(S, T) \geq(1-\varepsilon) d|S||T|-|S| \varepsilon^{2} d m \geq(1-\varepsilon) d|S||T|-|S| \varepsilon^{2} d \cdot|T| / \varepsilon=(1-2 \varepsilon) d|S||T|$.
Since clearly $e_{G^{\prime}}(S, T) \leq e_{G}(S, T) \leq(1+\varepsilon) d|S||T|$, (i) follows. To see (ii) note that the degrees in G^{\prime} are still at least $d^{*} m-\varepsilon^{2} d m$.

We will construct sparse (ε, d, c)-regular graphs in the proof of Lemma 4.10. To verify (Reg1) in the proof of Lemma 4.10, we will use a variant of the well known characterization in terms of codegrees of pairs of vertices which was proved as Lemma 3.2 in [1] (the version in [1] gives more precise bounds but the statement is not suitable for sparse regularity).

Suppose that $G=(U, V)$ is a bipartite graph with vertex classes U and V of size m. We say that G is $\{\varepsilon, d\}$-regular if for all $A \subseteq U$ and $B \subseteq V$ with $|A|,|B| \geq \varepsilon m$ we have $d(A, B)=(1 \pm \varepsilon) d m$. (So (Reg1) is equivalent to saying that G is $\{\varepsilon, d\}$-regular.) Note that this notion allows for $d<\varepsilon$. Moreover, it is stronger than ε-regularity in the sense that if $\varepsilon<d \ll 1$ then every $\{\varepsilon, d\}$-regular pair is also ε-regular of density $(1 \pm \varepsilon) d$.

Call a pair of distinct vertices in V bad if the number of common neighbours in U is at least $(1+\varepsilon) d^{2} m$.

Lemma 4.9. Suppose that $1 / m \ll \varepsilon, d \leq 1 / C \leq 1$ and $\varepsilon \ll 1 / C$. Let $G=(U, V)$ be a bipartite graph with vertex classes U and V of size m. Suppose that all but at most εm vertices in V have degree at least $(1-\varepsilon) d m$ and for all pairs of distinct vertices in V the number of common neighbours is at most $C d^{2} m$. Suppose also that the number of bad pairs of distinct vertices in V is at most sm^{2}. Then G is $\left\{\varepsilon^{1 / 6}, d\right\}$-regular.
Proof. The proof follows the argument in [1]. Let $\varepsilon_{0}:=\varepsilon^{1 / 6}$. It is easy to see that it suffices to check that $d(X, Y)=\left(1 \pm \varepsilon_{0}\right) d$ for all pairs $X \subseteq U$ and $Y \subseteq V$ with $|X|=$ $|Y|=\varepsilon_{0} m$. For any pair of vertices $y_{1}, y_{2} \in Y$, let $\sigma\left(y_{1}, y_{2}\right):=\left|N\left(y_{1}\right) \cap N\left(y_{2}\right)\right|-d^{2} m$. Then we always have $\sigma\left(y_{1}, y_{2}\right) \leq C d^{2} m$ and can improve this to $\sigma\left(y_{1}, y_{2}\right) \leq \varepsilon d^{2} m$ if the pair y_{1}, y_{2} is not bad. Also define

$$
\sigma(Y):=\frac{1}{|Y|^{2}} \sum_{y_{1}, y_{2} \in Y, y_{1} \neq y_{2}} \sigma\left(y_{1}, y_{2}\right) .
$$

Then our assumption on $|Y|$ and on the number of bad pairs implies that

$$
\begin{equation*}
\sigma(Y) \leq \frac{1}{\left(\varepsilon_{0} m\right)^{2}}\left(\left(\varepsilon m^{2}\right) C d^{2} m+\left(\varepsilon_{0} m\right)^{2} \varepsilon d^{2} m\right)=C \varepsilon_{0}^{4} d^{2} m+\varepsilon d^{2} m \leq \varepsilon_{0}^{3} d^{2} m / 3 \tag{4.1}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\sum_{x \in X}(|N(x) \cap Y|-d|Y|)^{2} \leq \varepsilon_{0}^{3} d^{2} m|Y|^{2} . \tag{4.2}
\end{equation*}
$$

To prove the claim, we use that the left hand side (as shown in [1]) is at most

$$
e(U, Y)+\sigma(Y)|Y|^{2}+2 d^{2}|Y|^{2} m-2 e(U, Y) d|Y| .
$$

But our assumption on the vertex degrees implies that

$$
e(U, Y) \geq(|Y|-\varepsilon m)(1-\varepsilon) d m=|Y|\left(1-\varepsilon / \varepsilon_{0}\right)(1-\varepsilon) d m \geq|Y|\left(1-\varepsilon_{0}^{3} / 6\right) d m
$$

and so

$$
2 d^{2}|Y|^{2} m-2 e(U, Y) d|Y| \leq \varepsilon_{0}^{3} d^{2}|Y|^{2} m / 3
$$

So together with (4.1) this implies that the left hand side of (4.2) is at most

$$
e(U, Y)+\frac{2}{3} \varepsilon_{0}^{3} d^{2} m|Y|^{2} \leq|Y| m+\frac{2}{3} \varepsilon_{0}^{3} d^{2} m|Y|^{2} \leq \varepsilon_{0}^{3} d^{2} m|Y|^{2} .
$$

This proves the claim. On the other hand, the Cauchy-Schwarz inequality implies that

$$
\sum_{x \in X}(|N(x) \cap Y|-d|Y|)^{2} \geq \frac{1}{|X|}\left(\left(\sum_{x \in X}|N(x) \cap Y|\right)-d|X||Y|\right)^{2}
$$

So together with (4.2), this implies that

$$
\left(\left(\sum_{x \in X}|N(x) \cap Y|\right)-d|X||Y|\right)^{2} \leq|X|\left(\varepsilon_{0}^{3} d^{2} m|Y|^{2}\right) .
$$

Thus dividing both sides by $|X|^{2}|Y|^{2}$ yields

$$
|d(X, Y)-d|^{2} \leq \frac{1}{|X|}\left(\varepsilon_{0}^{3} d^{2} m\right)=\varepsilon_{0}^{2} d^{2}
$$

as required.
The first part of the following lemma implies that inside an ε-regular pair we can find sparse subgraphs which satisfy (Reg1)-(Reg3) with good bounds on the parameters. Assertion (iii) will only be used in [35, 42].

Lemma 4.10. Suppose that $0<1 / m \ll \varepsilon, d^{\prime} \leq d \leq 1$ and $\varepsilon \ll d$.
(i) If G is an ε-regular bipartite graph of density d with vertex classes of size m, then it contains an $\left(\varepsilon^{1 / 12}, d^{\prime}, 3 d^{\prime} / 2 d\right)$-regular spanning subgraph.
(ii) If G is an (ε, d)-superregular bipartite graph with vertex classes of size m, then it contains an $\left(\varepsilon^{1 / 12}, d^{\prime}, d^{\prime} / 2,3 d^{\prime} / 2 d\right)$-superregular spanning subgraph.
(iii) If $\varepsilon \ll d^{\prime}$ and G is an ε-regular bipartite graph of density d with vertex classes of size m, then it contains an $\left\{\varepsilon^{1 / 12}, d^{\prime}\right\}$-regular spanning subgraph J. Moreover, if $x \in V(G)$ satisfies $d_{G}(x)=(d \pm \varepsilon) m$, then $d_{J}(x)=\left(d^{\prime} \pm \sqrt{\varepsilon}\right) m$.
(iv) If $\varepsilon \ll d^{\prime}$ and G is an $[\varepsilon, d]$-superregular bipartite graph with vertex classes of size m, then it contains an $\left[\varepsilon^{1 / 12}, d^{\prime}\right]$-superregular spanning subgraph.

Proof. We only prove (i). Since a $\left(\varepsilon^{1 / 12}, d^{\prime}, 3 d^{\prime} / 2 d\right)$-regular pair is $\left\{\varepsilon^{1 / 12}, d^{\prime}\right\}$ regular, (iii) follows from (i) (and the 'moreover' part follows from the proof of (i)). The argument for (ii) and (iv) is similar to the proof of (i). So suppose that G is ε-regular of density d with vertex classes U and V of size m. Let G^{\prime} be the spanning subgraph obtained from G by picking every edge of G with probability $p:=d^{\prime} / d$, independently from all other edges. Consider any vertex $v \in V$ with $d_{G}(v)=(d \pm \varepsilon) m$. Then the expected degree of v in G^{\prime} is $p(d \pm \varepsilon) m=(1 \pm \sqrt{\varepsilon} / 2) d^{\prime} m$. So Proposition 3.1 implies that

$$
\begin{aligned}
\mathbb{P}\left(d_{G^{\prime}}(v) \neq(1 \pm \sqrt{\varepsilon}) d^{\prime} m\right) & \leq \mathbb{P}\left(\left|d_{G^{\prime}}(v)-\mathbb{E}\left(d_{G^{\prime}}(v)\right)\right| \geq \frac{\sqrt{\varepsilon}}{3} \mathbb{E}\left(d_{G^{\prime}}(v)\right)\right) \\
& \leq 2 \mathrm{e}^{-\varepsilon \mathbb{E}\left(d_{G^{\prime}}(v)\right) / 27} \leq 2 \mathrm{e}^{-\varepsilon d^{\prime} m / 28} .
\end{aligned}
$$

Similarly, consider any vertex $x \in U \cup V$ (with no restriction on its degree $d_{G}(x)$). If $d_{G}(x) \leq 3 d^{\prime} m / 2 d$, then clearly $d_{G^{\prime}}(x) \leq 3 d^{\prime} m / 2 d$. So suppose that $d_{G}(x) \geq$ $3 d^{\prime} m / 2 d$. Then $3\left(d^{\prime}\right)^{2} m / 2 d^{2}=p \cdot 3 d^{\prime} m / 2 d \leq \mathbb{E}\left(d_{G^{\prime}}(x)\right) \leq p m=d^{\prime} m / d$ and so

$$
\begin{aligned}
\mathbb{P}\left(d_{G^{\prime}}(x) \geq \frac{3 d^{\prime} m}{2 d}\right) & \leq \mathbb{P}\left(d_{G^{\prime}}(x) \geq \frac{3}{2} \mathbb{E}\left(d_{G^{\prime}}(x)\right)\right) \\
& \leq \mathrm{e}^{-\mathbb{E}\left(d_{G^{\prime}}(x)\right) / 12} \leq \mathrm{e}^{-\left(d^{\prime}\right)^{2} m / 8 d^{2}}
\end{aligned}
$$

For the remainder of the proof, we let the codegree $d_{G}\left(x, x^{\prime}\right)$ of a pair x, x^{\prime} of vertices in G be the number of common neighbours of x and x^{\prime}. Consider any pair $v, v^{\prime} \in V$ of distinct vertices with codegree $d_{G}\left(v, v^{\prime}\right)=\left(d^{2} \pm \varepsilon\right) m$. Then the expected codegree of v, v^{\prime} in G^{\prime} is $\mathbb{E}\left(d_{G^{\prime}}\left(v, v^{\prime}\right)\right)=p^{2}\left(d^{2} \pm \varepsilon\right) m=(1 \pm \sqrt{\varepsilon} / 2)\left(d^{\prime}\right)^{2} m$. So Proposition 3.1 implies that

$$
\begin{aligned}
\mathbb{P}\left(d_{G^{\prime}}\left(v, v^{\prime}\right) \geq(1 \pm \sqrt{\varepsilon})\left(d^{\prime}\right)^{2} m\right) & \leq \mathbb{P}\left(d_{G^{\prime}}\left(v, v^{\prime}\right) \geq(1+\sqrt{\varepsilon} / 3) \mathbb{E}\left(d_{G^{\prime}}\left(v, v^{\prime}\right)\right)\right) \\
& \leq \mathrm{e}^{-\varepsilon \mathbb{E}\left(d_{G^{\prime}}\left(v, v^{\prime}\right)\right) / 27} \leq \mathrm{e}^{-\varepsilon\left(d^{\prime}\right)^{2} m / 28} .
\end{aligned}
$$

Similarly, consider any pair $x \neq x^{\prime}$ of vertices in G (with no restriction on the codegree $d_{G}\left(x, x^{\prime}\right)$). If $d_{G}\left(x, x^{\prime}\right) \leq 3\left(d^{\prime}\right)^{2} m / 2 d^{2}$, then clearly $d_{G^{\prime}}\left(x, x^{\prime}\right) \leq 3\left(d^{\prime}\right)^{2} m / 2 d^{2}$. So suppose that $d_{G}\left(x, x^{\prime}\right) \geq 3\left(d^{\prime}\right)^{2} m / 2 d^{2}$. Then $3\left(d^{\prime}\right)^{4} m / 2 d^{4} \leq \mathbb{E}\left(d_{G^{\prime}}\left(x, x^{\prime}\right)\right) \leq p^{2} m=$ $\left(d^{\prime}\right)^{2} m / d^{2}$ and so

$$
\begin{aligned}
\mathbb{P}\left(d_{G^{\prime}}\left(x, x^{\prime}\right) \geq \frac{3\left(d^{\prime}\right)^{2} m}{2 d^{2}}\right) & \leq \mathbb{P}\left(d_{G^{\prime}}\left(x, x^{\prime}\right) \geq \frac{3}{2} \mathbb{E}\left(d_{G^{\prime}}\left(x, x^{\prime}\right)\right)\right) \\
& \leq \mathrm{e}^{-\mathbb{E}\left(d_{G^{\prime}}\left(x, x^{\prime}\right)\right) / 12} \leq \mathrm{e}^{-\left(d^{\prime}\right)^{4} m / 8 d^{4}} .
\end{aligned}
$$

Proposition 4.2 implies that V contains at most $2 \varepsilon m$ vertices whose degree in G is not $(d \pm \varepsilon) m$ as well as at most $4 \varepsilon m^{2}$ pairs of distinct vertices whose codegree in G is not $\left(d^{2} \pm \varepsilon\right) m$. Thus a union bound implies that with probability at least

$$
1-4 m \mathrm{e}^{-\varepsilon d^{\prime} m / 28}+2 m \mathrm{e}^{-\left(d^{\prime}\right)^{2} m / 8 d^{2}}+m^{2} \mathrm{e}^{-\varepsilon\left(d^{\prime}\right)^{2} m / 28}+m^{2} \mathrm{e}^{-\left(d^{\prime}\right)^{4} m / 8 d^{4}} \geq 1 / 2
$$

all of the following properties are satisfied:

- All but at most $2 \varepsilon m$ vertices $v \in V$ satisfy $d_{G^{\prime}}(v)=(1 \pm \sqrt{\varepsilon}) d^{\prime} m$.
- All but at most $4 \varepsilon m^{2}$ pairs $v \neq v^{\prime}$ of vertices in V satisfy $d_{G^{\prime}}\left(v, v^{\prime}\right)=$ $\left|N_{G^{\prime}}(v) \cap N_{G^{\prime}}\left(v^{\prime}\right)\right| \leq(1+\sqrt{\varepsilon})\left(d^{\prime}\right)^{2} m$.
- All pairs $v \neq v^{\prime}$ of vertices in V satisfy $d_{G^{\prime}}\left(v, v^{\prime}\right) \leq 3\left(d^{\prime}\right)^{2} m / 2 d^{2}$.
- $\Delta\left(G^{\prime}\right) \leq 3 d^{\prime} m / 2 d$.

Thus we can choose G^{\prime} to satisfy (Reg2) and (Reg3). Moreover, Lemma 4.9 (applied with $\sqrt{\varepsilon}, d^{\prime}, 3 / 2 d^{2}$ playing the roles of ε, d, C) together with the first two properties implies that G^{\prime} also satisfies ($\left.\operatorname{Reg} 1\right)$ with ε replaced by $\varepsilon^{1 / 12}$.

Theorem 3.2 implies that the applications of Proposition 3.1 in the proof of Lemma 4.10 can be derandomized to find the spanning subgraphs guaranteed by the lemma in polynomial time. Note that instead of using Lemma 4.9 to check (Reg1) in our proof of Lemma 4.10, one could have checked (Reg1) directly. But this would have involved a union bound over exponentially many sets. So we would not have been able to apply Theorem 3.2.

Let G be a $\left(\varepsilon, d, d^{*}, d / \mu\right)$-superregular bipartite graph with vertex classes $U=$ $\left\{u_{1}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, \ldots, v_{m}\right\}$. The following lemma implies that the digraph obtained from G by orienting all the edges from U to V and identifying u_{i} and v_{i} for all $i=1, \ldots, m$ is a robust (ν, τ)-outexpander of minimum semidegree at least $d^{*} m$. Together with Theorem 6.2 below this will imply that this 'contracted' digraph has a Hamilton cycle, which will in turn be used in the proof of Lemma 6.5.

Lemma 4.11. Let $0<1 / m \ll \nu \ll \tau \ll d \leq \varepsilon \ll \mu, \zeta \leq 1 / 2$ and let G be a $(\varepsilon, d, \zeta d, d / \mu)$-superregular bipartite graph with vertex classes U and V of size m. Let $A \subseteq U$ be such that $\tau m \leq|A| \leq(1-\tau) m$. Let $B \subseteq V$ be the set of all those vertices in V which have at least νm neighbours in A. Then $|B| \geq|A|+\nu m$.

Proof. Let us first prove the following claim.
Claim. Let $U^{\prime} \subseteq U$ be such that $\left|U^{\prime}\right| \geq \tau m / 2$ and let $R N\left(U^{\prime}\right)$ be the set of all those vertices in V which have at least νm neighbours in U^{\prime}. Then $\left|R N\left(U^{\prime}\right)\right| \geq$ $\min \left\{10 \varepsilon m,\left|U^{\prime}\right| / \sqrt{\varepsilon}\right\}$. Similarly, let $V^{\prime} \subseteq V$ be such that $\left|V^{\prime}\right| \geq \tau m / 2$ and let $R N\left(V^{\prime}\right)$ be the set of all those vertices in U which have at least νm neighbours in V^{\prime}. Then $\left|R N\left(V^{\prime}\right)\right| \geq \min \left\{10 \varepsilon m,\left|V^{\prime}\right| / \sqrt{\varepsilon}\right\}$.
We only prove the first part of the claim. The argument for the second part is identical. Suppose that $\left|R N\left(U^{\prime}\right)\right| \leq 10 \varepsilon m$. Given $V^{\prime}, V^{\prime \prime} \subseteq V$, let $f\left(V^{\prime}, V^{\prime \prime}\right)$ denote the number of paths of length two which have their midpoint in U^{\prime}, one endpoint in V^{\prime} and the other endpoint in $V^{\prime \prime}$. Since $\delta(G) \geq \zeta d m$ by (Reg4) we have that

$$
f(V, V) \geq\left|U^{\prime}\right|\binom{\zeta d m}{2} \geq\left|U^{\prime}\right| \frac{\zeta^{2} d^{2} m^{2}}{3}
$$

On the other hand, $f\left(V \backslash R N\left(U^{\prime}\right), V\right) \leq \nu\left|V \backslash R N\left(U^{\prime}\right)\right| m^{2}$ since every vertex in $V \backslash R N\left(U^{\prime}\right)$ has at most νm neighbours in U^{\prime}. Thus

$$
\begin{aligned}
f(V, V) & =f\left(R N\left(U^{\prime}\right), R N\left(U^{\prime}\right)\right)+f\left(V \backslash R N\left(U^{\prime}\right), V\right) \\
& \leq \sum_{v, v^{\prime} \in R N\left(U^{\prime}\right), v \neq v^{\prime}}\left|N(v) \cap N\left(v^{\prime}\right)\right|+\nu\left|V \backslash R N\left(U^{\prime}\right)\right| m^{2} \\
& \stackrel{(\operatorname{Reg} 2)}{\leq}\left|R N\left(U^{\prime}\right)\right|^{2} \frac{d^{2} m}{\mu^{2}}+\nu m^{3} \leq\left|R N\left(U^{\prime}\right)\right| \frac{10 \varepsilon d^{2} m^{2}}{\mu^{2}}+\nu m^{3} .
\end{aligned}
$$

(To obtain the final inequality we use that $\left|R N\left(U^{\prime}\right)\right| \leq 10 \varepsilon m$.) Altogether this implies that

$$
\begin{aligned}
\left|R N\left(U^{\prime}\right)\right| & \geq \frac{\mu^{2}}{10 \varepsilon d^{2} m^{2}}\left(\left|U^{\prime}\right| \frac{\zeta^{2} d^{2} m^{2}}{3}-\nu m^{3}\right) \\
& \geq \frac{\mu^{2}}{10 \varepsilon d^{2} m^{2}} \cdot\left|U^{\prime}\right| \frac{\zeta^{2} d^{2} m^{2}}{4}=\frac{\mu^{2} \zeta^{2}}{40 \varepsilon}\left|U^{\prime}\right| \geq \frac{\left|U^{\prime}\right|}{\sqrt{\varepsilon}}
\end{aligned}
$$

which proves the claim.
In order to prove the lemma, we distinguish several cases according to the size of A. Suppose first that $\tau m \leq|A| \leq \varepsilon m$. Then the claim implies that $B=R N(A)$ has size at least $\min \{10 \varepsilon m,|A| / \sqrt{\varepsilon}\} \geq|A|+\nu m$, as required.

Suppose next that $\varepsilon m \leq|A| \leq(1-2 \varepsilon) m$. Since

$$
e(A, V \backslash B) \leq \nu m|V \backslash B|<(1-\varepsilon) d|A||V \backslash B|,
$$

together with (Reg1) this implies that $|V \backslash B|<\varepsilon m$. Thus $|B| \geq(1-\varepsilon) m \geq|A|+\nu m$.
Finally, consider the case when $(1-2 \varepsilon) m \leq|A| \leq(1-\tau) m$. Suppose for a contradiction that $|B|<|A|+\nu m$. From the previous case it follows that $|B| \geq$ $(1-2 \varepsilon) m+\nu m$. Let $V^{\prime}:=V \backslash B$. Then

$$
\begin{equation*}
\tau m / 2 \leq m-|A|-\nu m<m-|B|=\left|V^{\prime}\right| \leq 2 \varepsilon m . \tag{4.3}
\end{equation*}
$$

Let $A^{\prime}:=A \cap R N\left(V^{\prime}\right)$. Since every vertex in A^{\prime} has at least νm neighbours in V^{\prime}, but every vertex in V^{\prime} has less than νm neighbours in $A \supseteq A^{\prime}$, it follows that $\left|A^{\prime}\right| \nu m \leq e\left(A^{\prime}, V^{\prime}\right) \leq\left|V^{\prime}\right| \nu m$. Thus $\left|A^{\prime}\right| \leq\left|V^{\prime}\right|$ and so

$$
\left|R N\left(V^{\prime}\right)\right| \leq|U \backslash A|+\left|A^{\prime}\right| \leq m-|A|+\left|V^{\prime}\right| \leq 2\left|V^{\prime}\right|+\nu m<3\left|V^{\prime}\right| \leq 6 \varepsilon m .
$$

(Here we used (4.3) in the final three inequalities.) On the other hand, the claim implies that $\left|R N\left(V^{\prime}\right)\right| \geq \min \left\{10 \varepsilon m,\left|V^{\prime}\right| / \sqrt{\varepsilon}\right\}$, a contradiction.

We will also use the above lemma to show that bipartite graphs satisfying (Reg1)(Reg3) have large matchings.

Lemma 4.12. Suppose that $0<1 / m \ll d^{\prime} \ll 1 / k \ll \varepsilon \ll d \ll \zeta \leq 1 / 2$ and let G be a bipartite graph with vertex classes U and V of size m.
(i) If G is $\left(\varepsilon, d^{\prime} / k, d^{\prime} / d k\right)$-regular, then it contains a matching of size at least $(1-\varepsilon) m$.
(ii) If G is $\left(\varepsilon, d^{\prime}, \zeta d^{\prime}, d^{\prime} / d\right)$-superregular, then it has a perfect matching.

Since maximum matchings can be found in polynomial time, this is also the case for the matchings guaranteed by the lemma.
Proof. To prove (i), note that (Reg1) implies that $|N(A)| \geq(1-\varepsilon) m$ for every set $A \subseteq U$ with $|A| \geq \varepsilon m$. Together with the defect version of Hall's theorem this implies that G has a matching of size at least $(1-\varepsilon) m$.

To prove (ii), we use Hall's theorem. Lemma 4.11 implies that Hall's condition holds for all sets $A \subseteq U$ with $\tau m \leq|A| \leq(1-\tau) m$ (where we apply the lemma with d^{\prime}, d playing the roles of d, μ and with some ν, τ satisfying $1 / m \ll \nu \ll \tau \ll d^{\prime}$). (Reg4) implies that G has minimum degree at least $\zeta d^{\prime} m \geq \tau m$, so Hall's condition also holds for sets $A \subseteq U$ with $|A| \leq \tau m$ or $|A| \geq(1-\tau) m$.
4.4. The Blow-up Lemma. We will use the blow-up lemma of Komlós, Sárközy and Szemerédi [27] (see [28] for their proof of an algorithmic version). Roughly speaking, it states that superregular pairs behave like complete bipartite graphs with respect to embedding subgraphs of bounded degree.

Lemma 4.13 (Blow-up Lemma). Suppose that $0<1 / m \ll \varepsilon \ll 1 / k, d, 1 / \Delta \leq 1$. Let R be a graph with vertex set $\{1, \ldots, k\}$. Let V_{1}, \ldots, V_{k} be pairwise disjoint sets of vertices, each of size m. Let $R(m)$ be the graph on $V_{1} \cup \cdots \cup V_{k}$ which is obtained from R by replacing each edge ij of R with a complete bipartite graph $K_{m, m}$ between V_{i} and V_{j}. Let G be a graph on $V_{1} \cup \cdots \cup V_{k}$ which is obtained from R by replacing each edge $i j$ of R with some (ε, d)-superregular pair $G\left[V_{i}, V_{j}\right]$. If a graph H with maximum degree $\Delta(H) \leq \Delta$ is embeddable into $R(m)$ then it is already embeddable into G.

The following proposition is a very special case of the blow-up lemma. It is also easy to prove it in the same way as Lemma 4.12(ii).

Proposition 4.14. Suppose that $0<1 / m \ll \varepsilon \ll d \leq 1$. Suppose that G is a (ε, d)-superregular bipartite graph with vertex classes of size m. Then G contains a perfect matching.

The following consequence of the blow-up lemma states that we can link up arbitrary sets of vertices which are joined by a 'blown-up' path.

Corollary 4.15. Suppose that $0<1 / m \ll \varepsilon \ll d \leq 1$ and that $q \geq 4$. Let V_{1}, \ldots, V_{q} be pairwise disjoint sets of vertices, each of size m. Let G be a graph on $V_{1} \cup \cdots \cup V_{q}$ such that $G\left[V_{i}, V_{i+1}\right]$ is (ε, d)-superregular for each $i=1, \ldots, q-1$. Let a_{1}, \ldots, a_{m} be an arbitrary enumeration of the vertices in V_{1} and let b_{1}, \ldots, b_{m} be an arbitrary enumeration of the vertices in V_{q}. Then G contains a set of m vertex-disjoint paths connecting a_{i} to b_{i} for every i.

Proof. First suppose that $q=4$. Consider the graph G^{\prime} which is obtained from $\bigcup_{i=1}^{q-1} G\left[V_{i}, V_{i+1}\right]$ by identifying the vertices a_{i} and b_{i}. Thus G^{\prime} can be viewed as the blow-up of a triangle. The blow-up lemma implies that G^{\prime} contains a set of disjoint triangles covering all vertices of G^{\prime} (and where each triangle has a vertex in each V_{i}). This corresponds to the desired set of paths connecting the a_{i} and b_{i} for all $i=1, \ldots, m$.

If $q>4$, we simply apply Proposition $4.14 q-4$ times to get m vertex-disjoint paths joining all vertices in V_{4} to V_{q}. Then we proceed as in the case when $q=4$.

5. Robust Outexpanders

The next result (Lemma 14 from [37]) implies that the property of a digraph G being a robust outexpander is 'inherited' by the reduced digraph of G. For this, we need that G is a robust outexpander, rather than just an outexpander.

Lemma 5.1. Suppose that $0<1 / n \ll \varepsilon \ll d \ll \alpha, \nu, \tau<1$ and $M^{\prime} / n \ll 1$. Let G be a digraph on n vertices with $\delta^{0}(G) \geq \alpha n$ and such that G is a robust (ν, τ) outexpander. Let R be the reduced digraph of G with parameters ε, d and M^{\prime}. Then $\delta^{0}(R) \geq \alpha|R| / 2$ and R is a robust $(\nu / 2,2 \tau)$-outexpander.

The following result shows that in a robust outexpander, we can guarantee a spanning subdigraph with a given degree sequence (as long as the required degrees are not too large and do not deviate too much from each other). We will state a more general version of this lemma for multidigraphs, which will be used in [42]. In the current paper, we will only use Lemma 5.2 in the case when $Q=G$. If x is a vertex of a multidigraph Q, we write $d_{Q}^{+}(x)$ for the number of edges in Q whose initial vertex is x and $d_{Q}^{-}(x)$ for the number of edges in Q whose final vertex is x.

Lemma 5.2. Let $q \in \mathbb{N}$. Suppose that $0<1 / n \ll \varepsilon \ll \nu \leq \tau \ll \alpha<1$ and that $1 / n \ll \xi \leq q \nu^{2} / 3$. Let G be a digraph on n vertices with $\delta^{0}(G) \geq \alpha n$ which is a robust (ν, τ)-outexpander. Suppose that Q is a multidigraph on $V(G)$ such that whenever $x y \in E(G)$ then Q contains at least q edges from x to y. For every vertex x of G, let $n_{x}^{+}, n_{x}^{-} \in \mathbb{N}$ be such that $(1-\varepsilon) \xi n \leq n_{x}^{+}, n_{x}^{-} \leq(1+\varepsilon) \xi n$ and such that $\sum_{x \in V(G)} n_{x}^{+}=\sum_{x \in V(G)} n_{x}^{-}$. Then Q contains a spanning submultidigraph Q^{\prime} such that $d_{Q^{\prime}}^{+}(x)=n_{x}^{+}$and $d_{Q^{\prime}}^{-}(x)=n_{x}^{-}$for every $x \in V(G)=V(Q)$.
Proof. Our aim is to apply the Max-Flow-Min-Cut theorem. So let H be the (unoriented) bipartite multigraph whose vertex classes A and B are both copies of $V(G)$ and in which $a \in A$ is joined to $b \in B$ once for every (directed) edge $a b$ of Q. Give every edge of H capacity 1. Add a source s^{*} which is joined to every vertex $a \in A$ with an edge of capacity n_{a}^{+}. Add a sink t^{*} which is joined to every vertex $b \in B$ with an edge of capacity n_{b}^{-}. Let $r:=\sum_{x \in V(G)} n_{x}^{+} / n=\sum_{x \in V(G)} n_{x}^{-} / n$. Note that an integer-valued $r n$-flow corresponds to the desired spanning submultigraph Q^{\prime} of Q. Thus by the Max-Flow-Min-Cut theorem it suffices to show that every cut has capacity at least $r n$.

So consider a minimal cut \mathcal{C}. Let S be the set of all those vertices $a \in A$ for which $s^{*} a \notin \mathcal{C}$. Similarly, let T be the set of all those vertices $b \in B$ for which $b t^{*} \notin \mathcal{C}$. Let $S^{\prime}:=A \backslash S$ and $T^{\prime}:=B \backslash T$. Thus the capacity of \mathcal{C} is

$$
c:=\sum_{s \in S^{\prime}} n_{s}^{+}+e_{B}(S, T)+\sum_{t \in T^{\prime}} n_{t}^{-}
$$

Suppose first that $\left|T^{\prime}\right| \geq|S|+\nu n / 2$. But then
$c \geq \sum_{s \in S^{\prime}} n_{s}^{+}+\sum_{t \in T^{\prime}} n_{t}^{-} \geq(1-\varepsilon) \xi n\left(\left|S^{\prime}\right|+\left|T^{\prime}\right|\right) \geq(1-\varepsilon) \xi n(n+\nu n / 2) \geq(1+\varepsilon) \xi n^{2} \geq r n$, as required.

So suppose next that $\left|T^{\prime}\right| \leq|S|+\nu n / 2$ and $\tau n<|S|<(1-\tau) n$. Then at least $\nu n / 2$ vertices from T lie in $R N_{\nu, G}^{+}(S)$ and each such vertex receives at least νn edges from S (in the digraph G). Thus

$$
c \geq e_{B}(S, T) \geq q \cdot e_{G}(S, T) \geq q \nu^{2} n^{2} / 2 \geq(1+\varepsilon) \xi n^{2} \geq r n
$$

as required.

Now suppose that $\left|T^{\prime}\right| \leq|S|+\nu n / 2$ and $|S| \leq \tau n$. Then in G every vertex in S sends at least $\alpha n / 2$ edges to T as $\delta^{0}(G) \geq \alpha n$. Thus in Q every vertex in S sends at least $q \alpha n / 2$ edges to T and so

$$
c \geq \sum_{s \in S^{\prime}} n_{s}^{+}+|S| \cdot q \alpha n / 2 \geq \sum_{s \in S^{\prime}} n_{s}^{+}+|S|(1+\varepsilon) \xi n \geq r n,
$$

as required.
Finally, suppose that $|S| \geq(1-\tau) n$. Then in G every vertex in T receives at least $\alpha n / 2$ edges from S. Thus in Q every vertex in T receives at least $q \alpha n / 2$ edges from S and so

$$
c \geq \sum_{t \in T^{\prime}} n_{t}^{-}+|T| \cdot q \alpha n / 2 \geq \sum_{t \in T^{\prime}} n_{t}^{-}+|T|(1+\varepsilon) \xi n \geq r n,
$$

as required.

Recall from Section 3 that the r-fold blow-up of a digraph G is obtained from G by replacing every vertex x of G by r vertices and replacing every edge $x y$ of G by the complete bipartite graph $K_{r, r}$ between the two sets of r vertices corresponding to x and y such that all the edges of $K_{r, r}$ are oriented towards the r vertices corresponding to y.

Lemma 5.3. Let $r \geq 3$ and let G be a robust ($\nu, \tau)$-outexpander with $0<3 \nu \leq \tau<1$. Let G^{\prime} be the r-fold blow-up of G. Then G^{\prime} is a robust $\left(\nu^{3}, 2 \tau\right)$-outexpander.

Proof. Let $n:=|G|$. So $\left|G^{\prime}\right|=r n$. Call two vertices in G^{\prime} friends if they correspond to the same vertex of G. (In particular, every vertex is a friend of itself.) Consider any $S^{\prime} \subseteq V\left(G^{\prime}\right)$ with $2 \tau r n \leq\left|S^{\prime}\right| \leq(1-2 \tau) r n$. Call a vertex $x \in S^{\prime}$ bad if S^{\prime} contains at most $\nu^{2} r$ friends of x. So if $\nu^{2} r<1$ then no vertex in S^{\prime} is bad. Let b denote the number of bad vertices in S^{\prime}. Then S^{\prime} contains a set S^{*} of at least $b / \nu^{2} r$ bad vertices corresponding to different vertices of G. (So no two vertices in S^{*} are friends.) But every $x \in S^{*}$ has at least $r-1-\nu^{2} r \geq r / 2$ friends outside S^{\prime}. Thus

$$
\frac{b}{\nu^{2} r} \cdot \frac{r}{2} \leq\left|S^{*}\right| \cdot \frac{r}{2} \leq\left|G^{\prime}\right|=r n
$$

and so $b \leq 2 \nu^{2} r n$. Let $S^{\prime \prime} \subseteq S^{\prime}$ be the set of all those vertices in S^{\prime} which are not bad and let S be the set of all those vertices x in G for which $S^{\prime \prime}$ contains a copy of x. Thus

$$
\begin{equation*}
|S| \geq\left|S^{\prime \prime}\right| / r=\left(\left|S^{\prime}\right|-b\right) / r \geq\left|S^{\prime}\right| / 2 r \geq \tau n . \tag{5.1}
\end{equation*}
$$

Since G is a robust (ν, τ)-outexpander, it follows that:
(i) Either $\left|R N_{\nu, G}^{+}(S)\right| \geq|S|+\nu n$;
(ii) or $|S| \geq(1-\tau) n$, in which case (considering a subset of S of size $(1-\tau) n)$ we have $\left|R N_{\nu, G}^{+}(S)\right| \geq(1-\tau+\nu) n$.
Note that if a vertex x of G belongs to $R N_{\nu, G}^{+}(S)$, then any copy x^{\prime} of x in G^{\prime} has at least $\nu^{2} r \cdot \nu n=\nu^{3}\left|G^{\prime}\right|$ inneighbours in $S^{\prime \prime}$ (since no vertex in $S^{\prime \prime}$ is bad) and so
$x^{\prime} \in R N_{\nu^{3}, G^{\prime}}^{+}\left(S^{\prime}\right)$. It follows that $\left|R N_{\nu^{3}, G^{\prime}}^{+}\left(S^{\prime}\right)\right| \geq r\left|R N_{\nu, G}^{+}(S)\right|$. Thus, in case (i) we have

$$
\left|R N_{\nu^{3}, G^{\prime}}^{+}\left(S^{\prime}\right)\right| \geq r\left|R N_{\nu, G}^{+}(S)\right| \geq r|S|+r \nu n \stackrel{(5.1)}{\geq}\left|S^{\prime}\right|-b+r \nu n \geq\left|S^{\prime}\right|+\nu^{3} r n,
$$

while in case (ii) we have

$$
\left|R N_{\nu^{3}, G^{\prime}}^{+}\left(S^{\prime}\right)\right| \geq r\left|R N_{\nu, G}^{+}(S)\right| \geq(1-\tau) r n+\nu r n \geq(1-\tau) r n \geq\left|S^{\prime}\right|+\nu^{3} r n
$$

as required.

6. Tools for finding Hamilton cycles

The following well known observation states that every regular multidigraph G has a 1 -factorization, i.e. the edges of G can be decomposed into edge-disjoint 1factors. (In a multidigraph G we allow multiple edges between any two vertices. G is r-regular if every vertex sends out r edges and receives r edges.)

Proposition 6.1. Let G be a regular multidigraph. Then G has a 1-factorization.
Proof. Consider an auxiliary bipartite multigraph G^{\prime} whose vertex classes A and B are copies of the vertex set $V(G)$ of G and in which the number of (undirected) edges between $a \in A$ and $b \in B$ equals the number of (directed) edges from a to b in G. Then G^{\prime} is regular and so Hall's theorem (which holds for bipartite multigraphs as well) implies that G^{\prime} has a decomposition into edge-disjoint perfect matchings. But every perfect matching in G^{\prime} corresponds to a 1-factor of G.

As mentioned earlier, there are several well known polynomial time algorithms for finding maximum matchings - these can be applied repeatedly to find the above factorization.

The following result (Theorem 16 from [37]) guarantees a Hamilton cycle in a robust outexpander G, as long as the minimum semidegree of G is not too small. As shown in [12], this Hamilton cycle can be found in polynomial time.

Theorem 6.2. Suppose that $0<1 / n \ll \nu \leq \tau \ll \alpha<1$. Let G be a digraph on n vertices with $\delta^{0}(G) \geq \alpha n$ which is a robust (ν, τ)-outexpander. Then G contains a Hamilton cycle.

The k th power of a cycle C is obtained from C by adding an edge between every pair of vertices whose distance on C is at most k. We will also use the following result of Kómlos, Sárközy and Szemerédi [29] (where they proved the so-called PósaSeymour conjecture for sufficiently large graphs). We do not use the full strength of the result: any bound of the form $(1-\varepsilon) n$ instead of $10 n / 11$ would be sufficient for our proof. Moreover, we will only apply the result to a graph of bounded size (in the proof of Lemma 8.7), so an algorithmic version is not necessary.

Theorem 6.3. There exists an $n_{0} \in \mathbb{N}$ such that every graph G on $n \geq n_{0}$ vertices with minimum degree at least $10 \mathrm{n} / 11$ contains the 10 th power of a Hamilton cycle.

The next two lemmas will be used to turn a 1-regular digraph F into a cycle on the same vertex set. More precisely, suppose that G is a blow-up of a cycle $C=V_{1} \ldots V_{k}$ so that for any successive clusters V_{i}, V_{i+1} the subdigraph $G\left[V_{i}, V_{i+1}\right]$ of G is superregular. Suppose also that F is a 1-regular digraph on $V_{1} \cup \cdots \cup V_{k}$ which 'winds around' C, i.e. each edge goes from V_{i} to V_{i+1} for some i. Then we can replace the edges of F from e.g. V_{1} to V_{2} with edges from G between these clusters to turn F into a Hamilton cycle. (Actually, the lemma is more general and does not require all edges of F to wind around C.)

To prove the lemmas, we will use an idea from [11].
Lemma 6.4. Suppose that $0<1 / m \ll d^{\prime} \ll \varepsilon \ll d \ll \zeta, 1 / t \leq 1 / 2$. Let V_{1}, \ldots, V_{k} be pairwise disjoint clusters, each of size m and let $C=V_{1} \ldots V_{k}$ be a directed cycle on these clusters. Let G be a digraph on $V_{1} \cup \cdots \cup V_{k}$ and let $J \subseteq E(C)$. For each edge $V_{i} V_{i+1} \in J$, let $V_{i}^{1} \subseteq V_{i}$ and $V_{i+1}^{2} \subseteq V_{i+1}$ be such that $\left|V_{i}^{1}\right|=\left|V_{i+1}^{2}\right| \geq m / 100$ and such that $G\left[V_{i}^{1}, V_{i+1}^{2}\right]$ is $\left(\varepsilon, d^{\prime}, \zeta d^{\prime}, t d^{\prime} / d\right)$-superregular. Suppose that F is a 1 -regular digraph with $V_{1} \cup \cdots \cup V_{k} \subseteq V(F)$ such that the following properties hold:
(i) For each edge $V_{i} V_{i+1} \in J$ the digraph $F\left[V_{i}^{1}, V_{i+1}^{2}\right]$ is a perfect matching.
(ii) For each cycle D in F there is some edge $V_{i} V_{i+1} \in J$ such that D contains a vertex in V_{i}^{1}.
(iii) Whenever $V_{i} V_{i+1}, V_{j} V_{j+1} \in J$ are such that J avoids all edges in the segment $V_{i+1} C V_{j}$ of C from V_{i+1} to V_{j}, then F contains a path $P_{i j}$ joining some vertex $u_{i+1} \in V_{i+1}^{2}$ to some vertex $u_{j}^{\prime} \in V_{j}^{1}$ such that $P_{i j}$ winds around C.
Then we can obtain a cycle on $V(F)$ from F by replacing $F\left[V_{i}^{1}, V_{i+1}^{2}\right]$ with a suitable perfect matching in $G\left[V_{i}^{1}, V_{i+1}^{2}\right]$ for each edge $V_{i} V_{i+1} \in J$. Moreover, if $J=E(C)$ then (iii) can be replaced by
(iii') $V_{i}^{1} \cap V_{i}^{2} \neq \emptyset$ for all $i=1, \ldots, k$.
Proof. For any edge $V_{i} V_{i+1} \in J$, let Old_{i} be the perfect matching $F\left[V_{i}^{1}, V_{i+1}^{2}\right]$. We will first prove the following:

For any edge $V_{i} V_{i+1} \in J$, we can find a perfect matching New_{i} in $G\left[V_{i}^{1}, V_{i+1}^{2}\right]=$: G_{i} so that if we replace Old_{i} in F with New_{i}, then all vertices of G_{i} will lie on a common cycle in the new 1-factor F^{\prime} thus obtained from F. Moreover any pair of vertices of F that were formerly on a common cycle in F are still on a common cycle in F^{\prime}.

To prove (\dagger), we proceed as follows. Pick ν and τ such that $1 / m \ll \nu \ll \tau \ll d^{\prime}$. For every $u \in V_{i+1}^{2}$, we move along the cycle C_{u} of F containing u (starting at u) and let $f(u)$ be the first vertex on C_{u} in V_{i}^{1} (note that $f(u)$ exists by (i)). Define an auxiliary digraph A on V_{i+1}^{2} such that $N_{A}^{+}(u):=N_{G_{i}}^{+}(f(u))$. So A is obtained by identifying each pair ($u, f(u)$) into one vertex with an edge from $(u, f(u))$ to $(v, f(v))$ if G_{i} has an edge from $f(u)$ to v. So Lemma 4.11 applied with $d^{\prime}, d / t$ playing the roles of d, μ implies that A is a robust (ν, τ)-outexpander. Moreover, $\delta^{0}(A)=\delta^{0}\left(G_{i}\right) \geq \zeta d^{\prime}\left|V_{i+1}^{2}\right|=\zeta d^{\prime}|A|$ by (Reg4). Thus Theorem 6.2 implies that A has a Hamilton cycle, which clearly corresponds to a perfect matching New_{i} in G_{i} with the desired property.

Now we apply (\dagger) to every edge $V_{i} V_{i+1} \in J$ sequentially. We claim that after repeating this for every such edge, the resulting 1-regular digraph $F^{\prime \prime}$ is a cycle. To see this, note that (ii) and the last part of (\dagger) together imply that every cycle of $F^{\prime \prime}$ contains a vertex in V_{i}^{1} for some edge $V_{i} V_{i+1} \in J$. Moreover, by the first part of (\dagger), all the vertices in $V_{i}^{1} \cup V_{i+1}^{2}$ lie on a common cycle of $F^{\prime \prime}, C_{i}$ say. So all the C_{i} together form $F^{\prime \prime}$. Consider any two edges $V_{i} V_{i+1}, V_{j} V_{j+1} \in J$ such that J avoids all edges in $V_{i+1} C V_{j}$ and let $P_{i j}=u_{i+1} \ldots u_{j}^{\prime}$ be the path guaranteed by (iii). Since $P_{i j}$ winds around C, it follows that $P_{i j} \subseteq F^{\prime \prime}$. Thus u_{i+1} and u_{j}^{\prime} lie on a common cycle in $F^{\prime \prime}$. But $u_{i+1} \in C_{i}$ and $u_{j}^{\prime} \in C_{j}$. Thus $C_{i}=C_{j}$ and so all the C_{i} are identical. Thus $F^{\prime \prime}$ is a cycle.

It remains to check that if $J=E(C)$ then (iii) can be replaced by (iii'). But this is clear since in this case we have $i+1=j$ in (iii) and so we can take $P_{i j}$ to be any vertex in $V_{j}^{2} \cap V_{j}^{1}$.

We will also use the following slightly different version of Lemma 6.4, which involves the usual notion of ε-regularity. In this paper, we will only use Lemmas 6.4 and 6.5 in the special case when $J=E(C)$. (So in Lemma 6.5 condition (iii) can be omitted.) The more general version of Lemma 6.5 will be used in [42].

Lemma 6.5. Let $0<1 / m \ll \varepsilon \ll d<1$. Let V_{1}, \ldots, V_{k} be pairwise disjoint clusters, each of size m and let $C=V_{1} \ldots V_{k}$ be a directed cycle on these clusters. Let $J \subseteq E(C)$. Let G be a digraph on $V_{1} \cup \cdots \cup V_{k}$ such that $G\left[V_{i}, V_{i+1}\right]$ is (ε, d) superregular for every $V_{i} V_{i+1} \in J$. For each edge $V_{i} V_{i+1} \in J$ let $V_{i}^{1} \subseteq V_{i}$ and $V_{i+1}^{2} \subseteq V_{i+1}$ be sets of size at least $(1-d / 2) m$ such that $\left|V_{i}^{1}\right|=\left|V_{i+1}^{2}\right|$. Suppose that F is a 1-regular digraph with $V_{1} \cup \cdots \cup V_{k} \subseteq V(F)$ such that the following properties hold:
(i) For each edge $V_{i} V_{i+1} \in J$ the digraph $F\left[V_{i}^{1}, V_{i+1}^{2}\right]$ is a perfect matching.
(ii) For each cycle D in F there is some edge $V_{i} V_{i+1} \in J$ such that D contains a vertex in V_{i}^{1}.
(iii) Whenever $V_{i} V_{i+1}, V_{j} V_{j+1} \in J$ are such that J avoids all edges in the segment $V_{i+1} C V_{j}$ of C from V_{i+1} to V_{j}, then F contains a path $P_{i j}$ joining some vertex $u_{i+1} \in V_{i+1}^{2}$ to some vertex $u_{j}^{\prime} \in V_{j}^{1}$ such that $P_{i j}$ winds around C.
Then we can obtain a cycle on $V(F)$ from F by replacing $F\left[V_{i}^{1}, V_{i+1}^{2}\right]$ with a suitable perfect matching in $G\left[V_{i}^{1}, V_{i+1}^{2}\right]$ for each edge $V_{i} V_{i+1} \in J$. Moreover, if $J=E(C)$ then (iii) can be omitted.

Proof. The proof is very similar to that of Lemma 6.4. As before, for any edge $V_{i} V_{i+1} \in J$ let $G_{i}:=G\left[V_{i}^{1}, V_{i+1}^{2}\right]$. Since $\left|V_{i}^{1}\right|,\left|V_{i+1}^{2}\right| \geq(1-d / 2) m$, the $(\varepsilon, d)-$ superregularity of $G\left[V_{i}, V_{i+1}\right]$ implies that G_{i} is still $(2 \varepsilon, d / 2)$-superregular. Now we proceed as before to define A. Using the superregularity of G_{i}, it is easy to show that A is a robust $(\varepsilon d, 3 \varepsilon)$-outexpander with $\delta^{0}(A) \geq d|A| / 3$. (Indeed, for the outexpansion it suffices to observe that for all $U \subseteq V_{i}^{1}$ with $|U| \geq 3 \varepsilon|A|$, the number of vertices in V_{i+1}^{2} which receive at least $(d / 2-2 \varepsilon)|U| \geq \varepsilon d|A|$ edges from U in G_{i} is at least $(1-2 \varepsilon)|A|$.) So as before we can apply Theorem 6.2 to find a Hamilton cycle in A, which corresponds to a matching as required in (\dagger). The remainder of the argument is now identical.
7. SCHEMES, CONSISTENT SYSTEMS, CHORD SEQUENCES, AND EXCEPTIONAL FACTORS
7.1. Schemes and consistent systems. In order to simplify (and shorten) the statements of our lemmas throughout the paper, we will introduce the notions of a (k, m, ε, d)-scheme and of a consistent $\left(\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system. (G, \mathcal{P}, R, C) is called a (k, m, ε, d)-scheme if the following properties are satisfied:
(Sch1) G and R are digraphs. \mathcal{P} is a partition of $V(G)$ into an exceptional set V_{0} of size at most $\varepsilon|G|$ and into k clusters of size m. The vertex set of R consists of these clusters.
(Sch2) For every edge $U W$ of R the corresponding pair $G[U, W]$ is $(\varepsilon, \geq d)$-regular.
(Sch3) C is a Hamilton cycle in R and for every edge $U W$ of C the corresponding pair $G[U, W]$ is $[\varepsilon, \geq d]$-superregular.
(Sch4) V_{0} forms an independent set in G.
So roughly speaking, a scheme consists of a digraph G with a regularity partition \mathcal{P} where the corresponding reduced digraph R contains a Hamilton cycle C. A consistent system has several additional features: mainly, the digraph G needs to be a robust outexpander and the definition involves an additional partition \mathcal{P}_{0} which is coarser than \mathcal{P}. More precisely, $\left(G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ is called a consistent ($\left.\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system if the following properties are satisfied (for (CSys3), recall that an ℓ^{*}-refinement was defined before Lemma 4.7):
(CSys1) Each of the digraphs G, R_{0} and R is a robust (ν, τ)-outexpander. Moreover $\delta^{0}(G) \geq \alpha n$, where $n:=|G|, \delta^{0}\left(R_{0}\right) \geq \alpha\left|R_{0}\right|$ and $\delta^{0}(R) \geq \alpha|R|$.
(CSys2) \mathcal{P}_{0} is a partition of $V(G)$ into an exceptional set V_{0}^{0} of size at most εn and into k / ℓ^{*} equal sized clusters. The vertex set of R_{0} consists of these clusters. So $\left|R_{0}\right|=k / \ell^{*}$. Similarly, \mathcal{P} is a partition of $V(G)$ into an exceptional set V_{0} of size at most εn and into k clusters of size m. The vertex set of R consists of these clusters. So $|R|=k$.
(CSys3) \mathcal{P} is obtained from an ℓ^{*}-refinement of \mathcal{P}_{0} by removing some vertices from each cluster of this refinement and adding them to the exceptional set V_{0}^{0}. So V_{0} is the union of V_{0}^{0} with the set of these vertices.
(CSys4) For every edge $U W$ of R the corresponding pair $G[U, W]$ is $(\varepsilon, \geq d)$-regular.
(CSys5) C_{0} is a Hamilton cycle in R_{0}. Similarly, C is a Hamilton cycle in R and for every edge $U W$ of C the corresponding pair $G[U, W]$ is $[\varepsilon, \geq d]$-superregular.
(CSys6) Suppose that W, W^{\prime} are clusters in \mathcal{P}_{0} and V, V^{\prime} are clusters in \mathcal{P} with $V \subseteq W$ and $V^{\prime} \subseteq W^{\prime}$. Then $W W^{\prime} \in E\left(R_{0}\right)$ if and only if $V V^{\prime} \in E(R)$.
(CSys7) C can be viewed as obtained from C_{0} by winding ℓ^{*} times around C_{0}, i.e. for every edge $W W^{\prime}$ of C_{0} there are precisely ℓ^{*} edges $V V^{\prime}$ of C such that $V \subseteq W$ and $V^{\prime} \subseteq W^{\prime}$.
(CSys8) Whenever W is a cluster in \mathcal{P}_{0} and $x \in V(G)$ is a vertex with $n^{+} \geq \tau|W|$ outneighbours in W, then x has at least $\theta n^{+} / \ell^{*}$ outneighbours in each cluster V in \mathcal{P} with $V \subseteq W$. A similar condition holds for inneighbours of the vertices of G.
(CSys9) V_{0} forms an independent set in G.

Note that (CSys3) and (CSys6) together imply that R is an ℓ^{*}-fold blow-up of R_{0}. Moreover, if ($G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C$) is a consistent ($\left.\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system then (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme. We will usually denote the clusters in \mathcal{P} by V_{1}, \ldots, V_{k} and assume that they are labelled in such a way that $C=V_{1} \ldots V_{k}$.

The next result states that if ($G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C$) is a consistent system and one deletes only a few edges at every vertex of G, then one still has a consistent system with slightly worse parameters. The analogue also holds for schemes.

Lemma 7.1. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \leq \varepsilon^{\prime} \ll d \ll \nu \ll \tau \ll \alpha, \theta \leq 1$.
(i) Let $\left(G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ be a consistent $\left(\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system with $|G|=n$. Let G^{\prime} be a digraph obtained from G by deleting at most $\varepsilon^{\prime} m$ outedges and at most $\varepsilon^{\prime} m$ inedges at every vertex of G. Then

$$
\left(G^{\prime}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)
$$

is still a consistent ($\left.\ell^{*}, k, m, 3 \sqrt{\varepsilon^{\prime}}, d, \nu / 2, \tau, \alpha / 2, \theta / 2\right)$-system.
(ii) Let (G, \mathcal{P}, R, C) be a (k, m, ε, d)-scheme with $|G|=n$. Let G^{\prime} be a digraph obtained from G by deleting at most $\varepsilon^{\prime} m$ outedges and at most $\varepsilon^{\prime} m$ inedges at every vertex of G. Then $\left(G^{\prime}, \mathcal{P}, R, C\right)$ is still a $\left(k, m, 3 \sqrt{\varepsilon^{\prime}}, d\right)$-scheme.
Proof. We only prove (i). The argument for (ii) is similar. It is easy to see that ($G^{\prime}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C$) still satisfies (CSys2), (CSys3), (CSys6), (CSys7) and (CSys9). Proposition 4.3 (applied with $d^{\prime}:=\varepsilon^{\prime}$) implies that every edge of R still corresponds to an $2 \sqrt{\varepsilon^{\prime}}$-regular pair in G^{\prime} of density at least $d-\varepsilon-2 \sqrt{\varepsilon^{\prime}} \geq d-3 \sqrt{\varepsilon^{\prime}}$. Similarly, every edge of C still corresponds to an $\left[2 \sqrt{\varepsilon^{\prime}}, d\right]$-superregular pair in G^{\prime}. Thus (CSys4) and (CSys5) hold with ε replaced by $3 \sqrt{\varepsilon^{\prime}}$. Moreover, it is easy to check that G^{\prime} is still a robust $(\nu / 2, \tau)$-outexpander with $\delta^{0}(G) \geq \alpha n / 2$. So (CSys1) holds with ν and α replaced by $\nu / 2$ and $\alpha / 2$. Finally, suppose that x, n^{+}, W and V are as in (CSys8). Note that $|W| \geq \ell^{*} m$ and so

$$
\varepsilon^{\prime} m \leq \theta \tau m / 2 \leq \theta \tau|W| / 2 \ell^{*} \leq \theta n^{+} / 2 \ell^{*} .
$$

Thus in the digraph G^{\prime} the number of outneighbours of x in V is at least $\theta n^{+} / \ell^{*}-$ $\varepsilon^{\prime} m \geq \theta n^{+} / 2 \ell^{*}$. So (CSys 8) holds with θ replaced by $\theta / 2$.
7.2. Shifted walks and chord sequences. Roughly speaking, the Hamilton cycles we will find usually wind around a blown-up cycle $C=V_{1} \ldots V_{k}$. Here the V_{i} are clusters. However, we also need to incorporate the vertices of an exceptional set V_{0} into the cycle. For each $x \in V_{0}$, Lemma 7.5(i) below will give suitable in- and outneighbours x^{-}and x^{+}which attach x to the blown-up cycle. However, to build a Hamilton cycle, we need additional edges: Suppose for example that $V_{0}=\{x\}$ and x^{+}is not in the cluster succeeding the cluster containing x^{-}. Then it is impossible to extend the path $x^{-} x x^{+}$into a Hamilton cycle in which all other edges wind around C. So we need additional edges which will 'balance out' the edges $x^{-} x$ and $x x^{+}$. These additional edges are found via so-called 'shifted walks' and their associated chord sequences, which we define next. Shifted walks were first introduced in [25], also in order to find Hamilton cycles in directed graphs.

Let R be a digraph and let C be a Hamilton cycle in R. Given a vertex V of R, let V^{+}denote the vertex succeeding V on C and let V^{-}denote the vertex preceding
V. (Later on, the vertices of R will be clusters, so we use capital letters to denote them.) A shifted walk from a vertex A to a vertex B in R is a walk $S W(A, B)$ of the form

$$
S W(A, B)=V_{1} C V_{1}^{-} V_{2} C V_{2}^{-} \ldots V_{t} C V_{t}^{-} V_{t+1},
$$

where $V_{1}=A, V_{t+1}=B$ and the edge $V_{i}^{-} V_{i+1}$ belongs to R for each $i=1, \ldots, t$. (Here we write $V_{i} C V_{i}^{-}$for the path obtained from C by deleting the edge $V_{i}^{-} V_{i}$.) We say that $S W(A, B)$ traverses C times. We call the edges $V_{i}^{-} V_{i+1}$ the chord edges of $S W(A, B)$. If $A=B$ then A is also a shifted walk from A to B. Without loss of generality, we may assume that an edge of C is not a chord edge according to the above definition. (Indeed, suppose that $V_{i}^{-} V_{i+1}$ is an edge of C. Then $V_{i+1}=V_{i}$ and so we can obtain a shorter shifted walk from A to B.)
For our purposes, it turns out that shifted walks contain too many edges. So we will only use their chord edges. So given a shifted walk

$$
S W(A, B)=V_{1} C V_{1}^{-} V_{2} C V_{2}^{-} \ldots V_{t} C V_{t}^{-} V_{t+1},
$$

the corresponding chord sequence $C S(A, B)$ from A to B consists of all chord edges in $S W(A, B)$ in the same order as they appear in $S W(A, B)$. (In [38], this was called a skeleton walk, but we prefer not to use this name here as the chord edges do not actually form a walk.) We say that V lies in the interior of $C S(A, B)$ if $V \in\left\{V_{2}, V_{2}^{-}, \ldots, V_{t}, V_{t}^{-}\right\}$.

The next result guarantees a short chord sequence between any two vertices in a robust outexpander. Moreover, this chord sequence can be chosen so that its interior avoids a given small set. The proof does not require the outexpansion property to be robust.
Lemma 7.2. Let R be a robust (ν, τ)-outexpander with $\delta^{0}(R) \geq 2 \tau|R|$ and $\nu \leq \tau \leq$ $1 / 3$. Let C be Hamilton cycle in R. Given vertices $A, B \in V(R)$ and a set of vertices $\mathcal{V}^{\prime} \subseteq V(R)$ with $\left|\mathcal{V}^{\prime}\right| \leq \nu|R| / 4$, there is a chord sequence $C S(A, B)$ in R containing at most $3 / \nu$ edges whose interior avoids \mathcal{V}^{\prime}.
Proof. Let $\mathcal{V}^{\prime \prime}$ be the union of \mathcal{V}^{\prime} and the set of all those clusters V for which $V^{-} \in \mathcal{V}^{\prime}$ (where V^{-}is the predecessor of V on C). Thus $\left|\mathcal{V}^{\prime \prime}\right| \leq \nu|R| / 2$. Let $\mathcal{V}^{*}:=V(R) \backslash \mathcal{V}^{\prime \prime}$. Pick any outneighbour A_{0} of A^{-}in \mathcal{V}^{*}. Let $S_{1}:=N_{R}^{+}\left(A_{0}^{-}\right) \cap \mathcal{V}^{*}$. So $\left|S_{1}\right| \geq 2 \tau|R|-\left|\mathcal{V}^{\prime \prime}\right| \geq \nu|R| / 2$. For each $i \geq 2$ let $S_{i}:=N_{R}^{+}\left(N_{C}^{-}\left(S_{i-1}\right)\right) \cap \mathcal{V}^{*}$. Thus $S_{i-1} \subseteq S_{i}$ and each cluster in S_{i} can be reached by a shifted walk from A_{0} that traverses C at most i times and avoids \mathcal{V}^{\prime}. Moreover for each $i \geq 2$ either $\left|S_{i-1}\right|<(1-\tau)|R|$ and

$$
\left|S_{i}\right| \geq\left|R N_{\nu, R}^{+}\left(N_{C}^{-}\left(S_{i-1}\right)\right)\right|-\left|\mathcal{V}^{\prime \prime}\right| \geq\left|N_{C}^{-}\left(S_{i-1}\right)\right|+\nu|R|-\left|\mathcal{V}^{\prime \prime}\right| \geq\left|S_{i-1}\right|+\nu|R| / 2
$$

or $\left|S_{i-1}\right| \geq(1-\tau)|R|$ and $\left|S_{i}\right| \geq\left|S_{i-1}\right| \geq(1-\tau)|R|$. But this implies that $\left|S_{\lceil 2 / \nu\rceil}\right| \geq$ $(1-\tau)|R|$. Thus B has a neighbour B_{0} such that its successor B_{0}^{+}on C lies in $S_{\lceil 2 / \nu\rceil}$. Since $B_{0}^{+} \in S_{\lceil 2 / \nu\rceil}$ there is a shifted walk $S W\left(A_{0}, B_{0}^{+}\right)$which traverses C at most $\lceil 2 / \nu\rceil$ times and which avoids \mathcal{V}^{\prime}. Thus $A C A^{-} A_{0} \cup S W\left(A_{0}, B_{0}^{+}\right) \cup B_{0}^{+} C B_{0} B$ is a shifted walk from A to B which traverses C at most $\lceil 2 / \nu\rceil+2 \leq 3 / \nu$ times and which meets \mathcal{V}^{\prime} at most in the clusters A^{-}and B. So the chord sequence corresponding to this shifted walk is as required.

Figure 3. Balancing out a path $x^{-} x x^{+}$using a sequence $C S^{\prime}$ obtained from the chord sequence $\operatorname{CS}\left(U\left(x^{+}\right), U\left(x^{-}\right)^{+}\right)=C S\left(V_{3}, V_{7}\right)=$ $\left(V_{2} V_{10}, V_{9} V_{4}, V_{3} V_{12}, V_{11} V_{9}, V_{8} V_{5}, V_{4} V_{7}\right)$. Here $C=V_{1} \ldots V_{12}$.

The following proposition records the crucial property of chord sequences for later use. As indicated earlier, it means we can use these sequences to 'balance out' an arbitrary edge $x^{-} x^{+}$(or a path $x^{-} x x^{+}$with $x \in V_{0}$) to obtain a 'locally balanced' set of edges.

Proposition 7.3. Let (G, \mathcal{P}, R, C) be a (k, m, ε, d)-scheme. Given vertices x^{-}, x^{+} which are contained in clusters $U\left(x^{-}\right)$and $U\left(x^{+}\right)$in \mathcal{P} respectively, consider any chord sequence $C S\left(U\left(x^{+}\right), U\left(x^{-}\right)^{+}\right)=$: CS in R. Let $C S^{\prime}$ be obtained from $C S$ by replacing each edge $U W$ of $C S$ with an edge of $G[U, W]$. Suppose that $C S^{\prime}$ is a matching which avoids both x^{-}and x^{+}. Let $C S^{*}$ be obtained from $C S^{\prime}$ by adding the edge $x^{-} x^{+}$. For each cluster U in \mathcal{P}, let U^{1} be the set of vertices of U which are not an initial vertex of an edge in $C S^{*}$ and let U^{2} be the set of vertices of U which are not a final vertex of an edge in $C S^{*}$. Then for each edge $U W$ on C, we have $\left|U^{1}\right|=\left|W^{2}\right|$.

Proof. This follows immediately from the fact that for every edge $W^{*} W$ of $C S$ (apart from the final edge of $C S$), the next edge of $C S$ will be of the form $U U^{*}$, where U is the predecessor of W on C. If $W^{*} W$ is the final edge of $C S$ then $W=U\left(x^{-}\right)^{+}$ and so the edge $x^{-} x^{+} \in C S^{*}$ has its initial vertex x^{-}in the predecessor of W on C (see Figure 3).

In a typical application of this observation, the assertion that $\left|U^{1}\right|=\left|W^{2}\right|$ means that it will be possible to choose a perfect matching in $G\left[U^{1}, W^{2}\right]$. If we do this for each pair of consecutive clusters on C, then the union of all these matchings and the edges in $C S^{*}$ forms a 1-regular digraph F covering all vertices in all clusters. We will then be able to transform F into a Hamilton cycle, e.g. using Lemma 6.4 or 6.5.
7.3. Complete exceptional sequences and exceptional factors. Suppose that (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme. Let V_{1}, \ldots, V_{k} denote the clusters in \mathcal{P} such that $C=V_{1} \ldots V_{k}$. Recall that V_{0} denotes the exceptional set. An original exceptional edge in G is an edge with one endvertex in V_{0}. (So by (Sch4) the other endvertex
lies in $V(G) \backslash V_{0}$.) An exceptional cover EC consists of precisely one outedge and precisely one inedge incident to every vertex in V_{0}. Thus $|E C|=2\left|V_{0}\right|$.

Let $G^{\text {basic }}$ be obtained from G by adding all edges from $N^{-}(x)$ to $N^{+}(x)$ for every $x \in V_{0}$ and by deleting V_{0}. We call each edge $y z$ from $N^{-}(x)$ to $N^{+}(x)$ that was added to G in order to obtain $G^{\text {basic }}$ an exceptional edge and x the vertex associated with $y z$. Note that we might have $y=z$ in which case we add a loop. Moreover, we allow $G^{\text {basic }}$ to have multiple edges: if e.g. $y z \in E(G)$ and $y z$ is an edge from $N^{-}(x)$ to $N^{+}(x)$ for precisely two exceptional vertices then $y z$ has multiplicity 3 in $G^{\text {basic }}$ and precisely two of the edges from y to z in $G^{\text {basic }}$ are exceptional edges. We sometimes write $G^{\text {orig }}$ for G.

Given a spanning subdigraph H of G, we define $H^{\text {basic }}$ in a similar way. Conversely, if H is a subdigraph of $G^{\text {basic }}$, then $H^{\text {orig }}$ is the subdigraph of G obtained from H by replacing each exceptional edge $y z$ of H with the path $y x z$, where $x \in V_{0}$ is the exceptional vertex associated with $y z$. Note that if F is a 1 -factor of G, then $F^{\text {basic }}$ is a 1 -factor of $G^{\text {basic }}$. Conversely, a 1 -factor F of $G^{\text {basic }}$ which contains exactly one exceptional edge associated with every exceptional vertex corresponds to a 1-factor $F^{\text {orig }}$ in $G^{\text {orig }}$. Moreover, in this case F is a Hamilton cycle if and only if $F^{\text {orig }}$ is a Hamilton cycle.

A complete exceptional sequence $C E S$ is a matching in $G^{\text {basic }}$ which consists of precisely one exceptional edge associated with every exceptional vertex. So in particular $C E S$ does not contain loops. Note that the original version $C E S^{\text {orig }}$ of $C E S$ forms an exceptional cover. However, if $E C$ is an exceptional cover, then $E C^{\text {basic }}$ might contain paths, cycles (and loops) and so it might not form a complete exceptional sequence.

When constructing Hamilton cycles, we will usually do this by constructing a Hamilton cycle in $G^{\text {basic }}$ which contains exactly one complete exceptional sequence and no other exceptional edges. In other words, we will use the following observation, which is an immediate consequence of the above discussion.
Observation 7.4. Suppose that D is a Hamilton cycle in $G^{\text {basic }}$ which contains exactly one complete exceptional sequence CES and no other exceptional edges. Then $D^{\text {orig }}$ is a Hamilton cycle in G.

For our arguments it is convenient to be able to define and use a digraph which is regular (when viewed as a subdigraph of $G^{\text {basic }}$) and contains many different complete exceptional sequences - each of these will be part of a different Hamilton cycle in our decomposition. The exceptional factors $E F$ defined below have the required properties.

Given $L \in \mathbb{N}$ which divides k, the canonical interval partition of C into L intervals consists of the intervals $V_{(i-1) L+1} \ldots V_{i L+1}$ for all $i=1, \ldots, k / L$ (where $\left.V_{k+1}:=V_{1}\right)$. Given an interval I on C, we write I° for the interior of I and $I^{\circ \circ}$ for the interior of I°. Moreover, we write $U \in I$ if U is a cluster on I.

Suppose that $k / L, m / K \in \mathbb{N}$ and let \mathcal{I} be the canonical interval partition of C into L intervals of equal length. A complete exceptional path system CEPS (with respect to C) with parameters (K, L) spanning an interval $I=U_{j} U_{j+1} \ldots U_{j^{\prime}}$ with $I \in \mathcal{I}$ consists of m / K vertex-disjoint paths $P_{1}, \ldots, P_{m / K}$ in $G^{\text {basic }}$ such that the following conditions hold.
(CEPS1) Every P_{s} has its initial vertex in U_{j} and its final vertex in $U_{j^{\prime}}$.
(CEPS2) $C E P S$ contains a complete exceptional sequence $C E S$ (but no other exceptional edges) and all the edges in $C E S$ avoid the endclusters U_{j} and $U_{j^{\prime}}$ of I.
(CEPS3) $C E P S$ contains precisely m / K vertices from every cluster in I and no other vertices.

Note that the above implies that $C E P S^{\text {orig }}$ consists of m / K vertex-disjoint paths which cover all vertices in V_{0} as well as m / K vertices in each cluster in I. Moreover, every path of $C E P S^{\text {orig }}$ has its initial vertex in U_{j} and its final vertex in $U_{j^{\prime}}$. If $K=1$ (and thus the vertex set of $C E P S$ is the union of all the clusters in I), then we say that $C E P S$ completely spans I.

Suppose that \mathcal{P}^{\prime} is a K-refinement of \mathcal{P}. For each cluster $U \in \mathcal{P}$, let $U(1), \ldots, U(K)$ denote the subclusters of U in \mathcal{P}^{\prime}. Consider a complete exceptional path system $C E P S$ as above. We say that $C E P S$ has style b if its vertex set is $U_{j}(b) \cup \cdots \cup U_{j^{\prime}}(b)$. An exceptional factor $E F$ with parameters (K, L) (with respect to C, \mathcal{P}^{\prime}) is a 1-factor of $G^{\text {basic }}$ which satisfies the following properties:
(EF1) On each of the L intervals $I \in \mathcal{I}, E F$ induces the vertex-disjoint union of K complete exceptional path systems.
(EF2) Moreover, for each $I \in \mathcal{I}$ and each $b=1, \ldots, K$, exactly one of the exceptional path systems in $E F$ spanning I has style b.
Note that $E F$ consists of $K L$ edge-disjoint complete exceptional path systems. Moreover, the second part of (CEPS2) implies that the union of all the $K L$ complete exceptional sequences contained in these complete exceptional path systems forms a matching. This will be used in the proof of Lemma 8.1.

The reason that the definition of a consistent system involves not only the reduced digraph R_{0} but also its refinement R is that this enables us to find complete exceptional path systems within an interval I of C and thus we will be able to find exceptional factors (see the proof of Lemma 7.5 for more details).
7.4. Finding exceptional factors in a consistent system. The following lemma will be used to construct the exceptional factors defined in the previous subsection. For (a), recall that an ε-uniform K-refinement of a partition \mathcal{P} was defined before Lemma 4.7. Assertion (i) guarantees a 'localized' exceptional cover for V_{0}, assertion (ii) finds chord sequences in the reduced graph which 'balance out' this exceptional cover and (iii) finds edges in G which correspond to these chord sequences.

Lemma 7.5. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll \varepsilon^{\prime} \ll d \ll \nu \ll \tau \ll \alpha, \theta \leq 1$, that $\ell^{*} / L, m / K \in \mathbb{N}$, that $L / \ell^{*} \ll 1$ and $\varepsilon \ll 1 / K, 1 / L$. Let $\left(G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ be a consistent $\left(\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system with $|G|=n$. Suppose that G^{\prime} is a spanning subdigraph of G and that \mathcal{P}^{\prime} is a partition of $V(G)$ such that the following conditions are satisfied:
(a) \mathcal{P}^{\prime} is an ε-uniform K-refinement of \mathcal{P}. (So in particular V_{0} is the exceptional set in \mathcal{P}^{\prime}.)
(b) Every vertex $x \in V_{0}$ satisfies $d_{G}^{ \pm}(x)-d_{G^{\prime}}^{ \pm}(x) \leq \varepsilon n$.
(c) Every vertex $x \in V(G) \backslash V_{0}$ satisfies $d_{G}^{ \pm}(x)-d_{G^{\prime}}^{ \pm}(x) \leq\left(\varepsilon^{\prime}\right)^{3} m / K$.

For every cluster U in \mathcal{P} let $U(1), \ldots, U(K)$ denote all those clusters in \mathcal{P}^{\prime} which are contained in U. Let \mathcal{I} be the canonical interval partition of C into L intervals of equal length. Consider any $I \in \mathcal{I}$ and any j with $1 \leq j \leq K$. Then the following properties hold:
(i) For every exceptional vertex $x \in V_{0}$ there is a pair $x^{-} \neq x^{+}$such that $x^{-} \in$ $N_{G^{\prime}}^{-}(x) \cap \bigcup_{U \in I^{\circ \circ}} U(j), x^{+} \in N_{G^{\prime}}^{+}(x) \cap \bigcup_{U \in I^{\circ \circ}} U(j)$, such that the vertices in all these pairs x^{-}, x^{+}are distinct for different exceptional vertices and where each cluster in \mathcal{P} contains at most $\varepsilon^{1 / 4} m$ vertices in these pairs.
(ii) Given a vertex $z \in V(G) \backslash V_{0}$, let $U(z)$ denote the cluster in \mathcal{P} which contains z and let $U(z)^{+}$be the successor of that cluster on C. Then for each of the pairs x^{-}, x^{+}guaranteed by (i) there is a chord sequence $C S_{x}$ from $U\left(x^{+}\right)$to $U\left(x^{-}\right)^{+}$in R which contains at most $3 / \nu^{3}$ edges such that each of these edges has both endvertices in I° and such that in total no cluster in \mathcal{P} is used more than $4 \varepsilon^{1 / 4} m$ times by all these $C S_{x}$.
(iii) For each $x \in V_{0}$ there is a sequence $C S_{x}^{\prime}$ of edges in G^{\prime} obtained by replacing every edge $U U^{\prime}$ in $C S_{x}$ by an edge in $G^{\prime}\left[U(j), U^{\prime}(j)\right]$ such that $C S_{x}^{\prime}$ forms a matching which avoids all the pairs y^{-}, y^{+}guaranteed by (i) (for all $y \in V_{0}$) and such that the $C S_{x}^{\prime}$ are pairwise vertex-disjoint. (Thus $\bigcup_{x \in V_{0}} C S_{x}^{\prime}$ is a matching too.)
(iv) For every edge $U W$ of C the pair $G^{\prime}[U(j), W(j)]$ is $\left[\varepsilon^{\prime}, \geq d\right]$-superregular.

Proof. Recall that $k=|C|$ denotes the number of clusters in \mathcal{P}. We will first prove (i). We will choose the pairs x^{-}, x^{+}for every exceptional vertex x in turn. So suppose that for some exceptional vertices we have already chosen such pairs and that we now wish to choose such a pair for $x \in V_{0}$. Let S denote the set of all vertices lying in the pairs that we have chosen already. So $|S|<2\left|V_{0}\right| \leq 2 \varepsilon n$. We say that a cluster of \mathcal{P} is full if it contains at least $\varepsilon^{1 / 4} m$ vertices from S. Then the number of full clusters is at most

$$
\frac{|S|}{\varepsilon^{1 / 4} m} \leq \frac{2 \varepsilon n}{\varepsilon^{1 / 4} m} \leq \sqrt{\varepsilon} k .
$$

So for any vertex $x \in V_{0}$, the number of outneighbours of x in the full clusters is at most $\sqrt{\varepsilon} k m \leq \sqrt{\varepsilon} n$.

Set $k_{0}:=k / \ell^{*}$ and recall that $k_{0}=\left|R_{0}\right|=\left|C_{0}\right|$. Note that the length of I is $k / L=k_{0} \ell^{*} / L$ and thus the length of I is a multiple of k_{0} (as ℓ^{*} is a multiple of L by assumption). But by (CSys7) C was obtained from the Hamilton cycle C_{0} on the clusters in \mathcal{P}_{0} by winding ℓ^{*} times around C_{0}. Thus for each cluster V in \mathcal{P}_{0}, I contains at least

$$
\begin{equation*}
\frac{\operatorname{length}(I)}{k_{0}}=\frac{k / L}{k / \ell^{*}}=\frac{\ell^{*}}{L} \tag{7.1}
\end{equation*}
$$

clusters of the current partition \mathcal{P} which are contained in V.
We say that a cluster $V \in \mathcal{P}_{0}$ is friendly if $\left|N_{G}^{+}(x) \cap V\right| \geq \alpha|V| / 3$. (CSys1) implies that $\delta^{0}(G) \geq \alpha n$ and so at least $\alpha k_{0} / 3$ clusters in \mathcal{P}_{0} are friendly. But (CSys8) now implies that for each such cluster V, x has at least $\theta\left|N_{G}^{+}(x) \cap V\right| / \ell^{*}$ outneighbours in each cluster U of \mathcal{P} with $U \subseteq V$ (in the digraph G). Then by (a) and the condition
(URef) in the definition of an ε-uniform refinement, we have that x has at least

$$
\frac{\theta\left|N_{G}^{+}(x) \cap V\right|}{2 \ell^{*} K} \geq \frac{\theta \alpha|V|}{6 \ell^{*} K} \geq \frac{\theta \alpha n}{7 \ell^{*} K k_{0}}
$$

outneighbours in each subcluster $U(j)$ of \mathcal{P}^{\prime} with $U(j) \subseteq V$ (again in the digraph $G)$. Together with (7.1) this implies that x has at least

$$
\frac{\alpha k_{0}}{3} \cdot \frac{\theta \alpha n}{7 \ell^{*} K k_{0}} \cdot \frac{\ell^{*}}{2 L} \geq \varepsilon^{1 / 8} n
$$

outneighbours in G which lie in $\bigcup_{U \in I^{\circ \circ}} U(j)$. (Here we multiply with $\ell^{*} / 2 L$ instead of ℓ^{*} / L since counting outneighbours in $\bigcup_{U \in I^{\circ \circ}} U(j)$ means that we lose 4 clusters when considering $I^{\circ \circ}$ instead of I.) Together with (b) and the fact that at most $\sqrt{\varepsilon} n$ outneighbours of x lie in full clusters of \mathcal{P} this shows that we can always find an outneighbour $x^{+} \in \bigcup_{U \in I^{\circ}} U(j) \backslash S$ of x in G^{\prime} such that x^{+}lies in a cluster of \mathcal{P} which is not full. We can argue similarly to find x^{-}. This proves (i).

Our next aim is to prove (ii). We will choose the sequence $C S_{x}$ for every exceptional vertex x in turn. So suppose that for some exceptional vertices we have already chosen such sequences and that we now wish to choose $C S_{x}$ for $x \in V_{0}$. Call a cluster in \mathcal{P} crowded if it is used at least $\varepsilon^{1 / 4} m$ times by the sequences $C S_{x^{\prime}}$ found so far. Thus the total number of crowded clusters in \mathcal{P} is at most $\left|V_{0}\right| \cdot \frac{6 / \nu^{3}}{\varepsilon^{1 / 4} m} \leq \varepsilon^{2 / 3} k \leq \sqrt{\varepsilon}|I|$.

Let $U_{\text {first }}$ and $U_{\text {final }}$ denote the first and the final cluster of I. Let I^{*} denote the interval obtained from I by deleting $U_{\text {final }}$. As already observed in our proof of (i), the length of I is a multiple of k_{0}. So for every cluster V in \mathcal{P}_{0} there are precisely length $(I) / k_{0}=: D$ clusters in I^{*} which are contained in V. Moreover, $U_{\text {first }}$ and $U_{\text {final }}$ are contained in the same cluster of \mathcal{P}_{0}. Consider the subgraph R^{*} of R induced by all the clusters in I^{*}. Note that R^{*} contains an edge E^{*} from the final cluster $U_{\text {final }}^{*}$ of I^{*} to $U_{\text {first }}$. (This follows since (CSys6) implies that R_{0} has an edge from the cluster in \mathcal{P}_{0} containing $U_{\text {final }}^{*}$ to the cluster in \mathcal{P}_{0} containing $U_{\text {final }}$. But $U_{\text {first }}$ and $U_{\text {final }}$ are contained in the same cluster of \mathcal{P}_{0}. So (CSys6) now implies that R (and thus also R^{*}) has an edge from $U_{\text {final }}^{*}$ to $U_{\text {first }}$.) Let C^{*} be the Hamilton cycle of R^{*} which consists of I^{*} together with this edge E^{*}. (CSys6) also implies that R^{*} can be viewed as being obtained from R_{0} by replacing each vertex of R_{0} by D vertices and replacing each edge $W W^{\prime}$ of R_{0} by a complete bipartite graph between the two corresponding sets of D vertices (where all the edges are directed from the D vertices corresponding to W to the D vertices corresponding to W^{\prime}). In other words, R^{*} is a D-fold blow-up of R_{0}. Together with (CSys1) and Lemma 5.3 this in turn implies that R^{*} is a robust $\left(\nu^{3}, 2 \tau\right)$-outexpander. Moreover, it is easy to check that $\delta^{0}\left(R^{*}\right) \geq \alpha\left|R^{*}\right|$.

Apply Lemma 7.2 to R^{*} (with \mathcal{V}^{\prime} consisting of $U_{\text {first }}$ and all the crowded clusters in I^{*} and with C^{*} playing the role of C) to find a chord sequence $C S_{x}$ from $U\left(x^{+}\right)$ and $U\left(x^{-}\right)^{+}$in R^{*} which contains most $3 / \nu^{3}$ edges and whose interior avoids $U_{\text {first }}$ as well as all the crowded clusters. Since $x^{-}, x^{+} \in \bigcup_{U \in I^{\circ}} U(j)$ by (i), this implies that $C S_{x}$ uses only edges whose endclusters both lie in I°. But $R^{*} \subseteq R$. Thus $C S_{x}$ is actually a chord sequence in R.

We proceed in this way to choose $C S_{x}$ for all $x \in V_{0}$. We claim that in total no cluster in \mathcal{P} is used more than $4 \varepsilon^{1 / 4} m$ times by the sequences $C S_{x}$. To see this, note
that no cluster in \mathcal{P} is used more than $\varepsilon^{1 / 4} m+3 / \nu^{3} \leq 2 \varepsilon^{1 / 4} m$ times by the interiors of the all $C S_{x}$ (as all these interiors avoid the crowded clusters). Moreover, since by (i) no cluster in \mathcal{P} contains more than $\varepsilon^{1 / 4} m$ vertices belonging to pairs x^{-}, x^{+} guaranteed by (i), it follows that no cluster in \mathcal{P} is used more than $2 \varepsilon^{1 / 4} m$ times as one of the two remaining clusters $U\left(x^{+}\right)^{-}, U\left(x^{-}\right)^{+}$of $C S_{x}$ (for all $x \in V_{0}$ together). This completes the proof of (ii).

It remains to check (iii) and (iv). To do this, we will first prove the following claim.

Claim 1. For every edge $U U^{\prime}$ of R the pair $G^{\prime}\left[U(j), U^{\prime}(j)\right]$ is ε^{\prime}-regular of density at least $d / 2$. Moreover, for every edge $U W$ of C the pair $G^{\prime}[U(j), W(j)]$ is $\left[\varepsilon^{\prime}, \geq d\right]$ superregular.

To prove the first part of Claim 1, consider any edge $U U^{\prime}$ of R. (CSys4) implies that $G\left[U(j), U^{\prime}(j)\right]$ is $K \varepsilon$-regular of density at least $d-2 \varepsilon$. Together with (c) and Proposition 4.3(i) this implies that $G^{\prime}\left[U(j), U^{\prime}(j)\right]$ is still ε^{\prime}-regular of density at least $d-2 \varepsilon^{\prime} \geq d / 2$.

Now consider any edge $U W$ of C. Then (CSys5), (a) and Lemma 4.7(i) together imply that $G[U(j), W(j)]$ is $\left[\left(\varepsilon^{\prime}\right)^{3}, \geq d\right]$-superregular. As before, together with (c) and Proposition 4.3(iii) this implies that $G^{\prime}[U(j), W(j)]$ is still $\left[\varepsilon^{\prime}, \geq d\right]$-superregular. This proves Claim 1 and thus in particular (iv).

In order to replace the edges of $C S_{x}$ to obtain $C S_{x}^{\prime}$, we again consider each exceptional vertex $x \in V_{0}$ in turn. By making $C S_{x}$ shorter if necessary, we may assume that every edge of R occurs at most once in each $C S_{x}$. Suppose that we have already chosen $C S_{x^{\prime}}^{\prime}$ for some vertices $x^{\prime} \in V_{0}$ and that we now wish to replace the edges of $C S_{x}$ in order to choose $C S_{x}^{\prime}$. Moreover, suppose that we have already replaced some edges $U^{\prime \prime} U^{\prime \prime \prime}$ of $C S_{x}$ and we now wish to replace the edge $U U^{\prime}$ of $C S_{x}$.

For this, we let $U_{*}(j)$ denote the set of all those vertices $u \in U(j)$ that satisfy the following three conditions:

- There is no $y \in V_{0}$ such that u lies in the pair y^{-}, y^{+}guaranteed by (i).
- There exists no $x^{\prime} \in V_{0}$ for which we have already defined $C S_{x^{\prime}}^{\prime}$ and for which u is an endvertex of some edge in $C S_{x^{\prime}}^{\prime}$.
- u is not an endvertex of an edge of $G^{\prime}\left[U^{\prime \prime}(j), U^{\prime \prime \prime}(j)\right]$ which was used to replace some edge $U^{\prime \prime} U^{\prime \prime \prime}$ of $C S_{x}$.
(i) implies that U contains at most $\varepsilon^{1 / 4} m$ vertices violating the first condition and (ii) implies that U contains at most $4 \varepsilon^{1 / 4} m$ vertices violating the second or third condition. Thus

$$
\begin{equation*}
\left|U_{*}(j)\right| \geq|U(j)|-5 \varepsilon^{1 / 4} m=\frac{m}{K}-5 \varepsilon^{1 / 4} m \geq \frac{|U(j)|}{2} \tag{7.2}
\end{equation*}
$$

Our aim is to replace $U U^{\prime}$ in $C S_{x}$ by an edge in $G^{\prime}\left[U_{*}(j), U_{*}^{\prime}(j)\right]$. But by Claim 1, $G^{\prime}\left[U(j), U^{\prime}(j)\right]$ is ε^{\prime}-regular of density at least $d / 2$. Together with (7.2) this implies that $G^{\prime}\left[U_{*}(j), U_{*}^{\prime}(j)\right]$ contains an edge. We do this for every edge of $C S_{x}$ in turn and let $C S_{x}^{\prime}$ denote the sequence obtained in this way. Then these sequences $C S_{x}^{\prime}$ are as required in (iii).

Based on the previous lemma, it is now straightforward to construct many edgedisjoint exceptional factors.

Lemma 7.6. Suppose that

$$
0<1 / n \ll 1 / k \ll \varepsilon \ll d \ll \nu \ll \tau \ll \alpha, \theta \leq 1 ; \quad \varepsilon \ll 1 / K, 1 / L ; \quad K r_{0} / m \ll d
$$

that $\ell^{*} / L, m / K \in \mathbb{N}$ and $L / \ell^{*} \ll 1$. Let $\left(G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ be a consistent ($\left.\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system with $|G|=n$. Let \mathcal{P}^{\prime} be an ε-uniform K-refinement of \mathcal{P}. Then there is a set $\mathcal{E F}$ of r_{0} exceptional factors with parameters (K, L) (with respect to C, \mathcal{P}^{\prime}) such that the original versions of all these r_{0} exceptional factors are pairwise edge-disjoint subdigraphs of G.

Proof. Choose a new constant ε^{\prime} with $\varepsilon, K r_{0} / m \ll \varepsilon^{\prime} \ll d$. We will choose the r_{0} exceptional factors for $\mathcal{E F}$ with respect to C, \mathcal{P}^{\prime} one by one. So suppose that for some $0 \leq s<r_{0}$ we have already chosen exceptional factors $E F_{1}, \ldots, E F_{s}$ with parameters (K, L) such that the original versions of these factors are pairwise edgedisjoint from each other. So our aim is to show that we can choose $E F_{s+1}$ such that all these properties still hold.

Let G^{\prime} be the digraph obtained from G by deleting all the edges contained in the original versions of all the exceptional factors chosen so far. Note that

$$
d_{G}^{ \pm}(x)-d_{G^{\prime}}^{ \pm}(x) \leq K L r_{0} \leq L d m \leq L d n / k \leq \varepsilon n .
$$

for every vertex $x \in V_{0}$ and

$$
d_{G}^{ \pm}(x)-d_{G^{\prime}}^{ \pm}(x) \leq r_{0} \leq\left(\varepsilon^{\prime}\right)^{3} m / K
$$

for every vertex $x \in V(G) \backslash V_{0}$. Thus G^{\prime} satisfies conditions (b) and (c) of Lemma 7.5.
Let \mathcal{I} denote the canonical interval partition of C into L intervals of equal length. For each cluster U of \mathcal{P} let $U(1), \ldots, U(K)$ denote the subclusters in \mathcal{P}^{\prime} which are contained in U. Consider any interval $I \in \mathcal{I}$ and any j with $1 \leq j \leq K$. In order to construct $E F_{s+1}$, it suffices to show that there is a complete exceptional path system CEPS spanning the interval I whose vertex set is $\bigcup_{U \in I} U(j)$ and such that $C E P S^{\text {orig }} \subseteq G^{\prime}$. To do this, we apply Lemma 7.5 to find pairs x^{-}, x^{+}, chord sequences $C S_{x}$ in R and sequences $C S_{x}^{\prime}$ (for every vertex $x \in V_{0}$) satisfying (i)-(iii).

Now let $C E S$ be the union of all the edges $x^{-} x^{+}$over all exceptional vertices x. (Note that $x^{-} x^{+}$is an exceptional edge in $\left(G^{\prime}\right)^{\text {basic }}$ and it is irrelevant whether it lies in G^{\prime} or not.) It remains to enlarge $C E S$ into a complete exceptional path system $C E P S$. For this, we first add all edges in the sequences $C S_{x}^{\prime}$ guaranteed by (iii) (for all vertices $x \in V_{0}$). Together with $C E S$, this gives a matching M which meets every cluster in \mathcal{P} in at most $5 \varepsilon^{1 / 4} m$ vertices.

Suppose that $U, W \in \mathcal{P}$ are consecutive clusters on I. Let $U^{1}(j)$ be the set of all those vertices in $U(j)$ which are not the initial vertex of an edge in M and let $W^{2}(j)$ be the set of all those vertices in $W(j)$ which are not the final vertex of an edge in M. Then Proposition 7.3 implies that $\left|U^{1}(j)\right|=\left|W^{2}(j)\right|$. Also note that $\left|U(j) \backslash U^{1}(j)\right| \leq$ $5 \varepsilon^{1 / 4} m \leq \varepsilon^{\prime}|U(j)|$. Together with Lemma 7.5(iv) and Proposition 4.3 (iii) this implies that $G^{\prime}\left[U^{1}(j), W^{2}(j)\right]$ is still $\left[2 \sqrt{\varepsilon^{\prime}}, \geq d\right]$-superregular and thus it contains a perfect matching $M_{U W}$ by Proposition 4.14.

The union $C E P S^{\prime}$ of M with these matchings $M_{U W}$ for all pairs U, W of consecutive clusters on I contains paths satisfying (CEPS1) and (CEPS2), but in addition $C E P S^{\prime}$ might contain cycles. (Note each such cycle will contain at least one edge from M.) So our aim is to apply Lemma 6.5 in order to transform $C E P S^{\prime}$ into a path system. To do this, we let $U_{\text {first }} \in \mathcal{P}$ denote the first cluster in I and let $U_{\text {final }} \in \mathcal{P}$ denote the last cluster in I. Let C_{I} be the cycle obtained from I by identifying $U_{\text {first }}$ and $U_{\text {final }}$. Let $G_{I j}^{\prime}$ be the digraph obtained from $\bigcup_{U W \in E(I)} G^{\prime}[U(j), W(j)]$ by identifying each vertex in $U_{\text {first }}(j)$ with a different vertex of $U_{\text {final }}(j)$. Let $C E P S^{\prime \prime}$ be obtained from $C E P S^{\prime}$ by identifying these vertices. Note that $G_{I j}^{\prime}$ can be viewed as a blow-up of C_{I} in which every edge of C_{I} corresponds to an $\left[\varepsilon^{\prime}, \geq d\right]$-superregular pair (the latter holds by Lemma $7.5(\mathrm{iv})$). Moreover, $C E P S^{\prime \prime}$ is a 1-regular digraph on $V\left(G_{I j}^{\prime}\right)$ which has the property that every cycle D in $C E P S^{\prime \prime}$ contains at least one edge in some matching $M_{U W}$ for some pair U, W of consecutive clusters on C_{I}. (To see the latter, recall that M was a matching which avoids both $U_{\text {first }}$ and $U_{\text {final }}$. So every vertex in $V\left(G_{I j}^{\prime}\right)$ is incident to at most one edge in M.) So D contains a vertex in $U^{1}(j)$. Thus we can apply Lemma 6.5 with $G_{I j}^{\prime}, C_{I}, U^{1}(j), U^{2}(j)$ and $E\left(C_{I}\right)$ playing the roles of $G, C, V_{i}^{1}, V_{i}^{2}$ and J. This shows that we can replace each matching $M_{U W}$ by a different matching in $G^{\prime}\left[U^{1}(j), W^{2}(j)\right]$ in order to transform $C E P S^{\prime \prime}$ into a Hamilton cycle of $G_{I j}^{\prime}$. But this Hamilton cycle corresponds to a complete exceptional path system $C E P S$ spanning the interval I whose vertex set is $\bigcup_{U \in I} U(j)$ and such that $C E P S^{\text {orig }} \subseteq G^{\prime}$. (Note that $C E P S$ still contains M and thus CES.)

We do this for each $j=1, \ldots, K$ and each interval I in the canonical interval partition \mathcal{I} of C in turn. Then the union $E F_{s+1}$ of all these complete exceptional path systems is an exceptional factor with the desired properties. This completes the proof of the existence of $\mathcal{E F}$.

8. The preprocessing step

Let G^{\prime} be the leftover of G obtained from an application of Theorem 1.3. So G^{\prime} is regular and very sparse. Roughly speaking, the aim of this section is to find a sparse 'preprocessing graph' $P G$ so that $G^{\prime} \cup P G$ has a set of edge-disjoint Hamilton cycles covering all edges of G^{\prime}. We need to do this because the edges at the exceptional vertices in the leftover G^{\prime} might be distributed very badly. So the idea is to choose $P G$ at the beginning of the proof of Theorem 1.2 , to apply Theorem 1.3 to $G \backslash E(P G)$ and then to cover the leftover G^{\prime} by edge-disjoint Hamilton cycles in $G^{\prime} \cup P G$. In this way we replace G^{\prime} by the resulting leftover $P G^{\prime}$ of $P G$. Moreover, the goal is that $P G^{\prime}$ will have no edges incident to V_{0}. So $P G^{\prime}$ will not be regular. But the chord absorber, which we will use in Section 9 to absorb the edges of $P G^{\prime}$, will contain additional edges at the exceptional vertices to compensate for this, and these edges will be nicely distributed. (More precisely, this chord absorber will contain some additional exceptional factors.)

In order to find the Hamilton cycles covering G^{\prime}, we decompose G^{\prime} into 1-factors H, split each 1-factor H into small path systems H_{i} and extend H_{i} into a Hamilton cycle using the edges of $P G$. As we shall see, when finding these Hamilton cycles, the most
difficult part is to find suitable edges joining V_{0} to the (non-exceptional) clusters. For this step we use the complete exceptional sequences defined in Section 7.3.

As we shall explain in Section 8.3, the preprocessing graph $P G$ will consist (mainly) of the edge-disjoint union of exceptional factors and a 'path system extender' $P E$, which we define and use in Section 8.2. Once we have found suitable edges joining V_{0} to the clusters, the path system extender will be used to extend these into Hamilton cycles.
8.1. Cycle breaking. Suppose that H is a 1 -factor of the leftover G^{\prime}. As discussed above, our aim is to split H into small path systems H_{i} which we then extend into Hamilton cycles C_{i} of G. Note that H contains exactly one exceptional cover $H^{\text {exc }}$ and each C_{i} must contain exactly one as well. The most obvious way to achieve the latter might be to let H_{1} consist of $H^{\text {exc }}$, and add a new exceptional cover (from the preprocessing graph $P G$) to each of the other H_{i} when forming the C_{i}. However, $H^{\text {exc }}$ might contain cycles, in which case we cannot extend $H_{1}=H^{\text {exc }}$ to a Hamilton cycle. So when splitting H into the H_{i}, we also need to split $H^{\text {exc }}$ to ensure that such cycles are 'broken'. As an intermediate step towards extending the H_{i} into Hamilton cycles, we then add edges from (the original version of) an exceptional factor $C B$ to extend each H_{i} into a path system Q_{i} which contains exactly one exceptional cover. In other words, one can split $H \cup C B^{\text {orig }}$ into small path systems Q_{i} such that each of them contains precisely one exceptional cover.

Let (G, \mathcal{P}, R, C) be a (k, m, ε, d)-scheme and assume that $m / 50 \in \mathbb{N}$. Consider an ε-uniform 50 -refinement \mathcal{P}^{\prime} of \mathcal{P} (recall again that these were defined before Lemma 4.7). For each cluster V_{i} of \mathcal{P}, let $V_{i}(1), \ldots, V_{i}(50)$ denote all those clusters in \mathcal{P}^{\prime} which are contained in V_{i}. Suppose $J \subseteq\{1, \ldots, 50\}$. Generalizing the notion of styles defined at the end of Section 7.3, we say that a vertex $x \in V(G) \backslash V_{0}$ has style J if $x \in \bigcup_{i=1}^{k} \bigcup_{j \in J} V_{i}(j)$. We then say that a set E of edges of $G^{\text {basic }}$ or of G has style J if every endvertex x of an edge in E with $x \notin V_{0}$ has style J. If E has style J, we say that E has style size $|J|$ (with respect to \mathcal{P}^{\prime}). Note that in this definition J need not have minimum size, i.e. if E has style size t, then it also has style size $t+1$.

Lemma 8.1. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll d \ll 1 / s \ll 1$ and that $m / 50,50 k /(s-1) \in \mathbb{N}$. Let (G, \mathcal{P}, R, C) be a (k, m, ε, d)-scheme with $|G|=n$. Let \mathcal{P}^{\prime} be an ε-uniform 50 -refinement of \mathcal{P}. Let H be a 1 -factor of G. Let $C B$ be an exceptional factor with parameters $(50,(s-1) / 50)$ with respect to C, \mathcal{P}^{\prime}. Suppose that H and $C B^{\text {orig }}$ are edge-disjoint. Then the edges of $H \cup C B^{\text {orig }}$ can be decomposed into edge-disjoint path systems Q_{1}, \ldots, Q_{s} so that
(i) each Q_{i} contains precisely one exceptional cover (and no other original exceptional edges);
(ii) each Q_{i} has style size 5 (with respect to \mathcal{P}^{\prime});
(iii) $\left|E\left(Q_{i}\right)\right| \leq 1230 n / s$.

Proof. Let $H^{\text {exc }}$ denote the set of original exceptional edges of H. Note that each edge in $H^{\text {exc }}$ has precisely one of 50 styles. So we can partition $H^{\text {exc }}$ into H_{1}, \ldots, H_{50} such that each H_{i} has style i. Now we split each H_{i} into H_{i}^{-}and H_{i}^{+}by placing one edge from each cycle of H_{i} into H_{i}^{-}and all the others into H_{i}^{+}. Enumerate the path
systems obtained in this way as $H_{1}^{\text {exc }}, \ldots, H_{100}^{\text {exc }}$. Thus $H^{\text {exc }}$ is the union of all these path systems. Denote the complete exceptional path systems of $C B$ by $C E P S_{i}$, for $i=1, \ldots, s-1$, and let $C E S_{i}$ denote the complete exceptional sequence contained in $C E P S_{i}$. Without loss of generality, we may assume that $C E P S_{1}, \ldots, C E P S_{100}$ are complete exceptional path systems of $C B$ so that exactly 20 of them have style j for $j=1, \ldots, 5$ (as there are many more with these styles in $C B$). Moreover, by relabeling the $C E P S_{i}$ if necessary, we may assume that $H_{i}^{\text {exc }}$ and $C E P S_{i}$ have different styles for all $i=1, \ldots, 100$.

For each $i=1, \ldots, 100$, let $V_{0, i}^{+} \subseteq V_{0}$ be the set of exceptional vertices x so that x is the initial vertex of an edge in $H_{i}^{\text {exc }}$. Similarly, let $V_{0, i}^{-} \subseteq V_{0}$ be the set of exceptional vertices x so that x is the final vertex of an edge in $H_{i}^{\text {exc }}$. Let $C E S_{i}^{\prime}$ be the set of all those (original exceptional) edges $x y$ in $C E S_{i}^{\text {orig }}$ for which $x \in V_{0} \backslash V_{0, i}^{+}$ as well as all those (original exceptional) edges $y x$ in $C E S_{i}^{\text {orig }}$ for which $x \in V_{0} \backslash V_{0, i}^{-}$. Let $Q_{i}:=H_{i}^{\text {exc }} \cup C E S_{i}^{\prime} \cup\left(C E P S_{i} \backslash C E S_{i}\right)$. Note that Q_{i} contains the exceptional cover $H_{i}^{\text {exc }} \cup C E S_{i}^{\prime}$. Moreover, since $H_{i}^{\text {exc }}$ and $C E P S_{i}$ have different styles it follows that Q_{i} is a path system, i.e. it does not contain any cycles. Furthermore, Q_{i} has style size 2 and $\left|E\left(Q_{i}\right)\right| \leq\left|V_{0}\right|+n /(s-1) \leq 2 n / s$.

Now let Q_{101} consist of those edges of $C E S_{1}^{\text {orig }}, \ldots, C E S_{100}^{\text {orig }}$ which are not contained in any of Q_{1}, \ldots, Q_{100}. Using the fact that $H^{\text {exc }}=H_{1}^{\text {exc }} \cup \cdots \cup H_{100}^{\text {exc }}$ is an exceptional cover, it is easy to see that Q_{101} also forms an exceptional cover. Moreover, as remarked after the definition of an exceptional factor, $C E S_{1} \cup \cdots \cup C E S_{100}$ is a matching. In particular, every vertex in $V(G) \backslash V_{0}$ is incident to at most one edge in $C E S_{1}^{\text {orig }} \cup \cdots \cup C E S_{100}^{\text {orig }}$. Together with the fact that Q_{101} is an exceptional cover, it follows that Q_{101} is a path system. Also, Q_{101} has style size 5 and $\left|E\left(Q_{101}\right)\right|=2\left|V_{0}\right| \leq 2 \varepsilon n \leq n / s$.

Note that each edge of $H \backslash H^{\text {exc }}$ has at least one of $\binom{50}{2}=1225$ styles $i j$ with $i \neq j$. (Recall that if an edge has style i then it also has style $i j$ for any j.) Partition $H \backslash H^{\mathrm{exc}}$ into 1225 sets $H_{i, j}$ such that all edges in $H_{i, j}$ have style $i j$. Greedily split each set $H_{i, j}$ further into $(s-1) / 1226$ sets such that each of them has size at most $\lceil 1226 n /(s-1)\rceil$ and none of them contains a cycle. Let $s^{\prime}:=1225(s-1) / 1226$ and let $H_{1}^{*}, \ldots, H_{s^{\prime}}^{*}$ denote the resulting sets of edges.

Claim. We may assume that $C E P S_{101}, \ldots, C E P S_{s-1}$ are enumerated in such a way that for all $t=1, \ldots, s^{\prime}$ the following property holds: if H_{t}^{*} has style ij and $C E P S_{100+t}$ has style j^{\prime} then $j^{\prime} \notin\{i, j\}$.
To prove the claim, we consider the auxiliary bipartite graph Y with vertex classes A and B, where A consists of all the H_{t}^{*} and B consists of $C E P S_{101}, \ldots, C E P S_{s-1}$. (So $|A|=s^{\prime}$ and $|B|=(s-1)-100>s^{\prime}$.) Suppose that H_{t}^{*} has style $i j$ and $C E P S_{\ell}$ has style j^{\prime}, where $j^{\prime} \notin\{i, j\}$. Then H_{t}^{*} and $C E P S_{\ell}$ are connected by an edge in Y. Note that every $C E P S_{\ell}$ has degree at least $|A|-49 \cdot(s-1) / 1226 \geq|A| / 2$ (since if $j^{\prime}=i$ then there are only 49 possibilities for j and since only $(s-1) / 1226$ of the H_{t}^{*} have the same style). Similarly every H_{t}^{*} has degree at least ($s-1-100$) $-2 \cdot(s-1) / 50 \geq$ $|B| / 2$. So Y has a matching covering A. (Indeed, this follows from Hall's theorem: Consider any $A^{\prime} \subseteq A$. If $\left|A^{\prime}\right|>|A| / 2$ then $N_{Y}\left(A^{\prime}\right)=B$ and if $\left|A^{\prime}\right| \leq|A| / 2$ then $\left|N_{Y}\left(A^{\prime}\right)\right| \geq|B| / 2 \geq|A| / 2 \geq\left|A^{\prime}\right|$.) This completes the proof of the claim.

For $i=102, \ldots, 101+s^{\prime}$, let $Q_{i}:=H_{i-101}^{*} \cup C E P S_{i-1}^{\text {orig }}$. Then the claim implies that Q_{i} is a path system. Moreover, Q_{i} has style size 3 and $\left|E\left(Q_{i}\right)\right| \leq\lceil 1226 n /(s-$ $1)\rceil+n /(s-1)+\varepsilon n \leq 1230 n / s$. Finally, for $i=102+s^{\prime}, \ldots, s$ we let $Q_{i}:=C E P S_{i-1}^{\text {orig }}$. Then Q_{1}, \ldots, Q_{s} have the desired properties.
8.2. Extending path systems into Hamilton cycles. Suppose that (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme. Recall that V_{0} denotes the exceptional set in \mathcal{P}. The purpose of this subsection is to define and use the 'path system extender' $P E$. To motivate its purpose, let G^{\prime} be the leftover of G obtained by an application of Theorem 1.3 and let H be a 1 -factor in a 1 -factorization of G^{\prime}. Recall that Lemma 8.1 assigns edges of H to edge-disjoint path systems $Q_{i} . P E$ will be used to extend each path system Q_{i} into a Hamilton cycle. Altogether this means that we will find edgedisjoint Hamilton cycles in the union of $G^{\prime} \cup P E$ with some exceptional factors $C B_{i}$ which cover both the edges of G^{\prime} and the edges of $C B_{i}$. Since $P E$ will be a spanning subdigraph of $G-V_{0}$, this in turn implies that we have replaced G^{\prime} by a digraph (namely the digraph obtained from the leftover of $P E$ by adding V_{0}) in which every exceptional vertex is isolated.

A path system extender PE (for C, R) with parameters $\left(\varepsilon, d, d^{\prime}, \zeta\right)$ is a spanning subgraph of $G-V_{0}$ consisting of an edge-disjoint union of two graphs $\mathcal{B}(C)_{P E}$ and $\mathcal{B}(R)_{P E}$ on $V(G) \backslash V_{0}$ which are defined as follows:
(PE1) $\mathcal{B}(C)_{P E}$ is a blow-up of C in which every edge $U W$ of C corresponds to an $\left(\varepsilon, d^{\prime}, \zeta d^{\prime}, 2 d^{\prime} / d\right)$-superregular pair $\mathcal{B}(C)_{P E}[U, W]$.
(PE2) $\mathcal{B}(R)_{P E}$ is a blow-up of R in which every edge $U W$ of R corresponds to an $\left(\varepsilon, d^{\prime} / k, 2 d^{\prime} / d k\right)$-regular pair $\mathcal{B}(R)_{P E}[U, W]$.
Note that the path system extender $P E$ is not necessarily a regular digraph. (Reg3) and the fact that $\Delta(R) \leq 2 k$ imply that

$$
\begin{equation*}
\Delta(P E) \leq 2 \cdot \frac{2 d^{\prime} m}{d}+\Delta(R) \cdot \frac{2 d^{\prime} m}{d k} \leq \frac{8 d^{\prime} m}{d} \tag{8.1}
\end{equation*}
$$

In order to cover the edges of the leftover of the path system extender $P E$ with Hamilton cycles in the chord-absorbing step (Section 9), we will need that this maximum degree is small compared to εm (so $P E$ is a rather sparse graph). This is what forces us to use the above more technical notion of regularity when defining $P E$, rather than the usual ε-regularity.

Lemma 8.2. Suppose that $0<1 / n \ll d^{\prime} \ll 1 / k \ll \varepsilon \ll d \ll \zeta \leq 1 / 2$. Let (G, \mathcal{P}, R, C) be a (k, m, ε, d)-scheme with $|G|=n$. Then G contains a path system extender for C, R having parameters $\left(\varepsilon^{1 / 25}, d, d^{\prime}, \zeta\right)$.

Proof. Recall that by (Sch3) every edge $U W$ of C corresponds to an $\left[\varepsilon, d_{U W}\right]-$ superregular pair $G[U, W]$ for some $d_{U W} \geq d$. Thus we can apply Lemma 4.10(ii) to each such $G[U, W]$ to obtain a blow-up $\mathcal{B}(C)_{P E}$ of C in which every edge of C corresponds to an $\left(\varepsilon^{1 / 12}, d^{\prime}, d^{\prime} / 2,3 d^{\prime} / 2 d_{U W}\right)$-superregular pair (which is therefore also ($\left.\varepsilon^{1 / 25}, d^{\prime}, \zeta d^{\prime}, 2 d^{\prime} / d\right)$-superregular). Let G^{*} be the digraph obtained from G by deleting all the edges in $\mathcal{B}(C)_{P E}$.

Now consider any edge $U W$ of R and recall from (Sch2) that $G[U, W]$ is ε regular of density $d_{U W} \geq d-\varepsilon$. Since $G^{*}[U, W]$ is obtained from $G[U, W]$ by deleting at most $2 d^{\prime} m / d \leq \varepsilon m$ edges at every vertex, Proposition 4.3(i) with $d^{\prime}:=\varepsilon$ implies that $G^{*}[U, W]$ is still $2 \sqrt{\varepsilon}$-regular of density at least $3 d_{U W} / 4$. Thus we can apply Lemma $4.10(\mathrm{i})$ to find a $\left((4 \varepsilon)^{1 / 24}, d^{\prime} / k, 2 d^{\prime} / d_{U W} k\right)$-regular spanning subgraph $G^{\prime}[U, W]$ of $G^{*}[U, W]$ (which is therefore also ($\varepsilon^{1 / 25}, d^{\prime} / k, 2 d^{\prime} / d k$)-regular). Let $\mathcal{B}(R)_{P E}$ be the union of all the $G^{\prime}[U, W]$ over all edges $U W$ of R. Then $\mathcal{B}(C)_{P E} \cup \mathcal{B}(R)_{P E}$ is a path system extender for C, R with parameters $\left(\varepsilon^{1 / 25}, d, d^{\prime}, \zeta\right)$.

The following lemma implies that we can use the edges of a path system extender to extend the path systems Q_{i} obtained from Lemma 8.1 into Hamilton cycles.

Lemma 8.3. Suppose that $0<1 / n \ll d^{\prime} \ll 1 / k \ll \varepsilon \ll 1 / \ell^{*} \ll d \ll \nu \ll \tau \ll$ $\alpha, \theta \leq 1$, that $d \ll \zeta \leq 1 / 2$ and that $m / 50 \in \mathbb{N}$. Let $\left(G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ be a consistent ($\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta$)-system with $|G|=n$. Let \mathcal{P}^{\prime} be a $\left(d^{\prime}\right)^{2}$-uniform 50 -refinement of \mathcal{P}. Let PE be a path system extender with parameters ($\varepsilon, d, d^{\prime}, \zeta$) for C, R. Let $s:=10^{7} / \nu^{2}$ and suppose that Q is a path system in G such that

- Q and $P E$ are edge-disjoint;
- Q contains precisely one exceptional cover and no other original exceptional edges;
- Q has style size 5 (with respect to \mathcal{P}^{\prime});
- $|E(Q)| \leq 1230 n / s$.

Then G contains a Hamilton cycle D such that $Q \subseteq D \subseteq P E \cup Q$.
For the proof of Lemma 8.3, we add additional edges to Q to obtain a 'locally balanced' path system. (To ensure the existence of these additional edges we need to work with a consistent system rather than the simpler notion of a scheme.) This path system can then be extended into a 1-factor using matchings between consecutive clusters of C. Finally, we apply Lemma 6.4 to transform this 1-factor into a Hamilton cycle.
Proof. Recall that $Q^{\text {basic }}$ is obtained from Q by replacing each path of the form $x^{-} x x^{+}$(where $x \in V_{0}$) by the exceptional edge $x^{-} x^{+} \in E\left(G^{\text {basic }}\right.$). For each edge $e=a b$ of $Q^{\text {basic }}$ in turn, our aim is to apply Lemma 7.2 to find a chord sequence $C S\left(U(b), U(a)^{+}\right)$in R which consists of at most $3 / \nu$ edges. (Here $U(b)$ denotes the cluster in \mathcal{P} containing b and $U(a)^{+}$denotes the successor on C of the cluster in \mathcal{P} containing a.) We say that a cluster in \mathcal{P} is full if it is visited at least $m / 110$ times by the interiors of the chord sequences chosen so far. (Recall that we disregard the first cluster $U(b)^{-}$and the final cluster $U(a)^{+}$of $C S\left(U(b), U(a)^{+}\right)$when considering its interior.) Then the number of full clusters is at most

$$
\frac{2\left|Q^{\text {basic }}\right|(3 / \nu)}{m / 110} \leq \frac{811800 n}{\nu s m} \leq \frac{\nu k}{4}
$$

After each application of Lemma 7.2 , let $\mathcal{V}^{\prime} \subseteq V(R)$ be the set of all those clusters which are now full. So we can apply Lemma 7.2 to R and \mathcal{V}^{\prime} as above to find a chord sequence $C S\left(U(b), U(a)^{+}\right)$whose interior avoids the full clusters. Thus altogether
the interiors of all the $C S\left(U(b), U(a)^{+}\right)$(for all edges $a b$ of $Q^{\text {basic }}$) visit each cluster in \mathcal{P} at most $m / 110+3 / \nu \leq m / 100$ times.

Note that since Q has style size 5 , every cluster in \mathcal{P} meets $Q^{\text {basic }}$ in at most $5 m / 50=m / 10$ vertices. Thus every cluster plays the role of $U(b)^{-}$or $U(a)^{+}$for at most $2 m / 10$ edges $a b$ of $Q^{\text {basic }}$. This implies that the union $S(Q)$ of all the chord sequences $C S\left(U(b), U(a)^{+}\right)$(over all edges $a b$ of $Q^{\text {basic }}$) visits each cluster at most

$$
\begin{equation*}
m / 100+2 m / 10=21 m / 100 \tag{8.2}
\end{equation*}
$$

times (where we count the edges in $S(Q)$ with multiplicities).
Now for each edge E of R, let s_{E} be the number of times that E occurs in $S(Q)$. Note that if E occurs in $C S\left(U(b), U(a)^{+}\right)$then at least one of the endclusters of E lies in the interior of $C S\left(U(b), U(a)^{+}\right)$. In particular, suppose that $E=U W$ occurs as an initial edge in $C S\left(U(b), U(a)^{+}\right)$. Then W lies in the interior of the sequence. Since altogether the interiors of all the $\operatorname{CS}\left(U(b), U(a)^{+}\right)$visit W at most $m / 100$ times, this implies that altogether E can occur at most $m / 100$ times as an initial edge of some $\operatorname{CS}\left(U(b), U(a)^{+}\right)$. Similarly, suppose that $E=U W$ occurs in $C S\left(U(b), U(a)^{+}\right)$, but not as an initial edge. Then U lies in the interior of the sequence and altogether E can occur at most $m / 100$ times in this way. It follows that $s_{E} \leq 2 \cdot m / 100=m / 50$.

Let $J \subseteq\{1, \ldots, 50\}$ be a set of size 5 so that Q has style J. Without loss of generality, we may assume that $J=\{1, \ldots, 5\}$. Let B_{E} be the bipartite subgraph of $\mathcal{B}(R)_{P E}$ which corresponds to E. Let B_{E}^{\prime} be the induced bipartite subgraph of B_{E} of style $\{6, \ldots, 29\}$. (So if $E=U W$ then B_{E}^{\prime} is the subgraph of B_{E} induced by $U(6) \cup \cdots \cup U(29)$ and $W(6) \cup \cdots \cup W(29)$, where $U(1), \ldots, U(50)$ are the clusters in \mathcal{P}^{\prime} contained in U.)

For each edge E of R in turn, we choose a matching M_{E} of size s_{E} in B_{E}^{\prime} such that M_{E} avoids all matchings chosen previously. To see that this can be done, recall from (PE2) that B_{E} is $\left(\varepsilon, d^{\prime} / k, 2 d^{\prime} / d k\right)$-regular. Since the size of the vertex classes of B_{E}^{\prime} is precisely $24 / 50$ times the size of the vertex classes of B_{E}, this implies that B_{E}^{\prime} is still $\left(3 \varepsilon, d^{\prime} / k, 6 d^{\prime} / d k\right)$-regular. Thus Lemma 4.12(i) implies that B_{E}^{\prime} contains a matching M_{E}^{\prime} of size $(1-3 \varepsilon) \cdot 24 m / 50 \geq 23 m / 50$. But (8.2) implies that at most $2 \cdot 21 m / 100=21 m / 50$ edges of M_{E}^{\prime} are incident to an edge of a previously chosen matching (the extra factor 2 comes from the fact that there is a contribution from both endclusters of E). So we can indeed find the required matchings M_{E}.

Let Q_{*} consist of the edges of $Q^{\text {basic }}$ together with the edges in the matchings M_{E} (for all edges E of R). So Q_{*} is a path system whose style is $\{1, \ldots, 29\}$.

Let $Q^{\text {in }}$ denote the set of final vertices of the edges in Q_{*} and let $Q^{\text {out }}$ denote the set of their initial vertices. For each cluster U in \mathcal{P}, let $U^{2}:=U \backslash Q^{i n}$ and $U^{1}:=U \backslash Q^{\text {out }}$. Consider any edge $U W$ on C. Then Proposition 7.3 implies that $\left|U^{1}\right|=\left|W^{2}\right|$. Let $B_{U W}^{*}$ be the bipartite subgraph of $\mathcal{B}(C)_{P E}[U, W]$ induced by U^{1} and W^{2}. Recall from (PE1) that $\mathcal{B}(C)_{P E}[U, W]$ is $\left(\varepsilon, d^{\prime}, \zeta d^{\prime}, 2 d^{\prime} / d\right)$-superregular. Together with the facts that $B_{U W}^{*}$ contains all vertices of $U \cup W$ of style $30, \ldots, 50$ and that \mathcal{P}^{\prime} is an $\left(d^{\prime}\right)^{2}$-uniform refinement of \mathcal{P} this implies that $B_{U W}^{*}$ is still $\left(3 \varepsilon, d^{\prime}, \zeta d^{\prime} / 3,6 d^{\prime} / d\right)$-superregular. So Lemma 4.12(ii) implies that $B_{U W}^{*}$ contains a perfect matching $M_{U W}$. The union of all the $M_{U W}$ (over all edges $U W$ of C) together with all the edges of Q_{*} forms a 1-factor F of $Q^{\text {basic }} \cup P E$.

Since Q_{*} is a path system, each cycle of F has a vertex in U^{1} for some cluster U in \mathcal{P}. Now apply Lemma 6.4 with $\mathcal{B}(C)_{P E}, F, C, E(C), U^{1}$ and U^{2} playing the roles of G, F, C, J, V_{i}^{1} and V_{i}^{2} in order to modify F into a Hamilton cycle D^{\prime} of
 Then Observation 7.4 implies that $D:=\left(D^{\prime}\right)^{\text {orig }}$ is a Hamilton cycle of $G=G^{\text {orig }}$, as required.

We obtain the following lemma by repeated applications of Lemma 8.1 and 8.3.
Lemma 8.4. Suppose that $0<1 / n \ll r / m \ll d^{\prime} \ll 1 / k \ll \varepsilon \ll 1 / \ell^{*} \ll d \ll \nu \ll$ $\tau \ll \alpha, \theta \leq 1$ and that $d \ll \zeta \leq 1 / 2$. Let $s:=10^{7} / \nu^{2}$. Suppose that $m / 50,50 k /(s-$ 1) $\in \mathbb{N}$. Let $\left(G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ be a consistent ($\left.\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system with $|G|=n$. Let \mathcal{P}^{\prime} be a $\left(d^{\prime}\right)^{2}$-uniform 50 -refinement of \mathcal{P}. Let H be an r-factor of G. Let $C B_{1}, \ldots, C B_{r}$ be r exceptional factors with parameters $(50,(s-1) / 50)$ with respect to C, \mathcal{P}^{\prime}. Let $P E$ be a path system extender with parameters $\left(\varepsilon, d, d^{\prime}, \zeta\right)$ for C, R. Suppose that $H, P E$ and the original versions of $C B_{1}, \ldots, C B_{r}$ are pairwise edge-disjoint. Then G contains edge-disjoint Hamilton cycles $C_{1}, \ldots, C_{s r}$ such that
(i) altogether $C_{1}, \ldots, C_{s r}$ contain all edges of $H \cup C B_{1}^{\text {orig }} \cup \cdots \cup C B_{r}^{\text {orig }}$;
(ii) each C_{i} lies in $P E \cup H \cup C B_{1}^{\text {orig }} \cup \cdots \cup C B_{r}^{\text {orig }}$.

Proof. Consider a 1-factorization F_{1}, \ldots, F_{r} of H (which exists by Proposition 6.1). So each F_{j} contains precisely one exceptional cover (and no other original exceptional edges). For each $j=1, \ldots, r$ apply Lemma 8.1 with F_{j} and $C B_{j}$ playing the roles of H and $C B$ to obtain path systems $Q_{j, 1}, \ldots, Q_{j, s}$ as described there. Relabel all these path systems as $Q_{1}, \ldots, Q_{s r}$. Note that the Q_{i} form a decomposition of the edges of $H \cup C B_{1}^{\text {orig }} \cup \cdots \cup C B_{r}^{\text {orig }}$.

Apply Lemma 8.3 to obtain a Hamilton cycle C_{1} in G with $Q_{1} \subseteq C_{1} \subseteq P E \cup Q_{1}$. Repeat this for each of $Q_{2}, \ldots, Q_{s r}$ in turn, with the subdigraph $P E^{\prime}$ of $P E$ obtained by deleting all the edges in the Hamilton cycles found so far playing the role of $P E$. Note that at each stage we have removed at most $s r=10^{7} r / \nu^{2} \leq \varepsilon^{2} d^{\prime} m / k$ outedges and at most $s r \leq \varepsilon^{2} d^{\prime} m / k$ inedges at each vertex of $P E$. So using Proposition 4.8 it is easy to check that $P E^{\prime}$ is still a path system extender with parameters $\left(2 \varepsilon, d, d^{\prime}, \zeta / 2\right)$. Thus we can indeed apply Lemma 8.3 in each step.
8.3. The preprocessing graph. Let G be the digraph given in Theorem 1.2. As described at the beginning of Section 8.2, the purpose of Lemma 8.4 was to replace the leftover H of an almost decomposition of G by a digraph H^{\prime} on $V(G) \backslash V_{0}$, i.e. by a digraph in which every exceptional vertex can be thought of as being isolated. This digraph H^{\prime} is obtained from PE by deleting all the edges in the Hamilton cycles guaranteed by Lemma 8.4. But this means that H^{\prime} will not be regular since $P E$ was not regular. However, for later purposes we want to assume that this leftover H^{\prime} is regular. So we will need to add another digraph $P G^{\diamond}$ to H^{\prime} whose degree sequence complements that of $P E$. Then the union of H^{\prime} and $P G^{\diamond}$ will be regular. So the preprocessing graph defined below contains all the digraphs which we need in order to replace H by a regular digraph on $V(G) \backslash V_{0}$ not containing any exceptional edges.

Suppose that (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme and that $m / 50,50 k /(s-1) \in$ \mathbb{N}. Let \mathcal{P}^{\prime} be an ε-uniform 50 -refinement of \mathcal{P}. A preprocessing graph $P G$ with parameters ($s, \varepsilon, d, r^{\prime}, r^{\prime \prime}, r, \zeta$) (with respect to $C, R, \mathcal{P}^{\prime}$) is the edge-disjoint union of two graphs $P G^{*}$ and $P G^{\diamond}$ satisfying the following conditions:
(PG1) $P G^{*}$ is the edge-disjoint union of a path system extender $P G_{P E}$ with parameters ($\varepsilon, d, r^{\prime} / m, \zeta$) (for C, R) and of r exceptional factors $C B_{1}, \ldots, C B_{r}$ with parameters $(50,(s-1) / 50)$ (with respect to C, \mathcal{P}^{\prime}). Moreover, the original versions of these r exceptional factors are pairwise edge-disjoint.
(PG2) $P G^{\diamond}$ is a spanning subgraph of $G-V_{0}$ which satisfies $d_{P G^{\diamond}}^{+}(x)=r^{\prime \prime}-d_{P G^{*}}^{+}(x)$ and $d_{P G^{\diamond}}^{-}(x)=r^{\prime \prime}-d_{P G^{*}}^{-}(x)$.
Note that $P G$ is a spanning $r^{\prime \prime}$-regular subgraph of $G^{\text {basic }}$. Moreover, in $P G^{\text {orig }}$ we have

$$
\begin{equation*}
d^{ \pm}(x)=r(s-1) \quad \forall x \in V_{0} \quad \text { and } \quad d^{ \pm}(y)=r^{\prime \prime} \quad \forall y \in V(G) \backslash V_{0} . \tag{8.3}
\end{equation*}
$$

Note also that (8.1) implies that

$$
\begin{equation*}
\Delta\left(P G^{*}\right) \leq \frac{8 r^{\prime}}{d}+2 r . \tag{8.4}
\end{equation*}
$$

The following corollary is an immediate consequence of Lemma 8.4.
Corollary 8.5. Suppose that $0<1 / n \ll r / m \ll r^{\prime} / m \ll r^{\prime \prime} / m \ll 1 / k \ll$ $\varepsilon \ll 1 / \ell^{*} \ll d \ll \nu \ll \tau \ll \alpha, \theta \leq 1$ and that $d \ll \zeta \leq 1 / 2$. Let $s:=$ $10^{7} / \nu^{2}$. Suppose that $m / 50,50 k /(s-1) \in \mathbb{N}$. Let $\left(G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ be a consistent $\left(\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system with $|G|=n$. Let \mathcal{P}^{\prime} be a $\left(r^{\prime} / m\right)^{2}$-uniform 50refinement of \mathcal{P}. Let H be an r-factor of G. Let $P G$ be a preprocessing graph with respect to $C, R, \mathcal{P}^{\prime}$ with parameters ($s, \varepsilon, d, r^{\prime}, r^{\prime \prime}, r, \zeta$). Suppose that H and $P G^{\text {orig }}$ are edge-disjoint. Then G contains edge-disjoint Hamilton cycles $C_{1}, \ldots, C_{r s}$ such that the following conditions hold:
(i) Altogether $C_{1}, \ldots, C_{r s}$ cover all edges of H and $C_{i} \subseteq H \cup P G^{\text {orig }}$ for each $i=1, \ldots, r s$.
(ii) Every vertex $x \in V_{0}$ is isolated in $P G^{\prime}:=P G^{\text {orig }} \backslash E\left(C_{1} \cup \cdots \cup C_{r s}\right)$ and every vertex $x \in V(G) \backslash V_{0}$ has in- and outdegree $r^{\prime \prime}-(s-1) r$ in $P G^{\prime}$.

Proof. Apply Lemma 8.4 with $P G_{P E}$ playing the role of $P E$. This gives us edgedisjoint Hamilton cycles $C_{1}, \ldots, C_{r s}$ of G as described there. So in particular condition (i) of Corollary 8.5 holds. By (i) of Lemma 8.4, all the $C_{1}, \ldots, C_{r s}$ together cover all the original exceptional edges of $P G^{\text {orig }}$ (as they cover $C B_{1}^{\text {orig }}, \ldots, C B_{r}^{\text {orig }}$ and each original exceptional edge in $P G^{\text {orig }}$ is contained in one of $\left.C B_{1}^{\text {orig }}, \ldots, C B_{r}^{\text {orig }}\right)$. Since V_{0} is an independent set in G by (CSys9), it follows that every vertex $x \in V_{0}$ is isolated in $P G^{\prime}$. Moreover, every vertex $x \in V(G) \backslash V_{0}$ has indegree $r+r^{\prime \prime}$ in $H \cup P G^{\text {orig }}$ and indegree $r s$ in $C_{1} \cup \cdots \cup C_{r s}$. So the indegree of x in $P G^{\prime}$ is $r+r^{\prime \prime}-r s=r^{\prime \prime}-(s-1) r$. Similarly, every vertex in $V(G) \backslash V_{0}$ has outdegree $r^{\prime \prime}-(s-1) r$ in $P G^{\prime}$. Altogether, this implies condition (ii) of Corollary 8.5.

The next lemma shows that one can find a preprocessing graph within a consistent system.

Lemma 8.6. Suppose that $0<1 / n \ll r / m \ll d^{\prime} \ll d^{\prime \prime} \ll 1 / k \ll \varepsilon \ll \varepsilon^{\prime} \ll$ $1 / \ell^{*} \ll d \ll \nu \ll \tau \ll \alpha, \theta \leq 1$ and that $d \ll \zeta \leq 1 / 2$. Let $s:=10^{7} / \nu^{2}$. Suppose that $m / 50,50 \ell^{*} /(s-1) \in \mathbb{N}$. Let $\left(G, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ be a consistent ($\left.\ell^{*}, k, m, \varepsilon, d, \nu, \tau, \alpha, \theta\right)$-system with $|G|=n$. Let \mathcal{P}^{\prime} be an ε-uniform 50-refinement of \mathcal{P}. Then $G^{\text {basic }}$ contains a preprocessing graph with respect to $C, R, \mathcal{P}^{\prime}$ with parameters ($s, \varepsilon^{\prime}, d, d^{\prime} m, d^{\prime \prime} m, r, \zeta$).
Proof. Apply Lemma 7.6 to find r exceptional factors $C B_{1}, \ldots, C B_{r}$ with parameters $(50,(s-1) / 50)$ (with respect to C, \mathcal{P}^{\prime}) whose original versions $C B_{1}^{\text {orig }}, \ldots, C B_{r}^{\text {orig }}$ are pairwise edge-disjoint. (So we apply the lemma with $K:=50, L:=(s-1) / 50$ and $r_{0}:=r$.) Let G_{1} be obtained from G by deleting all the edges in $C B_{1}^{\text {orig }}, \ldots, C B_{r}^{\text {orig }}$. Thus G_{1} is obtained from G by deleting at most $(s-1) r$ outedges and at most $(s-1) r$ inedges at each vertex. Since $(s-1) r \leq \varepsilon m$ we can apply Lemma 7.1 with ε playing the role of ε^{\prime} in Lemma 7.1 to see that ($G_{1}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C$) is still a consistent ($\left.\ell^{*}, k, m, 3 \sqrt{\varepsilon}, d, \nu / 2, \tau, \alpha / 2, \theta / 2\right)$-system. Apply Lemma 8.2 to find a path system extender $P G_{P E}$ in G_{1} with parameters $\left(\varepsilon^{\prime}, d, d^{\prime}, \zeta\right.$) (with respect to C, R). Let $P G^{*}$ be the union of $P G_{P E}$ and $C B_{1}, \ldots, C B_{r}$.

To find $P G^{\diamond}$, for every vertex $x \in V(G) \backslash V_{0}$ let $n_{x}^{+}:=d^{\prime \prime} m-d_{P G^{*}}^{+}(x)$ and $n_{x}^{-}:=d^{\prime \prime} m-d_{P G^{*}}^{-}(x)$. Note that (8.4) implies that

$$
\begin{equation*}
\Delta\left(P G^{*}\right) \leq 8 d^{\prime} m / d+2 r \leq 9 d^{\prime} m / d \tag{8.5}
\end{equation*}
$$

So for every vertex $x \in V(G) \backslash V_{0}$ we have that

$$
\begin{equation*}
\left(1-\frac{9 d^{\prime}}{d d^{\prime \prime}}\right) d^{\prime \prime} m=d^{\prime \prime} m-\frac{9 d^{\prime} m}{d} \leq n_{x}^{+}, n_{x}^{-} \leq d^{\prime \prime} m \tag{8.6}
\end{equation*}
$$

Let G_{2} be the digraph obtained from $G-V_{0}$ by deleting all the edges in $P G^{*}$. Then (8.5) and the fact that G is a robust (ν, τ)-outexpander with $\delta^{0}(G) \geq \alpha n$ imply that G_{2} is still a robust $(\nu / 2,2 \tau)$-outexpander with $\delta^{0}\left(G_{2}\right) \geq \alpha n / 2$. Together with (8.6) this shows that we can apply Lemma 5.2 with $q=1$, with G_{2} playing the role of $G=Q$, and with $d^{\prime \prime} m /\left|G_{2}\right|, 9 d^{\prime} / d d^{\prime \prime}$ playing the roles of ξ, ε to obtain a spanning subgraph $P G^{\diamond}$ of G_{2} satisfying $d_{P G^{\diamond}}^{ \pm}(x)=n_{x}^{ \pm}$for every vertex x. Then $P G^{*} \cup P G^{\diamond}$ is a preprocessing graph as required.

The following lemma decomposes the leftover $P G^{\prime}$ of the preprocessing graph obtained from Corollary 8.5 into path systems H_{i}. In Section 9 , these path systems will be extended into Hamilton cycles using the 'chord absorber'.

Suppose that $k / g \in \mathbb{N}$ and that $C=V_{1} \ldots V_{k}$. Consider the canonical interval partition of C into g edge-disjoint intervals of equal length and for each $i=1, \ldots, g$ let X_{i} denote the union of all clusters in the i th interval. So $X_{i}=V_{(i-1) k / g+1} \cup$ $\cdots \cup V_{i k / g+1}$. We say that an edge of $G-V_{0}$ has double-type $i j$ if its endvertices are contained in $X_{i} \cup X_{j}$. So the number of double-types is $\binom{g}{2}$. A digraph has double-type $i j$ if all its edges have double-type $i j$.

Lemma 8.7. Suppose that $0<1 / n \ll 1 / k, \varepsilon, d, 1 / q^{*}, 1 / g \ll 1$ and that $2 q^{*} / 3 g(g-$ $1), k / g \in \mathbb{N}$. Let (G, \mathcal{P}, R, C) be a (k, m, ε, d)-scheme with $|G|=n$ and $C=V_{1} \ldots V_{k}$.

Suppose that H is a 1-regular digraph on $V_{1} \cup \cdots \cup V_{k}$. Then we can decompose $E(H)$ into q^{*} (possibly empty) matchings $H_{1}, \ldots, H_{q^{*}}$ such that the following conditions hold.
(i) For all $i=1, \ldots, q^{*}, H_{i}$ consists of at most $2 g^{2} \mathrm{~km} / q^{*}$ edges.
(ii) If $|i-j| \leq 10$, then H_{i} and H_{j} are vertex-disjoint, with the indices considered modulo q^{*}.
(iii) Each H_{i} consists entirely of edges of the same double-type and for each $t \in\binom{g}{2}$ the number of H_{i} of double-type t is $q^{*} /\binom{g}{2}$.

Proof. First split the edges of H into $2 q^{*} / 3 g(g-1)$ sets whose sizes are as equal as possible. Now we arbitrarily split each of these sets into three matchings. Finally, we split each of these matchings further into submatchings consisting of edges of the same double-type. Since there are $\binom{g}{2}$ different double-types this gives $\binom{g}{2} \cdot 3$. $2 q^{*} / 3 g(g-1)=q^{*}$ matchings, which we denote by $H_{1}, \ldots, H_{q^{*}}$. Moreover, each H_{i} consists of at most $2 g^{2} \mathrm{~km} / q^{*}$ edges. Thus the H_{i} satisfy (i) and (iii).

Given a double-type $i j$, let $c l(i j)$ denote the set of all those numbers s for which at least one of $s-1, s, s+1$ belongs to $\{i, j\}$. (So $\operatorname{cl}(23)=\{1,2,3,4\}$ and $\operatorname{cl}(27)=$ $\{1,2,3,6,7,8\}$.)

To obtain (ii), we first show the following claim: there is a cyclic ordering of the double-types so that if two double-types $a b$ and $c d$ have distance at most 10 in the ordering, then $c l(a b) \cap c l(c d)=\emptyset$.

To prove the claim, consider the following auxiliary graph A : the vertices are the double-types (i.e. the unordered pairs of numbers in $\{1, \ldots, g\}$). We connect two double-types $a b$ and $c d$ by an edge if $c l(a b) \cap c l(c d)=\emptyset$. Then A has minimum degree at least $\binom{g}{2}-6(g-1) \geq \frac{10}{11}\binom{g}{2}$. So A contains the 10 th power of a Hamilton cycle by Theorem 6.3. The ordering of the double-types on the Hamilton cycle gives the required ordering of the double-types.

We now relabel the H_{i} as follows: first we take one H_{i} of each double-type in this ordering of the double-types, and then repeat with another H_{i} of each double-types and so on.

9. The chord Absorbing step

Recall from the previous section that we have a 'leftover' digraph G^{\prime} which is a regular subdigraph of $G-V_{0} .\left(G^{\prime}\right.$ is a subdigraph of the preprocessing graph.) The aim of this section is to define and use a 'chord absorber' $C A$ in $G^{\text {basic }}$ so that
(a) $G^{\prime} \cup C A$ contains a collection of Hamilton cycles C_{i} which together cover all edges of G^{\prime};
(b) removing the C_{i} from $C A$ leaves a digraph which is a blow-up of the cycle $C=$ $V_{1} \ldots V_{k}$
(c) each C_{i} contains exactly one complete exceptional sequence and thus $C_{i}^{\text {orig }}$ corresponds to a Hamilton cycle in G.
Similarly to the previous section, we first split G^{\prime} into 1-factors. Then we split each such 1-factor H into small matchings H_{i} (as described in Lemma 8.7). Then each H_{i} is extended into a Hamilton cycle C_{i} using edges of the chord absorber $C A$. This
is achieved mainly by Lemma 9.5. The main difficulty compared to the argument in the previous section is that we need to achieve (b).

The chord absorber consists of a blow-up of the cycle $C=V_{1} \ldots V_{k}$, some exceptional factors as well as some additional edges which are constructed via a 'universal walk'. These additional edges will be used to 'balance out' the edges in the H_{i}. The universal walk U will be constructed in the next subsection using the chord sequences defined in Section 7.2.

It turns out that a natural way to construct the universal walk U and $C A$ would be the following (where we ignore requirement (c) for the moment): for each pair V_{i}, V_{i+1} of consecutive clusters on the cycle C, we fix a shifted walk $S W_{i}$ from V_{i} to V_{i+1} (recall these were also defined in Section 7.2). We then let U be the concatenation of all the $S W_{i}$ with $1 \leq i \leq k$. Then it is not hard to check that U is a closed walk which visits each cluster the same number of times. $C A$ is then defined to be the union of a regular blow-up $\mathcal{B}(C)$ of C (which is also ε-regular) together with a regular blow-up $\mathcal{B}(U)$ of U. As a step towards extending each H_{i} into a Hamilton cycle, we balance out each edge $e=x_{j} x_{j^{\prime}}$ of H_{i} by adding a suitable shifted walk $S W_{j j^{\prime}}$ (see also the proof of Lemma 8.3 for a similar argument). We do this as follows: for any j, let $s(j)$ be such that $x_{j} \in V_{s(j)}$. Then we add the shifted walk $S W_{j j^{\prime}}$ consisting of the concatenation $S W_{s\left(j^{\prime}\right)} S W_{s\left(j^{\prime}\right)+1} \ldots S W_{s(j)-1} S W_{s(j)}$. If we replace each edge E of each $S W_{j j^{\prime}}$ used for H_{i} with an edge from the bipartite subgraph of $\mathcal{B}(U)$ corresponding to E, then the union of these edges together with H_{i} satisfy a 'local balance property' (as described in Proposition 7.3) and can thus be extended into a Hamilton cycle using edges of $\mathcal{B}(C)$. The crucial fact now is that since H is a 1-factor, it turns out that altogether (i.e. when considering the union of the H_{i}), each $S W_{j}$ is used the same number of times in this process. So for each edge E of U, overall we use the same number t of edges from the bipartite subgraph of $\mathcal{B}(U)$ corresponding to E. Thus t is independent of E. This means that we can indeed choose $\mathcal{B}(U)$ to be regular, which will enable us to satisfy (b).

Unfortunately, the above construction of U makes U too long - U would visit each cluster more than k times, which would create major technical difficulties in the proof of Lemma 9.5. So in Lemma 9.1 we present a 'compressed' construction (based on chord sequences) which has the same set of chord edges as the one given above, but which visits each cluster only ℓ^{\prime} times, where $1 / k \ll \varepsilon \ll 1 / \ell^{\prime}$.
9.1. Universal walks, setups and chord absorbers. Suppose that R is a digraph whose vertices are k clusters V_{1}, \ldots, V_{k} and that $C:=V_{1} \ldots V_{k}$ is a Hamilton cycle in R. A closed walk U in R is a universal walk for C with parameter ℓ^{\prime} if the following conditions hold:
(U1) For every $i=1, \ldots, k$ there is a chord sequence $\operatorname{ECS}\left(V_{i}, V_{i+1}\right)$ from V_{i} to V_{i+1} such that U contains all edges of all these chord sequences (counted with multiplicities) and all remaining edges of U lie on C.
(U2) Each $\operatorname{ECS}\left(V_{i}, V_{i+1}\right)$ consists of at most $\sqrt{\ell^{\prime}} / 2$ edges.
(U3) U enters every cluster V_{i} exactly ℓ^{\prime} times and it leaves every cluster V_{i} exactly ℓ^{\prime} times.
We will often view U as a multidigraph. Whenever U is a universal walk for C with parameter ℓ^{\prime}, then $\operatorname{ECS}\left(V_{i}, V_{i+1}\right)$ will always refer to the chord sequence from V_{i}
to V_{i+1} which is contained in U. We will call $E C S\left(V_{i}, V_{i+1}\right)$ an elementary chord sequence from V_{i} to V_{i+1} and the edges in $\operatorname{ECS}\left(V_{1}, V_{2}\right) \cup \cdots \cup E C S\left(V_{k}, V_{1}\right)$ the chord edges of U.

Note that condition (U1) means that if an edge $V_{i} V_{j} \in E(R) \backslash E(C)$ occurs in total 5 times (say) in $\operatorname{ECS}\left(V_{1}, V_{2}\right), \ldots, E C S\left(V_{k}, V_{1}\right)$ then it occurs precisely 5 times in U. We will identify each occurrence of $V_{i} V_{j}$ in $\operatorname{ECS}\left(V_{1}, V_{2}\right), \ldots, \operatorname{ECS}\left(V_{k}, V_{1}\right)$ with a (different) occurrence of $V_{i} V_{j}$ in U. Note that the edges of $E C S\left(V_{i}, V_{i+1}\right)$ are allowed to appear in a different order within $\operatorname{ECS}\left(V_{i}, V_{i+1}\right)$ and within U.

Suppose that F is a chord edge of U and that F^{\prime} is the next chord edge of U. We let $P(F)$ denote the subwalk of U from F to F^{\prime} (without the edges F and F^{\prime}). So $P(F)$ contains no chord edges and if F_{1} and F_{2} are two occurrences of the same chord edge on U then $P\left(F_{1}\right)$ and $P\left(F_{2}\right)$ might be different from each other. We say that the edges in $P(F)$ are the cyclic edges associated with F. The augmented elementary chord sequence $\operatorname{AECS}\left(V_{i}, V_{i+1}\right)$ consists of all edges F in the elementary chord sequence $\operatorname{ECS}\left(V_{i}, V_{i+1}\right)$ together with all the edges in the corresponding subwalks $P(F)$. We order the edges of $\operatorname{AECS}\left(V_{i}, V_{i+1}\right)$ by taking the ordered sequence $E C S\left(V_{i}, V_{i+1}\right)$ and by inserting the edges of $P(F)$ (in their order on U) after each edge $F \in E C S\left(V_{i}, V_{i+1}\right)$. Thus the collection of all augmented elementary chord sequences $\operatorname{AECS}\left(V_{i}, V_{i+1}\right)$ forms a partition of the edges of U into k parts. But $\operatorname{AECS}\left(V_{i}, V_{i+1}\right)$ might not necessarily be connected (i.e. it might not form a walk in R).

Lemma 9.1. Suppose that $0<1 / k \ll \nu \ll \tau \ll \alpha<1$. Suppose that R is a robust (ν, τ)-outexpander whose vertices are k clusters V_{1}, \ldots, V_{k} and $\delta^{0}(R) \geq \alpha k$. Let $C:=V_{1} \ldots V_{k}$ be a Hamilton cycle in R. Then there exists a universal walk U for C with parameter $\ell^{\prime}:=36 / \nu^{2}$.

Proof. Let $\mathcal{P}:=\left\{V_{1}, \ldots, V_{k}\right\}$. Our first aim is to choose the elementary chord sequences $E C S\left(V_{j}, V_{j+1}\right)$ greedily in such a way that they satisfy (U2). Suppose that we have already chosen $\operatorname{ECS}\left(V_{1}, V_{2}\right), \ldots, E C S\left(V_{j-1}, V_{j}\right)$ such that each of them contains at most $3 / \nu=\sqrt{\ell^{\prime}} / 2$ edges and together the interiors of these elementary chord sequences visit every cluster in \mathcal{P} at most $2 \ell^{\prime} / 3+3 / \nu$ times. (Here the number of visits for a cluster V_{i} is the sum of the number of entries into V_{i} and the number of exits from V_{i}.) We say that a cluster in \mathcal{P} is $f u l l$ if it is visited at least $2 \ell^{\prime} / 3$ times by the interiors of the previously chosen chord sequences. Since each elementary chord sequence contains at most $3 / \nu$ edges, it follows that the number of full clusters is at most $2 \cdot(3 j / \nu) /\left(2 \ell^{\prime} / 3\right) \leq 9 k / \nu \ell^{\prime}=\nu k / 4$. Let \mathcal{V}^{\prime} denote the set of clusters in \mathcal{P} which are full. Then we can apply Lemma 7.2 to obtain an (elementary) chord sequence $\operatorname{ECS}\left(V_{j}, V_{j+1}\right)$ which has at most $3 / \nu$ edges and whose interior avoids \mathcal{V}^{\prime}. We continue in this way to choose $\operatorname{ECS}\left(V_{1}, V_{2}\right), \ldots, E C S\left(V_{k}, V_{1}\right)$ such that together their interiors visit every cluster in \mathcal{P} at most $2 \ell^{\prime} / 3+3 / \nu$ times and let U^{*} be the union of these chord sequences. Then U^{*} visits every cluster in \mathcal{P} at most $2 \ell^{\prime} / 3+3 / \nu+2 \leq 3 \ell^{\prime} / 4$ times. Thus U^{*} satisfies (U2) and the first part of (U1).

Our next aim is to add further edges to U^{*} so that we will be able to satisfy (U3) and the second part of (U1). For each $j=1, \ldots, k$, let $n_{j}^{\text {out }}$ denote the number of edges of U^{*} which leave the cluster V_{j} and let $n_{j}^{\text {in }}$ denote the number of edges of U^{*}
which enter the cluster V_{j}. We claim that for each j, we have $n_{j}^{\text {out }}=n_{j+1}^{\text {in }}$. To see this, suppose that $V W$ is an edge of an elementary chord sequence which is not its final edge. Then the next edge of this elementary chord sequence leaves the cluster W^{-}preceding W on C. If $V W$ is the final edge of the elementary chord sequence, then the first edge of the next elementary chord sequence will leave W^{-}. This proves the claim.

Now let $\ell_{j}:=\ell^{\prime}-1-n_{j}^{\text {in }}$ for each $j=1, \ldots, k$. Note that $\ell_{j}>0$. Let U^{\triangleright} be obtained from U^{*} by adding exactly ℓ_{j} copies of the edge $V_{j-1} V_{j}$ for all j. The above claim implies that U^{\diamond} is $\left(\ell^{\prime}-1\right)$-regular.

Finally we add another copy of each edge of C to U^{\diamond} and denote the resulting multidigraph by U. So now U satisfies (U1)-(U3). It remains to show that the edges in U can be ordered so that the resulting sequence forms a (connected) closed walk in R. To see this, note that since U^{\diamond} is an $\left(\ell^{\prime}-1\right)$-regular multidigraph, it has a decomposition into 1 -factors by Proposition 6.1. We order the edges of U as follows: We first traverse all cycles of the 1-factor decomposition of U^{\diamond} which contain the cluster V_{1}. Next, we traverse the edge $V_{1} V_{2}$ of C. Next we traverse all those cycles of the 1-factor decomposition which contain V_{2} and which have not been traversed so far. Next we traverse the edge $V_{2} V_{3}$ of C and so on until we reach V_{1} again. This completes the construction of U.
$\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is called an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-setup if (G, \mathcal{P}, R, C) is a (k, m, ε, d) scheme and the following conditions hold:
(ST1) U is a universal walk for $C=V_{1} \ldots V_{k}$ with parameter ℓ^{\prime} and \mathcal{P}^{\prime} is an ε uniform ℓ^{\prime}-refinement of \mathcal{P}.
(ST2) Let $V_{j}^{1}, \ldots, V_{j}^{\ell^{\prime}}$ denote the clusters in \mathcal{P}^{\prime} which are contained in V_{j} (for each $j=1, \ldots, k)$. Then U^{\prime} is a closed walk on the clusters in \mathcal{P}^{\prime} which is obtained from U as follows: When U visits V_{j} for the a th time, we let U^{\prime} visit the subcluster V_{j}^{a} (for all $a=1, \ldots, \ell^{\prime}$).
(ST3) Each edge of U^{\prime} corresponds to an $[\varepsilon, \geq d]$-superregular pair in G.
Since U visits every cluster in \mathcal{P} precisely ℓ^{\prime} times, it follows that U^{\prime} visits every cluster in \mathcal{P}^{\prime} exactly once. So U^{\prime} can be viewed as a Hamilton cycle on the clusters in \mathcal{P}^{\prime}. We call U^{\prime} the universal subcluster walk (with respect to C, U and \mathcal{P}^{\prime}).

Given a digraph T whose vertices are clusters, an (ε, r)-blow-up $\mathcal{B}(T)$ of T is obtained by replacing each vertex V of T with the vertices in the cluster V and replacing each edge $V W$ of T with a bipartite graph $\mathcal{B}(T)[V, W]$ with vertex classes V and W which satisfies the following three properties:

- $\mathcal{B}(T)[V, W]$ is ε-regular.
- All the edges in $\mathcal{B}(T)[V, W]$ are oriented towards the vertices in W.
- The underlying undirected graph of $\mathcal{B}(T)[V, W]$ is r-regular.

An r-blow-up of T is defined similarly: we do not require the bipartite graphs to be ε-regular.

We say that a digraph $C A$ on $V(G) \backslash V_{0}=V_{1} \cup \cdots \cup V_{k}$ is a chord absorber for C, U^{\prime} with parameters $\left(\varepsilon, r, r^{\prime}, r^{\prime \prime}, q, f\right)$ if $C A$ is the union of two digraphs $\mathcal{B}(C)$ and $\mathcal{B}\left(U^{\prime}\right)$ on $V(G) \backslash V_{0}$ satisfying conditions (CA1)-(CA3) below. In (CA1), \mathcal{P}^{*} is a
(q / f)-refinement of \mathcal{P}. For (CA2), recall from (ST2) that \mathcal{P}^{\prime} denotes the partition whose clusters correspond to the vertices of U^{\prime}.
(CA1) $\mathcal{B}(C)$ is the union of $\mathcal{B}(C)^{*}$ and $C A^{\text {exc }} 。 \mathcal{B}(C)^{*}$ is an (ε, r)-blow-up of C. $C A^{\text {exc }}$ consists of $r^{\prime \prime}$ exceptional factors with parameters $(q / f, f)$ (with respect to C, \mathcal{P}^{*}) whose original versions are pairwise edge-disjoint.
(CA2) $\mathcal{B}\left(U^{\prime}\right)$ is an r^{\prime}-blow-up of U^{\prime}. Moreover, $\mathcal{B}\left(U^{\prime}\right)$ has the following stronger property: for every cluster A in \mathcal{P}^{\prime} there is a partition A_{1}, \ldots, A_{4} of A into sets of equal size such that for every edge $A B$ of U^{\prime} and each $j=1, \ldots, 4$ there are r^{\prime} edge-disjoint perfect matchings between A_{j} and B_{j} such that $\mathcal{B}\left(U^{\prime}\right)[A, B]$ is the union of all these $4 r^{\prime}$ matchings.
(CA3) $\mathcal{B}(C)^{*}, \mathcal{B}\left(U^{\prime}\right)$ and the original version of $C A^{\mathrm{exc}}$ are pairwise edge-disjoint subdigraphs of G.
Thus $C A$ is a $\left(r+r^{\prime}+r^{\prime \prime}\right)$-regular subdigraph of $G^{\text {basic. However, in the original }}$ version $C A^{\text {orig }}=\mathcal{B}(C)^{*} \cup \mathcal{B}\left(U^{\prime}\right) \cup\left(C A^{\text {exc }}\right)^{\text {orig }}$ of $C A$ we have

$$
\begin{equation*}
d^{ \pm}(x)=r^{\prime \prime} q \quad \forall x \in V_{0} \quad \text { and } \quad d^{ \pm}(y)=r+r^{\prime}+r^{\prime \prime} \quad \forall y \in V(G) \backslash V_{0} . \tag{9.1}
\end{equation*}
$$

9.2. Bi-universal walks, bi-setups and chord absorbers. Suppose that R is a digraph whose vertices are k clusters V_{1}, \ldots, V_{k}, where k is even, and that $C:=$ $V_{1} \ldots V_{k}$ is a Hamilton cycle in R. Let $\mathcal{V}_{\text {even }}$ denote the set of all those clusters V_{i} for which i is even and define $\mathcal{V}_{\text {odd }}$ similarly. We will now define a bi-universal walk, which is an analogue of a universal walk for a bipartite setting. The difference to Section 9.1 is that now we only assume the existence of a chord sequence from V to V^{\prime} whenever $V, V^{\prime} \in \mathcal{V}_{\text {even }}$ or $V, V^{\prime} \in \mathcal{V}_{\text {odd }}$. Roughly speaking, if H is a bipartite graph whose vertex classes are $\bigcup \mathcal{V}_{\text {even }}$ and $\cup \mathcal{V}_{\text {odd }}, U$ is a bi-universal walk and U^{\prime} is a bi-universal subcluster walk, then a chord absorber for C, U^{\prime} can still absorb all edges of H. (Note that C is also bipartite with vertex classes $\mathcal{V}_{\text {even }}$ and $\mathcal{V}_{\text {odd }}$.) This will only be used in [14] and not in this paper.

A closed walk U in R is a bi-universal walk for C with parameter ℓ^{\prime} if the following conditions hold:
(BU1) The edge set of U has a partition into $U_{\text {odd }}$ and $U_{\text {even }}$. For every $i=1, \ldots, k$ there is a chord sequence $E C S^{b i}\left(V_{i}, V_{i+2}\right)$ from V_{i} to V_{i+2} such that $U_{\text {even }}$ contains all edges of all these chord sequences for even i (counted with multiplicities) and $U_{\text {odd }}$ contains all edges of these chord sequences for odd i. All remaining edges of U lie on C.
(BU2) Each $E C S^{b i}\left(V_{i}, V_{i+2}\right)$ consists of at most $\sqrt{\ell^{\prime}} / 2$ edges.
(BU3) $U_{\text {even }}$ enters every cluster V_{i} exactly $\ell^{\prime} / 2$ times and it leaves every cluster V_{i} exactly $\ell^{\prime} / 2$ times. The same assertion holds for $U_{\text {odd }}$.
Whenever U is a bi-universal walk for C with parameter ℓ^{\prime}, then $E C S^{b i}\left(V_{i}, V_{i+2}\right)$ will always refer to the chord sequence from V_{i} to V_{i+2} which is contained in U. As before, we will call $E C S^{b i}\left(V_{i}, V_{i+2}\right)$ an elementary chord sequence from V_{i} to V_{i+2} and the edges in $E C S^{b i}\left(V_{1}, V_{3}\right) \cup E C S^{b i}\left(V_{2}, V_{4}\right) \cup \cdots \cup E C S^{b i}\left(V_{k}, V_{2}\right)$ the chord edges of U.

If F is a chord edge of U then $P(F)$ is defined as in Section 9.1 and we again call the edges in $P(F)$ are the cyclic edges associated with F. The augmented elementary chord sequence $A E C S^{b i}\left(V_{i}, V_{i+2}\right)$ consists of all edges F in the elementary chord
sequence $E C S^{b i}\left(V_{i}, V_{i+2}\right)$ together with all the edges in the corresponding subwalks $P(F)$. So similarly as in Section 9.1, the collection of all augmented elementary chord sequences $A E C S^{b i}\left(V_{i}, V_{i+2}\right)$ forms a partition of the edges of U into k parts.

We define an ($\left.\ell^{\prime}, k, m, \varepsilon, d\right)$-bi-setup $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ similarly as an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$ setup, the only difference is that U is a bi-universal walk for C (rather than a universal walk). We call U^{\prime} the bi-universal subcluster walk (with respect to C, U and \mathcal{P}^{\prime}). A chord absorber for C, U^{\prime} with parameters $\left(\varepsilon, r, r^{\prime}, r^{\prime \prime}, q, f\right)$ is defined analogously as before.
9.3. Finding chord absorbers. The first lemma of this subsection states that if one is given a setup and one deletes a few edges at every vertex, then one still has a setup with slightly worse parameters.
Lemma 9.2. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \leq \varepsilon^{\prime} \ll d \ll 1 / \ell^{\prime} \ll 1$. Let $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ be an ($\left.\ell^{\prime}, k, m, \varepsilon, d\right)$-setup with $|G|=n$. Let G^{\prime} be a digraph obtained from G by deleting at most $\varepsilon^{\prime} m$ outedges and at most $\varepsilon^{\prime} m$ inedges at every vertex of G. Then $\left(G^{\prime}, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is still a $\left(\ell^{\prime}, k, m,\left(\varepsilon^{\prime}\right)^{1 / 3}, d\right)$-setup. The analogue holds if $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-bi-setup.
Proof. We only consider the case when ($G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}$) is an ($\ell^{\prime}, k, m, \varepsilon, d$)setup. The argument for bi-setups is identical. By Lemma 7.1(ii) $\left(G^{\prime}, \mathcal{P}, R, C\right)$ is still a $\left(k, m, 3 \sqrt{\varepsilon^{\prime}}, d\right)$-scheme. Moreover, (ST1) and (ST2) clearly still hold. So we only need to check that (ST3) still holds with ε replaced by $\left(\varepsilon^{\prime}\right)^{1 / 3}$. But since the clusters in \mathcal{P}^{\prime} have size m / ℓ^{\prime}, Proposition 4.3(iii) implies that each edge of U^{\prime} still corresponds to a $\left[2 \sqrt{\varepsilon^{\prime} \ell^{\prime}}, \geq d\right]$-superregular pair in G^{\prime} (and thus to an $\left[\left(\varepsilon^{\prime}\right)^{1 / 3}, \geq d\right]$ superregular pair).

The next lemma asserts that we can find a blow-up of the cycle C and of the universal subcluster walk U^{\prime} within a setup, so that each edge of C corresponds to a graph which is both regular and superregular and each edge of U^{\prime} corresponds to a regular graph.
Lemma 9.3. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll \varepsilon^{\prime} \ll d \ll 1 / \ell^{\prime} \ll 1$, that $r_{0} / m, r_{0}^{\prime} / m \ll d$ and that $m / 4 \ell^{\prime} \in \mathbb{N}$. If $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$ setup with $|G|=n$, then $G-V_{0}$ contains edge-disjoint spanning subdigraphs $\mathcal{B}(C)$ and $\mathcal{B}\left(U^{\prime}\right)$ such that
(i) $\mathcal{B}(C)$ is an $\left(\varepsilon^{\prime}, r_{0}\right)$-blow-up of C;
(ii) $\mathcal{B}\left(U^{\prime}\right)$ is an r_{0}^{\prime}-blow-up of U^{\prime} which satisfies (CA2) with r_{0}^{\prime} playing the role of r^{\prime}.
The analogue holds if ($G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}$) is an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-bi-setup.
Proof. Choose new constants ε^{*} and ε_{1} with $\varepsilon \ll \varepsilon^{*} \ll \varepsilon^{\prime}$ and $\varepsilon^{*}, r_{0} / m, r_{0}^{\prime} / m \ll$ $\varepsilon_{1} \ll d$. For each edge $V W$ of C let $d_{V W}$ denote the density of $G[V, W]$. (So $d_{V W} \geq d-\varepsilon$.) Apply Lemma 4.10(iv) with

$$
d^{\prime}:=\frac{r_{0} / m}{1-12 \cdot \varepsilon^{*}}+\varepsilon^{*}
$$

to each edge $V W$ of C to obtain a spanning subgraph $G^{\prime}[V, W]$ of $G[V, W]$ which is $\left[\varepsilon^{*}, d^{\prime}\right]$-superregular. Now apply Lemma 4.6 to obtain a spanning r_{0}-regular subgraph
$G^{\prime \prime}[V, W]$ of $G^{\prime}[V, W]$ which is also $\left[\varepsilon^{\prime}, r_{0} / m\right]$-superregular. Let $\mathcal{B}(C)$ be the union of all the $G^{\prime \prime}[V, W]$ over all edges $V W$ of C. Then $\mathcal{B}(C)$ is an $\left(\varepsilon^{\prime}, r_{0}\right)$-blow-up of C.

To construct $\mathcal{B}\left(U^{\prime}\right)$ we now proceed as follows. First we apply Lemma 4.7(i) with $\ell=4$ to obtain a partition of each cluster A in \mathcal{P}^{\prime} into subclusters $A_{1} \ldots A_{4}$ such that, for every edge $A B$ of U^{\prime}, the pair $G\left[A_{j}, B_{j}\right]$ is $\left[\varepsilon^{*}, \geq d\right]$-superregular. Let G_{1} be the digraph obtained from G by deleting every edge in $\mathcal{B}(C)$. Thus G_{1} is obtained from G by deleting r_{0} outedges and r_{0} inedges at every vertex in $V(G) \backslash V_{0}$ (and no edges at the vertices in V_{0}). Since the subclusters A_{j} have size $m / 4 \ell^{\prime}$ and since $r_{0} \leq \varepsilon_{1}^{3} m / 4 \ell^{\prime}$, this means that $G_{1}\left[A_{j}, B_{j}\right]$ is still $\left[\varepsilon_{1}, \geq d\right]$-superregular by Proposition 4.3(iii). For every edge $A B$ of U^{\prime} and for all $j=1, \ldots, 4$, we choose r_{0}^{\prime} edge-disjoint perfect matchings in $G_{1}\left[A_{j}, B_{j}\right]$ (recall that these are guaranteed by Proposition 4.14). At each stage we delete the edges in all the matchings chosen so far before we choose the next matching. Since $r_{0}^{\prime} \leq \varepsilon_{1} m / 4 \ell^{\prime}$, this means that the leftover of $G_{1}\left[A_{j}, B_{j}\right]$ will always be $\left[2 \sqrt{\varepsilon_{1}}, \geq d\right]$-superregular by Proposition 4.3 (iii). So we can choose the next matching. The union $\mathcal{B}\left(U^{\prime}\right)$ of all these perfect matchings (over all edges of U^{\prime}) is an r_{0}^{\prime}-blow-up of U^{\prime} which satisfies (CA2).

The proof for bi-setups is identical.
The next lemma is an immediate consequence of Lemma 9.3. Given suitable exceptional factors, it guarantees a chord absorber within a setup which contains these exceptional factors. Since Lemma 7.6 implies the existence of such exceptional factors in a consistent system, this will enable us to find a chord absorber.

Lemma 9.4. Suppose that $0<1 / n \ll 1 / k, q r_{0}^{\prime \prime} / m \ll \varepsilon \ll \varepsilon^{\prime} \ll d \ll 1 / \ell^{\prime} \ll 1$, that $r_{0} / m, r_{0}^{\prime} / m \ll d$ and that $q / f, f m / q, m / 4 \ell^{\prime} \in \mathbb{N}$. Let $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ be an ($\left.\ell^{\prime}, k, m, \varepsilon, d\right)$-setup with $|G|=n$. Suppose that \mathcal{P}^{*} is a (q / f)-refinement of \mathcal{P} and $E F_{1}, \ldots, E F_{r_{0}^{\prime \prime}}$ are exceptional factors with parameters $(q / f, f)$ with respect to C, \mathcal{P}^{*} whose original versions are pairwise edge-disjoint. Then there is a chord absorber $C A$ for C, U^{\prime} in G having parameters $\left(\varepsilon^{\prime}, r_{0}, r_{0}^{\prime}, r_{0}^{\prime \prime}, q, f\right)$ such that $C A^{\mathrm{exc}}=$ $E F_{1} \cup \cdots \cup E F_{r_{0}^{\prime \prime}}$. The analogue holds if $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$ -bi-setup.
Proof. We only consider the case when $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$ setup. The proof for bi-setups is identical. Let G_{1} be the digraph obtained from G by deleting every edge in $\left(C A^{\text {exc }}\right)^{\text {orig }}$. Thus G_{1} is obtained from G by deleting $r_{0}^{\prime \prime}$ outedges and $r_{0}^{\prime \prime}$ inedges at every vertex in $V(G) \backslash V_{0}$ and by deleting $q r_{0}^{\prime \prime}$ outedges and $q r_{0}^{\prime \prime}$ inedges at every vertex in V_{0}. Since $q r_{0}^{\prime \prime} / m \leq \varepsilon$, Lemma 9.2 implies that $\left(G_{1}, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is still a ($\left.\ell^{\prime}, k, m, \varepsilon^{1 / 3}, d\right)$-setup. So we can apply Lemma 9.3 to find edge-disjoint subgraphs $\mathcal{B}(C)^{*}$ and $\mathcal{B}\left(U^{\prime}\right)$ in G_{1} as guaranteed by (i) and (ii). Let $C A^{\text {exc }}:=E F_{1} \cup \cdots \cup E F_{r_{0}^{\prime \prime}}$. We then take $C A:=\mathcal{B}(C)^{*} \cup \mathcal{B}\left(U^{\prime}\right) \cup C A^{\text {exc }}$.
9.4. Absorbing chords into a blown-up Hamilton cycle. The following lemma contains the key statement of this section (and of the entire proof of Theorem 1.2). Let $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ be a ($\ell^{\prime}, k, m, \varepsilon, d$)-setup. Suppose we are given a 1 -factor H of $G-V_{0}$ which is split into small matchings H_{i} and that we are given complete exceptional path systems $H_{i}^{\prime \prime}$ which avoid the H_{i} (see conditions (b)-(d)). The lemma states that we can extend each path system $H_{i}^{\prime}:=H_{i} \cup H_{i}^{\prime \prime}$ into a Hamilton
cycle C_{i} using edges from the chord absorber $C A$. The crucial point is that the set of edges we are allowed to use for C_{i} from $\mathcal{B}\left(U^{\prime}\right)$ is predetermined, i.e. this set does not depend on H. More precisely, for each 1-factor H we will split off a regular digraph $\mathcal{B}^{\prime}\left(U^{\prime}\right)$ from $\mathcal{B}\left(U^{\prime}\right)$. The Hamilton cycles guaranteed by Lemma 9.5 cover $H \cup \mathcal{B}^{\prime}\left(U^{\prime}\right)$, but no other edges of $\mathcal{B}\left(U^{\prime}\right)$. In Lemma 9.7 we will use this property to ensure that when we cover the leftover of the preprocessing graph from the previous section with edge-disjoint Hamilton cycles, we use all edges of $\mathcal{B}\left(U^{\prime}\right)$ in the process. So, as mentioned earlier, the leftover from the chord absorbing step is a subdigraph of $\mathcal{B}(C)$.

The basic strategy is similar to that of Lemma 8.3: first we balance out the edges of each H_{i} by adding edges corresponding to (augmented) chord sequences (see Claims 1 and 4) in order to obtain path systems $W_{i}^{\prime \prime}$ containing H_{i}. As mentioned above, we will use all edges of $\mathcal{B}^{\prime}\left(U^{\prime}\right)$ in this process. Claim 2 is a step towards this - it implies that the set of edges we added to the H_{i} in the above step are themselves 'globally balanced' in the sense that we use the same number from each bipartite graph corresponding to an edge of U^{\prime}. (Note however that we achieve this 'global balance' property only when considering all the H_{i} together - it need not hold when we consider H_{1} on its own say.) Then we extend the path system $W_{i}^{\prime \prime}$ into a 1-factor $F_{i} . F_{i}$ is then transformed into a Hamilton cycle C_{i} using Lemma 6.5 (see Claim 5).

Moreover, Lemma 9.5 also works for $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-bi-setups, as long as H is bipartite with vertex classes $\bigcup \mathcal{V}_{\text {even }}$ and $\bigcup \mathcal{V}_{\text {odd }}$.
Lemma 9.5. Suppose that $0<1 / n \ll 1 / k, 1 / q \ll \varepsilon \ll \phi, \varepsilon^{\prime} \ll r_{1} / m \ll d \ll 1 / \ell^{\prime} \ll$ 1 and that $m / 4 \ell^{\prime} \in \mathbb{N}$. Let

$$
\begin{equation*}
r_{2}:=12 \phi \ell^{\prime} q . \tag{9.2}
\end{equation*}
$$

Suppose that $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is a $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-setup with $|G|=n$ and $C=$ $V_{1} \ldots V_{k}$. Let $\mathcal{B}(C)^{*}$ be a blow-up of C such that every edge of C corresponds to an $\left(\varepsilon^{\prime}, r_{1} / m\right)$-superregular pair in $\mathcal{B}(C)^{*}$. Let $\mathcal{B}^{\prime}\left(U^{\prime}\right)$ be an r_{2}-blow-up of U^{\prime} which satisfies the following condition:
(a) For every cluster A in \mathcal{P}^{\prime} there is a partition A_{1}, \ldots, A_{4} of A into sets of equal size such that for every edge $A B$ of U^{\prime} and each $j=1, \ldots, 4$ there are r_{2} edge-disjoint perfect matchings $S_{1}^{j}(A B), \ldots, S_{r_{2}}^{j}(A B)$ between A_{j} and B_{j} such that $\mathcal{B}^{\prime}\left(U^{\prime}\right)[A, B]$ is the union of all these $4 r_{2}$ matchings.
Suppose that H is a 1-factor of $G-V_{0}$ and that H_{1}, \ldots, H_{q} is a partition of H into matchings which satisfy the following properties:
(b) For each $i=1, \ldots, q$ there is a complete exceptional path system $H_{i}^{\prime \prime}$ (with respect to C) which is vertex-disjoint from H_{i}.
(c) Write $H_{i}^{\prime}:=H_{i} \cup H_{i}^{\prime \prime}$ for $i=1, \ldots, q$. Then for all $i=1, \ldots, q$ the original versions $\left(H_{i}^{\prime}\right)^{\text {orig }}=H_{i} \cup\left(H_{i}^{\prime \prime}\right)^{\text {orig }}$ of H_{i}^{\prime} are pairwise edge-disjoint, each H_{i}^{\prime} consists of at most ϕm paths and $\left|H_{i}^{\prime} \cap V_{j}\right| \leq \phi m$ for every cluster V_{j} in \mathcal{P}. Moreover, H_{i}^{\prime} and H_{j}^{\prime} are pairwise vertex-disjoint whenever $|i-j| \leq 10$.
(d) $\mathcal{B}(C)^{*}, \mathcal{B}^{\prime}\left(U^{\prime}\right)$ and the original version of $H^{\prime}:=H_{1}^{\prime} \cup \cdots \cup H_{q}^{\prime}$ are pairwise edge-disjoint subdigraphs of G.
Then there are edge-disjoint Hamilton cycles C_{1}, \ldots, C_{q} in G such that the following properties hold:

- $H_{i}^{\prime} \subseteq C_{i}^{\text {basic }}$ for all $i=1, \ldots, q$.
- All the C_{1}, \ldots, C_{q} together cover all the edges of $\left(H^{\prime}\right)^{\text {orig }} \cup \mathcal{B}^{\prime}\left(U^{\prime}\right)$ and all remaining edges in C_{1}, \ldots, C_{q} are contained in $\mathcal{B}(C)^{*}$.
The analogue holds for an ($\left.\ell^{\prime}, k, m, \varepsilon, d\right)$-bi-setup $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ if we assume in addition that H is bipartite with vertex classes $\bigcup \mathcal{V}_{\text {even }}$ and $\bigcup \mathcal{V}_{\text {odd }}$ (where $\mathcal{V}_{\text {even }}$ is the set of all those V_{i} such that i is even and $\mathcal{V}_{\text {odd }}$ is defined analogously).

Proof. Recall that $C=V_{1} \ldots V_{k}$. So V_{1}, \ldots, V_{k} are the clusters in $\mathcal{P},\left|V_{j}\right|=m$ for each $j=1, \ldots, k$ and each cluster in \mathcal{P}^{\prime} has size

$$
\begin{equation*}
m^{\prime}:=m / \ell^{\prime} \tag{9.3}
\end{equation*}
$$

Given a vertex x of $G-V_{0}$, we will write $V(x)$ for the cluster in \mathcal{P} containing x and $V(x)^{+}$for the successor of $V(x)$ on C. For each $i=1, \ldots, q$ in turn, we will find a Hamilton cycle C_{i} in G which contains the original version of H_{i}^{\prime}. So consider any i. We will first add suitable edges of R to H_{i} to form a sequence W_{i}^{\prime} of edges which is 'locally balanced'. So W_{i}^{\prime} will consist both of edges of H and edges of R. When constructing the Hamilton cycle C_{i}, we will replace each occurrence of an edge from R in W_{i}^{\prime} by an edge in the corresponding bipartite subgraph of G.

We will first consider the case when $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is a $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-setup. Recall that the augmented elementary chord sequence $\operatorname{AECS}\left(V_{a}, V_{a+1}\right)$ was defined in Section 9.1. Given clusters V_{j} and $V_{j^{\prime}}$, the augmented chord sequence $A C S\left(V_{j}, V_{j^{\prime}}\right)$ in U from V_{j} to $V_{j^{\prime}}$ is the (ordered) sequence defined as

$$
A C S\left(V_{j}, V_{j^{\prime}}\right):=A E C S\left(V_{j}, V_{j+1}\right) \cup A E C S\left(V_{j+1}, V_{j+2}\right) \cup \cdots \cup A E C S\left(V_{j^{\prime}-1}, V_{j^{\prime}}\right)
$$

where the indices are modulo k. If $j=j^{\prime}$ we take $A C S\left(V_{j}, V_{j^{\prime}}\right):=\emptyset$. Let W_{i}^{\prime} be obtained from H_{i} by including the augmented chord sequence $A C S\left(V(y), V(x)^{+}\right)$ after each edge $x y$ in H_{i}. Ordering the edges in H_{i} gives us an ordering of the edges of W_{i}^{\prime}. Suppose for example that $x y$ is an edge of H_{i} with x, y both contained in the cluster V. Then we include exactly $\operatorname{AECS}\left(V, V^{+}\right)$. If $x \in V$ and $y \in V^{+}$, where V^{+} is the successor of V on C, then we do not include any edge (apart from $x y$ itself).
Claim 1. 'Sequences are locally balanced.' For each cluster V_{j} in \mathcal{P} and each $i=1, \ldots, q$, the number of edges of W_{i}^{\prime} leaving V_{j} equals the number of edges of W_{i}^{\prime} entering V_{j+1}.
Here (and below) multiple occurrences of edges in W_{i}^{\prime} are considered separately, i.e. if the edge $A B$ appears u times in W_{i}^{\prime}, then we count it u times in Claim 1. Moreover, if $x y$ is an edge of H_{i} whose endvertices lie in the same cluster V, then (here and below) we count $x y$ both as an edge leaving V and an edge entering V.
To prove Claim 1, consider any edge $x y$ of H_{i}. Recall that each augmented elementary chord sequence $A E C S\left(V_{j}, V_{j+1}\right)$ consists of chord edges (namely those in the elementary chord sequence $E C S\left(V_{j}, V_{j+1}\right)$ corresponding to $\left.A E C S\left(V_{j}, V_{j+1}\right)\right)$ and of cyclic edges (namely those in the subwalks $P(F)$ which were added to $E C S\left(V_{j}, V_{j+1}\right)$ in order to obtain $A E C S\left(V_{j}, V_{j+1}\right)$). But every cyclic edge, joining V_{j} to V_{j+1} say, contributes both to the number of edges leaving V_{j} and to the number of edges entering V_{j+1}. On the other hand, in the (cyclic) sequence

$$
x y \cup E C S\left(V(y), V(y)^{+}\right) \cup E C S\left(V(y)^{+}, V(y)^{++}\right) \cup \cdots \cup E C S\left(V(x), V(x)^{+}\right)
$$

obtained from $x y \cup A C S\left(V(y), V(x)^{+}\right)$by deleting all cyclic edges in the augmented elementary chord sequences, every edge entering some cluster V_{j+1} is followed by an edge leaving V_{j}. (This is essentially the same observation as Proposition 7.3.) Altogether this shows that for each cluster V_{j} in \mathcal{P} the number of edges of $x y \cup$ $A C S\left(V(y), V(x)^{+}\right)$leaving V_{j} equals the number of edges of $x y \cup A C S\left(V(y), V(x)^{+}\right)$ entering V_{j+1}. Thus this is also true for the union W_{i}^{\prime} of the $x y \cup A C S\left(V(y), V(x)^{+}\right)$ over all edges $x y \in H_{i}$. So the claim follows.

In what follows, the order of the edges in W_{i}^{\prime} does not matter anymore. So we will view W_{i}^{\prime} as a multiset consisting of edges in $E(U) \cup E(H)$.

Recall that each occurrence of an edge in U corresponds to an edge in U^{\prime} (and that these edges in U^{\prime} are different for different occurrences of the same edge from R in $U)$. So we might also view each W_{i}^{\prime} as a multiset consisting of edges in $E\left(U^{\prime}\right) \cup E(H)$.
Claim 2. 'Unions of sequences are globally balanced.' Let W denote the union of $W_{1}^{\prime}, \ldots, W_{q}^{\prime}$. Then there is an integer t so that W contains each edge of U exactly t times. Thus if W is viewed as a multiset consisting of edges in $E\left(U^{\prime}\right) \cup E(H)$, then W also contains each edge of U^{\prime} exactly times.
As before, here (and below) multiple occurrences of an edge in U are considered separately, i.e. if the edge $A B$ appears u times in U, then it altogether appears $u t$ times in W.

To prove Claim 2, consider the auxiliary multidigraph D whose vertices are V_{1}, \ldots, V_{k} and which contains an edge from V_{i} to V_{j} for every $A C S\left(V_{i}, V_{j}\right)$ included into W. So the multiplicity of the edge $V_{i} V_{j}$ in D is the number of edges $x y$ of H with $V(y)=V_{i}$ and $V(x)^{+}=V_{j}$. Let H^{c} be obtained from H by first reversing the orientation of every edge and then contracting all the vertices lying in each cluster V_{i} into a new vertex v_{i}. So H^{c} is an m-regular multigraph (which might contain loops). Moreover, D can be obtained from H^{c} by replacing each edge $v_{i} v_{j}$ with the edge $v_{i} v_{j+1}$. Thus D is m-regular too and so it can be decomposed into edge-disjoint 1 -factors. Consider any cycle $D^{\prime}=V_{i_{1}} \ldots V_{i_{r}}$ in one of these 1-factors. Then W contains all edges in the multiset

$$
S\left(D^{\prime}\right):=A C S\left(V\left(x_{i_{1}}\right), V\left(x_{i_{2}}\right)\right) \cup A C S\left(V\left(x_{i_{2}}\right), V\left(x_{i_{3}}\right)\right) \cup \cdots \cup A C S\left(V\left(x_{i_{r}}\right), V\left(x_{i_{1}}\right)\right)
$$

But

$$
\operatorname{ACS}\left(V_{i_{j}}, V_{i_{j+1}}\right)=\operatorname{AECS}\left(V_{i_{j}}, V_{i_{j}+1}\right) \cup \cdots \cup \operatorname{AECS}\left(V_{i_{j+1}-1}, V_{i_{j+1}}\right)
$$

So it follows that $S\left(D^{\prime}\right)$ contains every $\operatorname{AECS}\left(V_{i}, V_{i+1}\right)$ the same number of times and thus $S\left(D^{\prime}\right)$ is a multiple of $E(U)$. (As an example, if $D^{\prime}=V_{9} V_{4} V_{8}$, then $S\left(D^{\prime}\right)$ will contain each edge of $E(U)$ once. If however $D^{\prime}=V_{9} V_{8} V_{4}$, then $S\left(D^{\prime}\right)$ will contain each edge of $E(U)$ twice.) Since W is the union of the $S\left(D^{\prime}\right)$ over all cycles D^{\prime} in the 1 -factor decomposition of D, this implies that W is a multiple of $E(U)$, i.e. there exists t such that W contains every edge in U exactly t times.

Since we consider multiple occurrences of an edge in U separately and each such occurrence corresponds to an edge of U^{\prime} it follows immediately that W (viewed as a multiset consisting of edges in $E\left(U^{\prime}\right) \cup E(H)$) also contains each edge of U^{\prime} exactly t times. This proves Claim 2.

Let

$$
\begin{equation*}
s^{\prime}:=\phi m . \tag{9.4}
\end{equation*}
$$

Note that (9.3) implies that

$$
\begin{equation*}
s^{\prime}=\phi \ell^{\prime} m^{\prime} \leq m^{\prime} / 10^{4} . \tag{9.5}
\end{equation*}
$$

We will need the following claim when replacing the edges of U by edges in G.
Claim 3. 'Sequences are well spread out.' For all $i=1, \ldots, q$, any edge of U^{\prime} (and of U) occurs in W_{i}^{\prime} at most s^{\prime} times.

To prove Claim 3, note that for each $j=1, \ldots, k$ each edge in H_{i} contributes at most one occurrence of $\operatorname{AECS}\left(V_{j}, V_{j+1}\right)$ in W_{i}^{\prime}. But $H_{i}^{\prime \prime}$ and H_{i} are vertex-disjoint by (b) and $H_{i}^{\prime}=H_{i} \cup H_{i}^{\prime \prime}$ consists of at most ϕm paths by (c). So H_{i} consists of at most ϕm edges and thus the total number of occurrences of $\operatorname{AECS}\left(V_{j}, V_{j+1}\right)$ in W_{i}^{\prime} is at most $\phi m=s^{\prime}$. This proves Claim 3 since $\operatorname{AECS}\left(V_{1}, V_{2}\right), \ldots, \operatorname{AECS}\left(V_{k}, V_{1}\right)$ forms a partition of $E(U)$.
By summing over all i with $1 \leq i \leq q$, it immediately follows that the constant t defined in Claim 2 satisfies

$$
\begin{equation*}
t \leq s^{\prime} q . \tag{9.6}
\end{equation*}
$$

We will now add some further edges to W to obtain W^{\prime} which contains all edges of H and which uses every edge $A B$ of U^{\prime} (and thus of U) exactly t^{\prime} times, where

$$
\begin{equation*}
t^{\prime}:=r_{2} m^{\prime} \stackrel{(9.2)}{=} 12 \phi \ell^{\prime} q m^{\prime} \stackrel{(9.3)}{=} 12 \phi q m \stackrel{(9.4)}{=} 12 s^{\prime} q \tag{9.7}
\end{equation*}
$$

Claim 4. By adding some some further edges of U to each W_{i}^{\prime} we can obtain multisets $W_{i}^{\prime \prime}$ which satisfy the following properties (as before, we also view $W_{i}^{\prime \prime}$ as a multiset consisting of edges in $\left.E\left(U^{\prime}\right) \cup E(H)\right)$:

- Each $W_{i}^{\prime \prime}$ is still locally balanced. That is, for every cluster V_{j} in \mathcal{P} and each $i=1, \ldots, q$, the number of edges of $W_{i}^{\prime \prime}$ leaving V_{j} equals the number of edges of $W_{i}^{\prime \prime}$ entering V_{j+1}.
- For each $i=1, \ldots, q$ and each edge $A B$ of U^{\prime}, let $s_{i}(A B)$ be the number of times that $W_{i}^{\prime \prime}$ uses AB. Then

$$
\begin{equation*}
\sum_{i=1}^{q} s_{i}(A B)=t^{\prime} \tag{9.8}
\end{equation*}
$$

and

$$
\begin{equation*}
11 s^{\prime} \leq s_{i}(A B) \leq 13 s^{\prime} \tag{9.9}
\end{equation*}
$$

$$
\text { for each } i=1, \ldots, q \text {. }
$$

To prove Claim 4, first note that

$$
t+11 s^{\prime} q \stackrel{(9.6)}{\leq} 12 s^{\prime} q \stackrel{(9.7)}{=} t^{\prime}
$$

Choose integers $s_{1}^{\prime}, \ldots, s_{q}^{\prime}$ so that

$$
\sum_{i=1}^{q} s_{i}^{\prime}=t^{\prime}-t \quad \text { and } \quad 11 s^{\prime} \leq s_{i}^{\prime} \leq 12 s^{\prime} \quad \text { for all } i=1, \ldots, q
$$

(The s_{i}^{\prime} exist since $11 s^{\prime} q \leq t^{\prime}-t \leq 12 s^{\prime} q$.) For each $i=1, \ldots, q$, let $W_{i}^{\prime \prime}$ be obtained from W_{i}^{\prime} by adding s_{i}^{\prime} copies of U. Then clearly (9.8) holds. Also, Claim 3 and the bounds on s_{i}^{\prime} imply that

$$
11 s^{\prime} \leq s_{i}^{\prime} \leq s_{i}(A B) \leq s_{i}^{\prime}+s^{\prime} \leq 13 s^{\prime}
$$

for each $i=1, \ldots, q$. So (9.9) holds too.
The fact that each $W_{i}^{\prime \prime}$ is still locally balanced immediately follows from Claim 1 and the fact that $W_{i}^{\prime \prime}$ was obtained from W_{i}^{\prime} by adding copies of U. (Note that (U3) implies that each copy of U contributes exactly ℓ^{\prime} to the number of edges entering a cluster and ℓ^{\prime} to the number of edges leaving a cluster.) This completes the proof of Claim 4.

Let W^{\prime} be the union of the multisets $W_{i}^{\prime \prime}$ over all $i=1, \ldots, q$. Thus Claim 4 implies that in total W^{\prime} contains each edge $A B$ of U^{\prime} exactly t^{\prime} times. Since $\mathcal{B}^{\prime}\left(U^{\prime}\right)$ is an r_{2}-blow-up of U^{\prime}, it follows that for any edge $A B$ of U^{\prime}, t^{\prime} equals the number of edges in the subgraph

$$
\begin{equation*}
S(A B):=\mathcal{B}^{\prime}\left(U^{\prime}\right)[A, B] \tag{9.10}
\end{equation*}
$$

of $\mathcal{B}^{\prime}\left(U^{\prime}\right)$ spanned by the clusters A and B. (So here A and B are clusters in \mathcal{P}^{\prime}.)
Next we will replace each occurrence of an edge $A B$ of U^{\prime} in $W_{i}^{\prime \prime} \backslash E\left(H_{i}\right)$ by an edge of $S(A B)$ to obtain a digraph $W_{i}^{\prime \prime \prime}$ with $V\left(W_{i}^{\prime \prime \prime}\right)=V(H)=V(G) \backslash V_{0}$ which has the following properties:
$\left(\alpha_{1}\right) W_{i}^{\prime \prime \prime}$ contains all edges in H_{i}.
$\left(\alpha_{2}\right)$ For each edge $A B$ of U^{\prime}, the bipartite subgraph $W_{i}^{\prime \prime \prime}[A, B]$ consisting of all edges in $W_{i}^{\prime \prime \prime}$ from A to B contains exactly $s_{i}(A B)$ edges of $S(A B)$.
$\left(\alpha_{3}\right) W_{i}^{\prime \prime \prime} \cup H_{i}^{\prime}$ is a path system.
$\left(\alpha_{4}\right)$ For every pair V, V^{+}of consecutive clusters on C and every $i=1, \ldots, q$, there is an integer $w_{i}(V) \leq \sqrt{\phi} m / 2$ so that

$$
\begin{equation*}
w_{i}(V)=\sum_{v \in V} d_{W_{i}^{\prime \prime}}^{+}(v)=\sum_{v \in V^{+}} d_{W_{i}^{\prime \prime}}^{-}(v) . \tag{9.11}
\end{equation*}
$$

$\left(\alpha_{5}\right) W_{1}^{\prime \prime \prime}, \ldots, W_{q}^{\prime \prime \prime}$ are pairwise edge-disjoint.
Note that $\left(\alpha_{2}\right)$ is equivalent to stating that each occurrence of $A B$ in $W_{i}^{\prime \prime}$ is replaced by an edge of $S(A B)$. Moreover $\left(\alpha_{1}\right),\left(\alpha_{2}\right),\left(\alpha_{5}\right),(9.7)$ and (9.8) together imply that the edge sets of the $W_{i}^{\prime \prime \prime}$ form a partition $E\left(H \cup \mathcal{B}^{\prime}\left(U^{\prime}\right)\right)$.

Before describing the construction of $W_{i}^{\prime \prime \prime}$, first note that $\left(\alpha_{4}\right)$ is an immediate consequence of $\left(\alpha_{2}\right)$ and Claim 4: any edge $A B$ of $W_{i}^{\prime \prime}$ (where $A B \in E\left(U^{\prime}\right)$ and so A and B are clusters in \mathcal{P}^{\prime}) corresponds to an edge in $W_{i}^{\prime \prime \prime}$ which goes from A to B. So (9.11) holds. To check that $w_{i}(V) \leq \sqrt{\phi} m / 2$ recall from (U3) and (ST2) that for each cluster V on C there are exactly ℓ^{\prime} edges $A B$ of U^{\prime} leaving V. (9.9) implies that each such edge $A B$ contributes at most $13 s^{\prime}=13 \phi m$ to $w_{i}(V)$. Together with (c) this implies that

$$
w_{i}(V) \leq\left|H_{i} \cap V\right|+13 \phi \ell^{\prime} m \leq \phi m+13 \phi \ell^{\prime} m \leq \sqrt{\phi} m / 2 .
$$

To construct $W_{i}^{\prime \prime \prime}$ for each i, we proceed as follows. Let u be the length of U^{\prime} and label the edges of U^{\prime} as E_{1}, \ldots, E_{u}. Consider any edge $E_{a}=A B$ of U^{\prime}. For each $j=1, \ldots, 4$ let $S^{j}(A B):=S_{1}^{j}(A B) \cup \cdots \cup S_{r_{2}}^{j}(A B)$. (Recall the $S_{i}^{j}(A B)$ were
defined in condition (a) of the lemma.) Then $S(A B)=S^{1}(A B) \cup \cdots \cup S^{4}(A B)$ (where $S(A B)$ is as defined in (9.10)) and (a) implies that

$$
\begin{equation*}
\left|S^{j}(A B)\right|=|S(A B)| / 4=r_{2} m^{\prime} / 4 \tag{9.12}
\end{equation*}
$$

Order the edges of $S(A B)$ in such a way that the following conditions hold:
$\left(\beta_{1}\right)$ Every set of at most $m^{\prime} / 20$ consecutive edges in $S(A B)$ forms a matching.
$\left(\beta_{2}\right)$ If $A B \neq E_{u}$ then for each $j=1,2,3$ all the edges in $S^{j}(A B)$ precede all those in $S^{j+1}(A B)$.
$\left(\beta_{3}\right)$ If $A B=E_{u}$ then all the edges in $S^{3}(A B)$ precede all those in $S^{4}(A B)$, which in turn precede those in $S^{1}(A B)$ and all the edges in $S^{2}(A B)$ are at the end of the ordering.
$\left(\beta_{3}\right)$ will be used to ensure that $\left(\alpha_{3}\right)$ holds in the construction of the $W_{i}^{\prime \prime \prime}$.
To see that the above properties can be guaranteed, we use the properties of $S(A B)$ described in the assumption (a) of the lemma: for each edge $A B \neq E_{u}$ of U^{\prime}, order the edges in $S(A B)$ so that $\left(\beta_{2}\right)$ is satisfied and so that within some $S^{j}(A B)$ all the edges of the matching $S_{i}^{j}(A B)$ come before all edges of the matching $S_{i+1}^{j}(A B)$ (for all $i=1, \ldots, r_{2}-1$). Order the edges of $S_{1}^{j}(A B)$ arbitrarily. Given an ordering of the edges in $S_{i}^{j}(A B)$, order the edges of $S_{i+1}^{j}(A B)$ in such a way that the first $m^{\prime} / 20$ edges of $S_{i+1}^{j}(A B)$ avoid the $m^{\prime} / 10$ endvertices of the final $m^{\prime} / 20$ edges of $S_{i}^{j}(A B)$. This ensures that $\left(\beta_{1}\right)$ will be satisfied. If $A B=E_{u}$ then the argument is similar, but we start with an ordering of the edges in $S(A B)$ so that $\left(\beta_{3}\right)$ is satisfied.

We now carry out the actual construction of the $W_{i}^{\prime \prime \prime}$, where we consider the $W_{i}^{\prime \prime \prime}$ in batches of 10 . For each $a=1, \ldots, q / 10$ and each edge E_{j} of U^{\prime} we let

$$
u_{a}\left(E_{j}\right):=s_{10(a-1)+1}\left(E_{j}\right)+\cdots+s_{10 a}\left(E_{j}\right) .
$$

Thus (9.9) implies that for all $a=1, \ldots, q / 10$,

$$
\begin{equation*}
110 s^{\prime} \leq u_{a}\left(E_{j}\right) \leq 130 s^{\prime} \tag{9.13}
\end{equation*}
$$

We let $S_{a}^{*}\left(E_{j}\right)$ denote the set of all those edges whose position in the ordering of the edges of $S\left(E_{j}\right)$ lies between $1+\sum_{a^{\prime}=1}^{a-1} u_{a^{\prime}}\left(E_{j}\right)$ and $\sum_{a^{\prime}=1}^{a} u_{a^{\prime}}\left(E_{j}\right)$. So $u_{a}\left(E_{j}\right)=$ $\left|S_{a}^{*}\left(E_{j}\right)\right|$. Together with $\left(\beta_{1}\right)$ and the fact that $u_{a}\left(E_{j}\right) \leq 130 s^{\prime} \leq m^{\prime} / 20$ by (9.5), this implies that $S_{a}^{*}\left(E_{j}\right)$ forms a matching. Note that $u_{a}\left(E_{j}\right)$ is the total number of edges in $S\left(E_{j}\right)$ that we need to choose for $W_{10(a-1)+1}^{\prime \prime \prime}, \ldots, W_{10 a}^{\prime \prime \prime}$. We will choose all these edges from $S_{a}^{*}\left(E_{j}\right)$.

To choose these edges, we consider an auxiliary bipartite graph B^{*} which is defined as follows. The first vertex class B_{1} of B^{*} consists of $u_{a}\left(E_{j}\right)$ placeholders for the edges in $S\left(E_{j}\right)$ that we need to choose for $W_{10(a-1)+1}^{\prime \prime \prime}, \ldots, W_{10 a}^{\prime \prime \prime}$, so for each $i=$ $10(a-1)+1, \ldots, 10 a$ there will be precisely $s_{i}\left(E_{j}\right)$ of these placeholders for (the edges to be chosen for) $W_{i}^{\prime \prime \prime}$. The second vertex class of B^{*} is $S_{a}^{*}\left(E_{j}\right)$. So

$$
110 s^{\prime} \leq\left|S_{a}^{*}\left(E_{j}\right)\right|=\left|B_{1}\right| \leq 130 s^{\prime}
$$

by (9.13). We join an edge $e \in S_{a}^{*}\left(E_{j}\right)$ to a placeholder for $W_{i}^{\prime \prime \prime}$ if e is vertex-disjoint from H_{i}^{\prime}. Since by condition (c) of the lemma $H_{10(a-1)+1}^{\prime}, \ldots, H_{10 a}^{\prime}$ are pairwise vertex-disjoint, each edge $e \in S_{a}^{*}\left(E_{j}\right)$ can meet at most two H_{i}^{\prime} with $10(a-1)+1 \leq i \leq$ $10 a$ and so e will be joined to all placeholders apart from those for the corresponding
two $W_{i}^{\prime \prime \prime}$. Since there are $s_{i}\left(E_{j}\right) \leq 13 s^{\prime}$ placeholders for each $W_{i}^{\prime \prime \prime}$, this means that e is joined in B^{*} to all but at most $2 \cdot 13 s^{\prime} \leq\left|B_{1}\right| / 2$ placeholders in B_{1}. Similarly, since $S_{a}^{*}\left(E_{j}\right)$ forms a matching and since by (c) every H_{i}^{\prime} meets each of the two endclusters of E_{j} in at most ϕm vertices, each placeholder in B_{1} is joined to all but at most $2 \phi m=2 s^{\prime} \leq\left|S_{a}^{*}\left(E_{j}\right)\right| / 2$ edges in $S_{a}^{*}\left(E_{j}\right)$. Thus B^{*} has a perfect matching. For each $i=10(a-1)+1, \ldots, 10 a$ we add the $s_{i}\left(E_{j}\right)$ edges to $W_{i}^{\prime \prime \prime}$ which are matched to the placeholders for $W_{i}^{\prime \prime \prime}$.

We carry out this procedure for every edge E_{j} of U^{\prime} in turn. This completes the construction of the $W_{i}^{\prime \prime \prime}$. Clearly, $\left(\alpha_{1}\right)$ and $\left(\alpha_{2}\right)$ are satisfied. To check that $\left(\alpha_{5}\right)$ holds, note that the $W_{i}^{\prime \prime \prime} \backslash E\left(H_{i}\right)$ are pairwise edge-disjoint by construction and the H_{i} are pairwise edge-disjoint by definition (as they form a partition of the edges of H into matchings). Also $W_{i}^{\prime \prime \prime} \backslash E\left(H_{i}\right)$ is edge-disjoint from any H_{j} by (d).

So let us now check that $\left(\alpha_{3}\right)$ is satisfied. To do this, let $W_{i}^{\prime \prime \prime}\left[E_{j}\right]$ denote the bipartite subdigraph of $W_{i}^{\prime \prime \prime}$ which consists of all edges from the first endcluster of E_{j} to the final endcluster of E_{j}. Note that by definition of B^{*}, the edges of $W_{i}^{\prime \prime \prime} \backslash E\left(H_{i}\right)$ and those of H_{i}^{\prime} have no endvertices in common. Moreover, (b) implies that H_{i}^{\prime} is a path system. So for $\left(\alpha_{3}\right)$, it suffices to show that $W_{i}^{\prime \prime \prime} \backslash E\left(H_{i}\right)$ is a path system. Now recall that the definition of B^{*} implies that $W_{i}^{\prime \prime \prime}\left[E_{j}\right] \backslash E\left(H_{i}\right)$ forms a matching for each edge E_{j} of U^{\prime}. Thus the only possibility for a cycle C^{\prime} in $W_{i}^{\prime \prime \prime} \backslash E\left(H_{i}\right)$ would be for C^{\prime} to 'wind around' U^{\prime}.

So in order to show that $W_{i}^{\prime \prime \prime} \backslash E\left(H_{i}\right)$ is a path system, it suffices to show that no vertex is incident to both an edge in $W_{i}^{\prime \prime \prime}\left[E_{1}\right] \backslash E\left(H_{i}\right)$ and an edge in $W_{i}^{\prime \prime \prime}\left[E_{u}\right] \backslash E\left(H_{i}\right)$. But this follows from $\left(\beta_{2}\right)$ and $\left(\beta_{3}\right)$. Indeed, recall that when choosing the edges in $W_{i}^{\prime \prime \prime}\left[E_{1}\right] \backslash E\left(H_{i}\right)$ we considered all the $W_{i}^{\prime \prime \prime}$ in batches of 10 . Let $a:=\lceil i / 10\rceil$. So the edges in $W_{i}^{\prime \prime \prime}\left[E_{1}\right] \backslash E\left(H_{i}\right)$ were chosen in the a th batch. Let $p_{1}^{\text {first }}$ and $p_{1}^{\text {final }}$ denote the first and the final position of an edge from $W_{i}^{\prime \prime \prime}\left[E_{1}\right] \backslash E\left(H_{i}\right)$ in the ordering of all edges of $S\left(E_{1}\right)$. Define $p_{u}^{\text {first }}$ and $p_{u}^{\text {final }}$ similarly. Note that

$$
\begin{equation*}
110 s^{\prime}(a-1) \stackrel{(9.13)}{\leq} p_{1}^{\text {first }}, p_{1}^{\text {final }} \stackrel{(9.13)}{\leq} 130 s^{\prime} a \tag{9.14}
\end{equation*}
$$

But
$130 s^{\prime} a-110 s^{\prime}(a-1)=20 s^{\prime} a+110 s^{\prime} \leq 20 s^{\prime} \frac{q}{10}+110 s^{\prime}<3 s^{\prime} q \stackrel{(9.7)}{=} \frac{r_{2} m^{\prime}}{4} \stackrel{(9.12)}{=}\left|S^{j}\left(E_{1}\right)\right|$.
Together with (9.14) this implies that

$$
\begin{equation*}
110 s^{\prime}(a-1) \leq p_{1}^{\text {first }}, p_{1}^{\text {final }}<110 s^{\prime}(a-1)+\left|S^{j}\left(E_{1}\right)\right| \tag{9.15}
\end{equation*}
$$

Then (9.15), its analogue for $p_{u}^{\text {first }}$ and $p_{u}^{\text {final }},\left(\beta_{2}\right)$ and $\left(\beta_{3}\right)$ together imply that there is some $j \leq 3$ such that
$W_{i}^{\prime \prime \prime}\left[E_{1}\right] \backslash E\left(H_{i}\right) \subseteq S^{j}\left(E_{1}\right) \cup S^{j+1}\left(E_{1}\right)$ and $W_{i}^{\prime \prime \prime}\left[E_{u}\right] \backslash E\left(H_{i}\right) \subseteq S^{j+2}\left(E_{u}\right) \cup S^{j+3}\left(E_{u}\right)$ (where $S^{5}\left(E_{u}\right):=S^{1}\left(E_{u}\right)$ and $S^{6}\left(E_{u}\right):=S^{2}\left(E_{u}\right)$, see Figure 4). So no vertex is incident to both an edge in $W_{i}^{\prime \prime \prime}\left[E_{1}\right] \backslash E\left(H_{i}\right)$ and an edge in $W_{i}^{\prime \prime \prime}\left[E_{u}\right] \backslash E\left(H_{i}\right)$. Altogether this shows that $\left(\alpha_{3}\right)$ holds. So we have shown that $\left(\alpha_{1}\right)-\left(\alpha_{5}\right)$ hold.

We now add all the edges in $H_{i}^{\prime \prime}=H_{i}^{\prime} \backslash E\left(H_{i}\right)$ to $W_{i}^{\prime \prime \prime}$ and let W_{i}^{*} denote the graph on $V(H)=V\left(W_{i}^{\prime \prime \prime}\right)$ obtained in this way. Recall that by (b), $H_{i}^{\prime \prime}$ consists of a complete exceptional path system with respect to C. Thus (CEPS1) and (CEPS3)

Figure 4. The shaded area corresponds to the possible positions of the edges in $W_{i}^{\prime \prime \prime}\left[E_{1}\right] \backslash E\left(H_{i}\right)$ within the set $S\left(E_{1}\right)$ and the edges in $W_{i}^{\prime \prime \prime}\left[E_{u}\right] \backslash E\left(H_{i}\right)$ within the set $S\left(E_{u}\right)$.
together imply that $H_{i}^{\prime \prime}$ is 'locally balanced', in the sense that for every cluster V in \mathcal{P} the number of edges in $H_{i}^{\prime \prime}$ leaving V equals the number of edges in $H_{i}^{\prime \prime}$ entering V^{+}. (c) implies that the number of edges leaving V is at most ϕm. Together with $\left(\alpha_{4}\right)$ this implies that condition $\left(\gamma_{3}\right)$ below holds. $\left(\gamma_{1}\right)$ and $\left(\gamma_{2}\right)$ follow from $\left(\alpha_{1}\right)$ and $\left(\alpha_{3}\right)$ respectively. (γ_{4}) follows from $\left(\alpha_{5}\right)$, the fact that the original versions of the H_{i}^{\prime} (and thus of the $H_{i}^{\prime \prime}$) are pairwise edge-disjoint by (c) and the fact that $W_{i}^{*} \backslash E\left(\left(H_{i}^{\prime \prime}\right)^{\text {orig }}\right)$ is edge-disjoint from any $\left(H_{j}^{\prime \prime}\right)^{\text {orig }}$ by (d).
$\left(\gamma_{1}\right) W_{i}^{*}$ contains all edges in H_{i}^{\prime}.
$\left(\gamma_{2}\right) W_{i}^{*}$ is a path system.
$\left(\gamma_{3}\right)$ For every pair V, V^{+}of consecutive clusters on C and every i, there is an integer $w_{i}(V) \leq \sqrt{\phi} m$ so that

$$
w_{i}(V)=\sum_{v \in V} d_{W_{i}^{*}}^{+}(v)=\sum_{v \in V^{+}} d_{W_{i}^{*}}^{-}(v) .
$$

$\left(\gamma_{4}\right)$ The original versions of $W_{1}^{*}, \ldots, W_{q}^{*}$ are pairwise edge-disjoint.
Note that for each $i=1, \ldots, q$ every exceptional edge in W_{i}^{*} lies in $H_{i}^{\prime \prime}$. Our next aim is to turn the original versions of $W_{1}^{*}, \ldots, W_{q}^{*}$ into edge-disjoint Hamilton cycles by adding suitable edges from $\mathcal{B}(C)^{*}$.

Claim 5. For all $i=1, \ldots, q$, there is a Hamilton cycle C_{i} in G which contains all edges in the original version $\left(W_{i}^{*}\right)^{\text {orig }}$ of W_{i}^{*} and such that all the edges in $E\left(C_{i}\right) \backslash$ $\left(W_{i}^{*}\right)^{\text {orig }}$ lie in $\mathcal{B}(C)^{*}$. Moreover, all these Hamilton cycles C_{i} are pairwise edgedisjoint.

Choose a new constant $\varepsilon^{\prime \prime}$ such that

$$
\phi, \varepsilon^{\prime} \ll \varepsilon^{\prime \prime} \ll r_{1} / m .
$$

Suppose that we have already transformed the original versions of $W_{1}^{*}, \ldots, W_{i-1}^{*}$ into Hamilton cycles C_{1}, \ldots, C_{i-1}. Let $\mathcal{B}(C)_{i}^{*}$ denote the subdigraph of $\mathcal{B}(C)^{*}$ obtained by removing all edges in C_{1}, \ldots, C_{i-1}. For every cluster $V_{j} \in \mathcal{P}$ let V_{j}^{1} be the set of all those vertices $v \in V_{j}$ for which $d_{W_{j}^{*}}^{+}(v)=0$ and let V_{j}^{2} be the set of all those
vertices $v \in V_{j}$ for which $d_{W_{j}^{*}}^{-}(v)=0$. Thus $\left(\gamma_{3}\right)$ implies that

$$
\left|V_{j}^{1}\right| \geq m-w_{i}\left(V_{j}\right) \geq(1-\sqrt{\phi}) m \geq\left(1-\left(\varepsilon^{\prime \prime} / 2\right)^{2}\right) m
$$

and similarly $\left|V_{j}^{2}\right| \geq\left(1-\left(\varepsilon^{\prime \prime} / 2\right)^{2}\right) m$. Proposition 4.3(ii) applied with $d^{\prime}=\left(\varepsilon^{\prime \prime} / 2\right)^{2}$ now implies that $\mathcal{B}(C)_{i}^{*}\left[V_{j}^{1}, V_{j+1}^{2}\right]$ is still $\left(\varepsilon^{\prime \prime}, r_{1} / m\right)$-superregular. (To see that Proposition 4.3(ii) can be applied we use that the removal of each C_{j} decreases the minimum out- and indegree of every vertex of $\mathcal{B}(C)^{*}\left[V_{j}, V_{j+1}\right]$ by at most 1. Thus $\mathcal{B}(C)_{i}^{*}\left[V_{j}^{1}, V_{j+1}^{2}\right]$ is obtained from $\mathcal{B}(C)^{*}\left[V_{j}, V_{j+1}\right]$ by deleting at most $q \leq\left(\varepsilon^{\prime \prime} / 2\right)^{2} m$ edges at every vertex and by removing at most $\left(\varepsilon^{\prime \prime} / 2\right)^{2} m$ vertices from each vertex class.)

On the other hand, $\left(\gamma_{2}\right)$ and $\left(\gamma_{3}\right)$ imply that $\left|V_{j}^{1}\right|=\left|V_{j+1}^{2}\right|$. So we can apply Proposition 4.14 to find a perfect matching M_{j} in $\mathcal{B}(C)_{i}^{*}\left[V_{j}^{1}, V_{j+1}^{2}\right]$. Then the union F_{i} of the M_{j} (for all $j=1, \ldots, k$) and of W_{i}^{*} is a 1-regular digraph on $V(G) \backslash V_{0}$. We can now apply Lemma 6.5 with $F_{i}, \mathcal{B}(C)_{i}^{*}, E(C), \varepsilon^{\prime \prime}, r_{1} / m$ playing the roles of F, G, J, ε, d to replace each M_{j} with a suitable other perfect matching in $\mathcal{B}(C)_{i}^{*}\left[V_{j}^{1}, V_{j+1}^{2}\right]$ to make F_{i} into a Hamilton cycle C_{i}^{\prime} on $V(G) \backslash V_{0}$. To see that (ii) of Lemma 6.5 is satisfied, consider any cycle D in F_{i}. If D does not contain any edges from W_{i}^{*}, then it meets V_{j}^{1} for every $j=1, \ldots, k$. So suppose that D contains some edges from W_{i}^{*} and let v be a final vertex on a subpath in $W_{i}^{*} \cap D$ (such a vertex exists by $\left(\gamma_{2}\right)$). Then $v \in V_{j}^{1}$, where V_{j} is the cluster containing v.

Let C_{i} be the original version $\left(C_{i}^{\prime}\right)^{\text {orig }}$ of C_{i}^{\prime}. Then Observation 7.4 implies that C_{i} is a Hamilton cycle of G. By $\left(\gamma_{4}\right)$ all the Hamilton cycles C_{1}, \ldots, C_{q} will be pairwise edge-disjoint. This completes the proof of Claim 5.

Let us now consider the case when ($G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}$) is a ($\ell^{\prime}, k, m, \varepsilon, d$)-bisetup. The argument for this case is similar, so we only highlight the places where it differs. Given clusters V_{j} and $V_{j^{\prime}}$ such that $\left|j^{\prime}-j\right|$ is even, we now define
$A C S\left(V_{j}, V_{j^{\prime}}\right):=A E C S^{b i}\left(V_{j}, V_{j+2}\right) \cup A E C S^{b i}\left(V_{j+2}, V_{j+4}\right) \cup \cdots \cup A E C S^{b i}\left(V_{j^{\prime}-2}, V_{j^{\prime}}\right)$.
Since H is bipartite with vertex classes $\bigcup \mathcal{V}_{\text {even }}$ and $\bigcup \mathcal{V}_{\text {odd }}$, every edge $x y$ of H either satisfies $V(x)^{+}, V(y) \in \mathcal{V}_{\text {even }}$ or $V(x)^{+}, V(y) \in \mathcal{V}_{\text {odd }}$. Thus we can define the W_{i}^{\prime} as before and Claim 1 still holds.

Recall that $U_{\text {even }}$ and $U_{\text {odd }}$ form a partition of the edges of U. Since each occurrence of an edge in U corresponds to an edge in U^{\prime}, this also defines sets $U_{\text {even }}^{\prime}$ and $U_{\text {odd }}^{\prime}$ corresponding to $U_{\text {even }}$ and $U_{\text {odd }}$. Moreover, $U_{\text {even }}^{\prime}$ and $U_{\text {odd }}^{\prime}$ form a partition of the edges of U^{\prime}. Instead of Claim 2 we now have the following claim.
Claim 2'. Let W denote the union of $W_{1}^{\prime}, \ldots, W_{q}^{\prime}$. Then there are integers $t_{\text {even }}$ and $t_{\text {odd }}$ so that W contains each edge of $U_{\text {even }}$ exactly $t_{\text {even }}$ times and every edge of $U_{\text {odd }}$ exactly $t_{\text {odd }}$ times. Thus if W is viewed as a multiset consisting of edges in $E\left(U^{\prime}\right) \cup E(H)$, then W also contains each edge of $U_{\text {even }}^{\prime}$ exactly $t_{\text {even }}$ times and every edge of $U_{\text {odd }}^{\prime}$ exactly $t_{\text {odd }}$ times.
To prove Claim 2^{\prime}, define an auxiliary digraph D as before. Note that this time, if $V_{i} V_{j} \in E(D)$ then either both i and j are even or both i and j are odd. As before, D is regular and thus there exists a decomposition of D into edge-disjoint 1 -factors. Consider any cycle $D^{\prime}=V_{i_{1}} \ldots V_{i_{r}}$ in one of these 1-factors. Then either
all of i_{1}, \ldots, i_{r} are even or all of them odd. Suppose first that the former holds. Then W contains all edges in the multiset

$$
S\left(D^{\prime}\right):=A C S\left(V\left(x_{i_{1}}\right), V\left(x_{i_{2}}\right)\right) \cup A C S\left(V\left(x_{i_{2}}\right), V\left(x_{i_{3}}\right)\right) \cup \cdots \cup A C S\left(V\left(x_{i_{r}}\right), V\left(x_{i_{1}}\right)\right) .
$$

But

$$
\operatorname{ACS}\left(V_{i_{j}}, V_{i_{j+1}}\right)=\operatorname{AECS}\left(V_{i_{j}}, V_{i_{j}+2}\right) \cup \cdots \cup \operatorname{AECS}\left(V_{i_{j+1}-2}, V_{i_{j+1}}\right)
$$

So it follows that $S\left(D^{\prime}\right)$ contains every $\operatorname{AECS}\left(V_{i}, V_{i+2}\right)$ for which i is even the same number of times and thus $S\left(D^{\prime}\right)$ is a multiple of $E\left(U_{\text {even }}\right)$.

If all of i_{1}, \ldots, i_{r} are odd then it follows that $S\left(D^{\prime}\right)$ is a multiple of $E\left(U_{\text {odd }}\right)$. Since W is the union of the $S\left(D^{\prime}\right)$ over all cycles D^{\prime} in the 1-factor decomposition of D, this implies Claim 2'.

As before, one can show that Claim 3 holds and so instead of (9.6) we now have $t_{\text {even }}, t_{\text {odd }} \leq s^{\prime} q$ and so

$$
t_{\text {even }}+11 s^{\prime} q, t_{\mathrm{odd}}+11 s^{\prime} q \leq 12 s^{\prime} q \stackrel{(9.7)}{=} t^{\prime}
$$

Choose integers $s_{1}^{\text {even }}, \ldots, s_{q}^{\text {even }}$ so that

$$
\sum_{i=1}^{q} s_{i}^{\text {even }}=t^{\prime}-t_{\text {even }} \quad \text { and } \quad 11 s^{\prime} \leq s_{i}^{\text {even }} \leq 12 s^{\prime} \quad \text { for all } i=1, \ldots, q
$$

Define $s_{1}^{\text {odd }}, \ldots, s_{q}^{\text {odd }}$ similarly. For each $i=1, \ldots, q$, let $W_{i}^{\prime \prime}$ be obtained from W_{i}^{\prime} by adding $s_{i}^{\text {even }}$ copies of $U_{\text {even }}$ and $s_{i}^{\text {odd }}$ copies of $U_{\text {odd }}$. Then the $W_{i}^{\prime \prime}$ are as desired in Claim 4. The remainder of the proof is now identical.

Suppose we are given a 1 -factor H of $G-V_{0}$ which is split into suitable matchings H_{i}. We will apply the following lemma in the proof of Lemma 9.7 to assign a complete exceptional path system $C E P S_{i}$ to each H_{i} so that $C E P S_{i}$ can play the role of $H_{i}^{\prime \prime}$ in Lemma 9.5. We then use Lemma 9.5 to extend H_{i} into a Hamilton cycle.

Lemma 9.6. Suppose that $0<1 / n \ll 1 / k, 1 / q, \varepsilon, 1 / f \ll 1$, that $t, k / f, f m / q \in \mathbb{N}$ and that (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme on n vertices. Suppose that \mathcal{P}^{*} is a (q / f)-refinement of \mathcal{P} and that $E F_{1}, \ldots, E F_{t}$ are exceptional factors with parameters $(q / f, f)$ with respect to C, \mathcal{P}^{*}. Let \mathcal{I} denote the canonical interval partition of C into f intervals of equal length. Suppose that $H_{1}, \ldots, H_{t q}$ are subdigraphs of G satisfying the following properties:
(a) For each $i=1, \ldots, t q$ there are at most $f / 100$ intervals $I \in \mathcal{I}$ such that H_{i} contains a vertex lying in a cluster on I.
(b) For each interval $I \in \mathcal{I}$ there are at most $t q / 100$ indices i with $1 \leq i \leq t q$ and such that H_{i} contains a vertex lying in a cluster on I.
(c) If $|i-j| \leq 10$, then H_{i} and H_{j} are vertex-disjoint, with the indices considered modulo tq.
Then the tq complete exceptional path systems contained in $E F_{1}, \ldots, E F_{t}$ can be labelled $C E P S_{1}, \ldots, C E P S_{t q}$ such that the following conditions hold:

- $H_{i} \cup C E P S_{i}$ and $H_{j} \cup C E P S_{j}$ are pairwise vertex-disjoint whenever $|i-j| \leq$ 10.
- H_{i} and $C E P S_{i}$ are vertex-disjoint.

Proof. Let $\mathcal{C E P S}$ denote the set of the $t q$ complete exceptional path systems contained in $E F_{1}, \ldots, E F_{t}$. In order to label them, we consider an auxiliary bipartite graph B defined as follows. The first vertex class B_{1} of B consists of all the H_{i}. The second vertex class B_{2} is $\mathcal{C E P S}$. So $\left|B_{1}\right|=\left|B_{2}\right|=t q$. We join $H_{i} \in B_{1}$ to $C E P S \in B_{2}$ by an edge in B if $C E P S$ is vertex-disjoint from each of $H_{i-10}, H_{i-9}, \ldots, H_{i+10}$. Our aim is to find a perfect matching in B which has the following additional property:

For all $1 \leq i<j \leq t q$ with $|i-j| \leq 10$ the two complete exceptional path systems which are matched to H_{i} and H_{j} are vertex-disjoint from each other.

To show that such a perfect matching exists, let M be a matching of maximum size satisfying (\odot) and suppose that M is not perfect. Pick $H_{i} \in B_{1}$ and $C E P S^{*} \in$ B_{2} such that they are not covered by M. We say that an interval $I \in \mathcal{I}$ is bad for H_{j} if H_{j} contains a vertex lying in a cluster on I. Let \mathcal{I}^{\prime} denote the set of all those intervals $I \in \mathcal{I}$ which are bad for at least one of $H_{i-10}, H_{i-9}, \ldots, H_{i+10}$. Thus $\left|\mathcal{I}^{\prime}\right| \leq 21 f / 100$ by (a). But every complete exceptional path system which spans an interval $I \in \mathcal{I} \backslash \mathcal{I}^{\prime}$ is vertex-disjoint from each of $H_{i-10}, H_{i-9}, \ldots, H_{i+10}$. Since for each such I the set $\mathcal{C E P S}$ contains precisely $q t / f$ complete exceptional path systems spanning I, it follows that the degree of H_{i} in B is at least (1$21 / 100) t q$. On the other hand, for each $C E P S \in \mathcal{C E P S}$ there are precisely $3 t-1$ other complete exceptional path systems in $\mathcal{C E P S}$ which are not vertex-disjoint from $C E P S$. This implies that at most $20 \cdot 3 t$ neighbours $C E P S$ of H_{i} in B are not vertexdisjoint from each of the at most 20 complete exceptional path systems matched to $H_{i-10}, \ldots, H_{i-1}, H_{i+1}, \ldots, H_{i+10}$ in M. Call a neighbour $C E P S$ of H_{i} in B nice if $C E P S$ is vertex-disjoint from each of these at most 20 complete exceptional path systems. So H_{i} has at least

$$
\begin{equation*}
(1-21 / 100) t q-60 t \geq(1-22 / 100) t q=(1-22 / 100)\left|B_{2}\right| \tag{9.16}
\end{equation*}
$$

nice neighbours in B. Note that each nice neighbour $C E P S$ of H_{i} has to be covered by M (otherwise we could enlarge M into a bigger matching satisfying (\odot) by adding the edge between H_{i} and $C E P S$). Thus in particular,

$$
\begin{equation*}
|M| \geq(1-22 / 100)\left|B_{2}\right| . \tag{9.17}
\end{equation*}
$$

Let $I^{*} \in \mathcal{I}$ be the interval which $C E P S^{*}$ spans. Then (b) implies that I^{*} is bad for at most $t q / 100$ of the H_{j}. But this implies that there are at most $21 t q / 100$ indices j with $1 \leq j \leq t q$ and such that I^{*} is bad for at least one of $H_{j-10}, H_{j-9}, \ldots, H_{j+10}$. Thus the degree of $C E P S^{*}$ in B is at least $(1-21 / 100) t q$. Together with (9.17) this implies that $C E P S^{*}$ has at least $(1-43 / 100)\left|B_{1}\right|$ neighbours in B which are covered by M. We call such a neighbour H_{j} useful if $C E P S^{*}$ is vertex-disjoint from each of the (at most) 21 complete exceptional path systems matched to $H_{j-10}, H_{j-9}, \ldots, H_{j+10}$ in M. Recall $\mathcal{C E P S}$ contains precisely $3 t-1$ other complete exceptional path systems which are not vertex-disjoint from CEPS*. But
each of these can force at most 21 neighbours H_{j} of $C E P S^{*}$ to become useless (by being matched to one of $\left.H_{j-10}, H_{j-9}, \ldots, H_{j+10}\right)$. So $C E P S^{*}$ has at least

$$
(1-43 / 100)\left|B_{1}\right|-63 t=(1-43 / 100)\left|B_{1}\right|-63\left|B_{1}\right| / q \geq(1-44 / 100)\left|B_{1}\right|
$$

useful neighbours which are covered by M. Together with (9.16) this implies that there is a matching edge $e \in M$ such that its endpoint in B_{1} is a useful neighbour of $C E P S^{*}$ while its endpoint in B_{2} is a nice neighbour of H_{i}. Let H_{j} and $C E P S$ be the endpoints of e. Let M^{\prime} be the matching obtained from M by deleting e and adding the edge between H_{i} and $C E P S$ and the edge between H_{j} and $C E P S^{*}$. Then M^{\prime} is a larger matching which still satisfies (Ω), a contradiction.

This shows that B has a perfect matching satisfying (\triangle). For each $i=1, \ldots, t q$ we take $C E P S_{i}$ to be the complete exceptional path system which is matched to H_{i}. Then (c), the definition of our auxiliary graph B and (O) together imply that the $C E P S_{i}$ are as desired.

To obtain an algorithmic version of the above proof, we simply start with an empty matching in the auxiliary graph B and use the above argument to gradually extend the matching into a perfect one.

For the final lemma of this section, we are given an r-factor H of $G-V_{0} . H$ is then split into 1-factors F_{i} and these 1-factors are split further into small matchings H_{j}^{i}. We use Lemma 9.6 to assign a suitable complete exceptional path system $C E P S_{j}^{i}$ to each H_{j}^{i}. We then apply Lemma 9.5 to extend each $C E P S_{j}^{i} \cup H_{j}^{i}$ into a Hamilton cycle using edges of $C A$. Since Lemma 9.5 allows us to prescribe a regular subgraph $\mathcal{B}^{\prime}\left(U^{\prime}\right)$ of $\mathcal{B}\left(U^{\prime}\right)$ whose edges will all be used for the Hamilton cycles, this means we can use up all edges of $\mathcal{B}\left(U^{\prime}\right)$ in the process, so the leftover of the entire process is a blow-up of C, as required.

Lemma 9.7. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll 1 / q \ll 1 / f \ll r_{1} / m \ll d \ll$ $1 / \ell^{\prime}, 1 / g \ll 1$ and that $r k \leq m / f^{2}$. Let

$$
s:=r f k, \quad r_{2}:=96 \ell^{\prime} g^{2} k r, \quad r_{3}:=s / q
$$

and suppose that $k / f, k / g, q / f, m / 4 \ell^{\prime}, f m / q, 2 f k / 3 g(g-1) \in \mathbb{N}$. Suppose that

$$
\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)
$$

is an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-setup with $|G|=n$ and $C=V_{1} \ldots V_{k}$. Suppose that H is an r-factor of $G-V_{0}$ and that $C A=\mathcal{B}(C)^{*} \cup \mathcal{B}\left(U^{\prime}\right) \cup C A^{\operatorname{exc}}$ is a chord absorber for C, U^{\prime} with parameters $\left(\varepsilon, r_{1}, r_{2}, r_{3}, q, f\right)$ whose original version is edge-disjoint from H. Then there are edge-disjoint Hamilton cycles C_{1}, \ldots, C_{s} in G which satisfy the following conditions:
(i) Altogether C_{1}, \ldots, C_{s} contain all the edges of $H \cup \mathcal{B}\left(U^{\prime}\right) \cup\left(C A^{\mathrm{exc}}\right)^{\mathrm{orig}}$. Moreover, all remaining edges in C_{1}, \ldots, C_{s} are contained in $\mathcal{B}(C)^{*}$.
(ii) $C A^{\text {orig }} \backslash \bigcup_{i} E\left(C_{i}\right)=\mathcal{B}(C)^{*} \backslash \bigcup_{i} E\left(C_{i}\right)$ is an $\left(r_{1}+r_{2}+r-(q-1) s / q\right)$-blow-up of C.
(iii) Each $C_{i}^{\text {basic }}$ contains one of the s complete exceptional path systems contained in $C A^{\mathrm{exc}}$.

The analogue holds for an ($\left.\ell^{\prime}, k, m, \varepsilon, d\right)$-bi-setup $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ if we assume in addition that H is bipartite with vertex classes $\cup \mathcal{V}_{\text {even }}$ and $\cup \mathcal{V}_{\text {odd }}$ (where $\mathcal{V}_{\text {even }}$ is the set of all those V_{i} such that i is even and $\mathcal{V}_{\text {odd }}$ is defined analogously).
Proof. Define new constants by

$$
q^{\prime}:=f k \quad \text { and } \quad \phi:=8 g^{2} k / q^{\prime}=8 g^{2} / f
$$

Thus

$$
s=r q^{\prime} \quad \text { and } \quad r_{2}=12 \ell^{\prime} \phi q^{\prime} r .
$$

Recall that V_{1}, \ldots, V_{k} denote the clusters in \mathcal{P}. Apply Proposition 6.1 to decompose the edges of H into r edge-disjoint 1-factors F_{1}, \ldots, F_{r} of $G-V_{0}$. We now consider each $F_{i^{*}}$ with $i^{*}=1, \ldots, r$. Apply Lemma 8.7 with $F_{i^{*}}$ and q^{\prime} playing the roles of H and q^{*} to decompose $F_{i^{*}}$ into q^{\prime} matchings $H_{1}^{i^{*}}, \ldots, H_{q^{\prime}}^{i^{*}}$ which satisfy the following properties:
(a a_{1}) For all $i=1, \ldots, q^{\prime}, H_{i}^{i^{*}}$ consists of at most $2 g^{2} k m / q^{\prime}=\phi m / 4$ edges. Moreover $\left|H_{i}^{i^{*}} \cap V_{j}\right| \leq 4 g^{2} k m / q^{\prime} \leq \phi m / 2$ for all $j=1, \ldots, k$.
(a_{2}) If $|i-j| \leq 10$, then $H_{i}^{i^{*}}$ and $H_{j}^{i^{*}}$ are vertex-disjoint, with the indices considered modulo q^{\prime}.
(a3) Each $H_{i}^{i^{*}}$ consists entirely of edges of the same double-type and for each $t \in\binom{g}{2}$ the number of $H_{i}^{i^{*}}$ of double-type t is $q^{\prime} /\binom{g}{2}$.
Note that the 'moreover part' of $\left(a_{1}\right)$ follows immediately from the first part of $\left(a_{1}\right)$. For (a_{3}), recall that we considered a canonical interval partition \mathcal{I}_{g} of C into g edgedisjoint intervals of equal length and for each $j=1, \ldots, g$ we denote the union of the clusters in the j th interval by X_{j}. Then $H_{i}^{i^{*}}$ has double-type $a b$ (where $a, b \leq g$) if all its vertices are contained in $X_{a} \cup X_{b}$.

For each $i^{*}=1, \ldots, r$ and each $i=1, \ldots, q^{\prime}$ we now assign a suitable complete exceptional path system $C E P S_{i}^{i^{*}}$ from $C A^{\text {exc }}$ to $H_{i}^{i^{*}}$. We do this in such a way that all these complete exceptional path systems are distinct from each other and the following properties hold:
$\left(\mathrm{b}_{1}\right)$ For all $i=1, \ldots, q^{\prime}$ and all $j=1, \ldots, k$ we have $\left|\left(H_{i}^{i^{*}} \cup C E P S_{i}^{i^{*}}\right) \cap V_{j}\right| \leq \phi m$. Moreover, each $H_{i}^{i^{*}} \cup C E P S_{i}^{i^{*}}$ consists of at most ϕm paths.
$\left(\mathrm{b}_{2}\right) H_{i}^{i^{*}} \cup C E P S_{i}^{i^{*}}$ and $H_{j}^{i^{*}} \cup C E P S_{j}^{i^{*}}$ are pairwise vertex-disjoint whenever $|i-j| \leq 10$ (for each $i^{*}=1, \ldots, r$).
($\left.\mathrm{b}_{3}\right) H_{i}^{i^{*}}$ and $C E P S_{i}^{i^{*}}$ are vertex-disjoint.
($\left.\mathrm{b}_{4}\right) H_{i}^{i^{*}} \cup\left(C E P S_{i}^{i^{*}}\right)^{\text {orig }}$ and $H_{j}^{i^{*}} \cup\left(C E P S_{j}^{i^{*}}\right)^{\text {orig }}$ are pairwise edge-disjoint whenever $i \neq j$ (for each $i^{*}=1, \ldots, r$).
Note that since $C A^{\text {exc }}$ consists of exceptional factors with parameters $(q / f, f)$, the $C E P S_{i}^{i^{*}}$ will always satisfy $\left|C E P S_{i}^{i^{*}} \cap V_{j}\right| \leq f m / q \leq m / f \leq \phi m / 2$ and each $C E P S_{i}^{i^{*}}$ will always consist of $f m / q \leq \phi m / 2$ paths. So (b_{1}) will follow from (a_{1}) and $\left(\mathrm{b}_{3}\right)$. (b_{4}) follows immediately from the fact that H and $\left(C A^{\text {exc }}\right)^{\text {orig }}$ are edgedisjoint.

In order to choose the $C E P S_{i}^{i^{*}}$ we proceed as follows. Let $t:=q^{\prime} / q=r_{3} / r$. Let \mathcal{I} be the canonical interval partition of C into f intervals of equal length. So $C A^{\text {exc }}$ consists of r_{3} exceptional factors $E F_{1}, \ldots, E F_{r_{3}}$, where each $E F_{j}$ induces the disjoint union of q / f complete exceptional path systems on each interval $I \in \mathcal{I}$. For each
$i^{*}=1, \ldots, r$ let $\mathcal{C E P S}{ }^{i^{*}}$ denote the set of all complete exceptional path systems contained in $E F_{\left(i^{*}-1\right) t+1}, \ldots, E F_{i^{*} t}$. Each of these exceptional factors contains q complete exceptional path systems, so altogether we have $t q=q^{\prime}$ of them in $\mathcal{C E P S}{ }^{{ }^{*}}$. We will take $C E P S_{1}^{i^{*}}, \ldots, C E P S_{q^{\prime}}^{i^{*}}$ to be the complete exceptional path systems in $\mathcal{C E P S}{ }^{i}$.

To choose a suitable labeling of the $C E P S_{i}^{i^{*}}$, we aim to apply Lemma 9.6 with $H_{1}^{i^{*}}, \ldots, H_{q^{\prime}}^{i^{*}}$ playing the roles of $H_{1}, \ldots, H_{t q}$ and $E F_{\left(i^{*}-1\right) t+1}, \ldots, E F_{i^{*} t}$ playing the roles of $E F_{1}, \ldots, E F_{t}$. So we need to check that conditions (a)-(c) of Lemma 9.6 hold. Condition (c) follows from (a_{2}). To check (a), consider any $H_{i}^{i^{*}}$ and let $a b$ denote its double-type. Note that \mathcal{I} can be obtained from \mathcal{I}_{g} by splitting each interval in \mathcal{I}_{g} into f / g intervals of equal length. Thus at most $4+2 f / g \leq f / 100$ intervals $I \in \mathcal{I}$ have the property that $X_{a} \cup X_{b} \supseteq V\left(H_{i}^{i^{*}}\right)$ contains a vertex lying in a cluster on I (the extra 4 accounts for those intervals sharing exactly one cluster with X_{a} or X_{b}). To check (b), consider any interval $I \in \mathcal{I}$. Then there are at most $2 g$ double-types $a b$ such that the set $X_{a} \cup X_{b}$ does not avoid all the clusters on I. Since by (a_{3}) for each double-type precisely $q^{\prime} /\binom{g}{2}$ of $H_{1}^{i^{*}}, \ldots, H_{q^{\prime}}^{i^{*}}$ have that double-type, this implies at most $2 g q^{\prime} /\binom{g}{2} \leq q^{\prime} / 100$ of $H_{1}^{i^{*}}, \ldots, H_{q^{\prime}}^{i^{*}}$ contain a vertex lying in a cluster on I. Thus we can indeed apply Lemma 9.6 to find a labeling $C E P S_{1}^{i^{*}}, \ldots, C E P S_{q^{\prime}}^{i^{*}}$ of the complete exceptional path systems in $\mathcal{C E P} \mathcal{S}^{i^{*}}$ as described there. Then the $C E P S_{i}^{i^{*}}$ also satisfy $\left(b_{2}\right)$ and (b_{3}).

Our aim now is to apply Lemma 9.5. Let $r^{*}:=12 \ell^{\prime} \phi q^{\prime}$. Note that $r_{2}=r^{*} r$. Recall that (CA2) implies that $\mathcal{B}\left(U^{\prime}\right)$ is an r_{2}-blow-up of U^{\prime} so that for each edge $A B$ of U^{\prime}, there is a partition of both A and B into four subclusters A_{1}, \ldots, A_{4} and B_{1}, \ldots, B_{4} of equal size so that $\mathcal{B}\left(U^{\prime}\right)\left[A_{j}, B_{j}\right]$ consists of exactly r_{2} edge-disjoint perfect matchings between each pair A_{j}, B_{j} (for all $j=1, \ldots, 4$). So we can decompose the edges of $\mathcal{B}\left(U^{\prime}\right)$ into edge-disjoint graphs S_{1}, \ldots, S_{r} so that each of these contains exactly r^{*} of these perfect matchings for each pair A_{j}, B_{j} of subclusters of each edge $A B$. (So $S_{i^{*}}$ is an r^{*}-blow-up of U^{\prime} for each $i^{*}=1, \ldots, r$.) Thus we can satisfy condition (a) of Lemma 9.5 if we let $S_{i^{*}}$ and r^{*} play the roles of $\mathcal{B}^{\prime}\left(U^{\prime}\right)$ and r_{2}.

In particular, we can now apply Lemma 9.5 with S_{1} playing the role of $\mathcal{B}^{\prime}\left(U^{\prime}\right), F_{1}$ playing the role of H, and $\phi, q^{\prime}, 2 / f^{1 / 2}, r^{*}$ playing the roles of $\phi, q, \varepsilon^{\prime}, r_{2}$ to obtain a collection \mathcal{C}_{1} of q^{\prime} edge-disjoint Hamilton cycles in $G^{\text {orig. We next apply Lemma } 9.5}$ for each of F_{2}, \ldots, F_{r} in turn to find collections $\mathcal{C}_{2}, \ldots, \mathcal{C}_{r}$, each consisting of q^{\prime} edge-
 $\mathcal{B}(C)^{*}$ and the complete exceptional path systems $C E P S_{i}^{i^{*}}$ guaranteed by $\left(\mathrm{b}_{1}\right)-\left(\mathrm{b}_{4}\right)$. Note that in each of the applications of Lemma 9.5 the in- and outdegrees of a vertex in $\mathcal{B}(C)^{*}$ decrease by at most q^{\prime}. So in total the in- and outdegrees will decrease by at most $r q^{\prime}=r f k \leq m / f$. Thus Proposition 4.3(ii) applied with $d^{\prime}:=1 / f$ implies that in each step the remainder of $\mathcal{B}(C)^{*}$ will still be $\left(2 / f^{1 / 2}, r_{1} / m\right)$-superregular. So this means we can indeed apply Lemma 9.5.

We take C_{1}, \ldots, C_{s} to be the Hamilton cycles in $\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}$. Then clearly C_{1}, \ldots, C_{s} are pairwise edge-disjoint and they satisfy (i) and (iii). To check (ii), consider any vertex $x \in V(G) \backslash V_{0}$. Then x has outdegree s in $C_{1} \cup \cdots \cup C_{s}$ and all the $r_{2}+r_{3}+r$ outedges at x in $\mathcal{B}\left(U^{\prime}\right) \cup\left(C A^{\text {exc }}\right)^{\text {orig }} \cup H$ are covered by $C_{1} \cup \cdots \cup C_{s}$.

Moreover, the outdegree in $\mathcal{B}(C)^{*}$ is r_{1}. Thus the outdegree of x in $\mathcal{B}(C)^{*} \backslash \bigcup_{i} E\left(C_{i}\right)$ is

$$
r_{1}+r_{2}+r_{3}+r-s=r_{1}+r_{2}+r-\frac{(q-1) s}{q} .
$$

Since the analogue also holds for the indegree of x, this proves (ii). The proof of the bipartite analogue goes through unchanged.

10. Absorbing a blown-up cycle via switches

Our main aim in this section is to define (and find) a 'cycle absorber' $C y A$ which will be removed from the original digraph G at the start of the proof of Theorem 1.2. We would like to find a Hamilton decomposition of the union of several cycle absorbers $C y A$ and the 'leftover' G^{\prime} of the chord absorber obtained by an application of Lemma 9.7. Recall that this leftover G^{\prime} is a blow-up of C. Consider a 1-factor H in a 1 -factorization of the leftover G^{\prime} - so the edges of H wind around C. CyA will also be a blow-up of C (if one ignores the edges in the complete exceptional path systems which will be contained in $C y A$). We will first find a special 1-factorization of $H \cup C y A$ which makes use of this property. In particular, either half or all the edges of each 1-factor will come from $C y A$. We will then successively switch pairs of edges between pairs of these 1-factors of $H \cup C y A$ with the goal of turning each of them into a Hamilton cycle after a certain number of these switches (see Figure 2). These switches will always involve edges from $C y A$ and not from H.

However, it will turn out that if these switches only involve pairs of 1 -factors, then the parity of the total number of cycles in a 1-factorization is preserved. In particular, this will imply that we cannot find a Hamilton decomposition of $H \cup C y A$ if we start of with a 1 -factorization into an odd number of cycles. So in Section 10.4, we also define a 'parity switcher' which involves switches between triples of 1-factors to overcome this problem. We then extend the cycle absorber $C y A$ into a 'parity extended cycle absorber' $P C A$ and find a Hamilton decomposition of $H \cup P C A$. We proceed in the same way for each 1-factor H in the above 1-factorization of G^{\prime}.
10.1. Definition of the cycle absorber. Let C_{4} denote the orientation of a 4cycle in which two vertices have outdegree 2 (and thus the two other vertices have indegree 2). Given digraphs H and H^{\prime}, we say they form a switchable pair if there are vertices x, x^{+}, y, y^{+}so that $x x^{+}, y y^{+}$are edges of H and $x y^{+}, y x^{+}$are edges of H^{\prime}. So the union C_{4}^{*} of these four edges forms a copy of C_{4}. We say that C_{4}^{*} is a $H H^{\prime}$-switch. More generally, we also say that a copy of C_{4} in a digraph G (again with the above orientation) is a potential switch. A C_{4}^{*}-exchange consists of moving the edges $x x^{+}, y y^{+}$from H to H^{\prime} and moving the edges $x y^{+}, y x^{+}$from H^{\prime} to H (see Figure 2). The following proposition (whose proof follows immediately from the definition of a C_{4}^{*}-exchange) states the crucial property of switches.

Proposition 10.1. Given 1-regular digraphs H and H^{\prime}, suppose there is a $H H^{\prime}$ switch C_{4}^{*} and let $H_{\text {new }}$ and $H_{\text {new }}^{\prime}$ be obtained from H and H^{\prime} via a C_{4}^{*}-exchange.
(i) If the two edges of $C_{4}^{*} \cap H$ lie on the same cycle of H, then $H_{\text {new }}$ has one more cycle than H.
(ii) If the two edges of $C_{4}^{*} \cap H$ lie on different cycles D_{1} and D_{2} of H, then $H_{\text {new }}$ has one less cycle than H. More precisely, the set of cycles of $H_{\text {new }}$ is the same as that of H except that the vertices of D_{1} and D_{2} now lie on a common cycle.

Moreover, the analogous assertions hold for H^{\prime}.
Consider a (k, m, ε, d)-scheme (G, \mathcal{P}, R, C). As usual, let $C=V_{1}, \ldots, V_{k}$ and recall that V_{0} denotes the exceptional set in \mathcal{P}. Throughout this section, when referring to 'clusters', we will mean the clusters in \mathcal{P}, i.e. V_{1}, \ldots, V_{k}. We assume that k is a multiple of 14 .

Given a subdigraph F of $G-V_{0}$, we say the top half of F is the subdigraph $F_{\text {top }}$ of F induced by all the vertices in $V_{1} \cup V_{2} \cup \cdots \cup V_{k / 2+1}$. The lower half of F is the subdigraph $F_{\text {low }}$ of F induced by all the vertices in $V_{k / 2+1} \cup \cdots \cup V_{k-1} \cup V_{k} \cup V_{1}$.

Roughly speaking, a cycle absorber consists of three edge-disjoint 1-factors F, S and S^{\prime} whose edges wind around C (we ignore exceptional vertices and edges in this explanatory paragraph). There will be switches $C_{4, j}$ between F and S and $C_{4, j}^{\prime}$ between F and S^{\prime}. Suppose we are given a 1 -factor H which also winds around C. In the proof of Lemma 10.2, we will construct two 1-factors $T:=H_{\text {low }} \cup F_{\text {top }}$ and $T^{\prime}:=H_{\text {top }} \cup F_{\text {low }}$. The switches $C_{4, j}$ between F and S will then correspond to switches between T and S. We will use these to turn T into a Hamilton cycle in Lemma 10.2. Moreover, after these switches, the resulting 1-factor obtained from S will be either a Hamilton cycle or will consist of two cycles. We will proceed similarly for T^{\prime} and S^{\prime}. If necessary, S and S^{\prime} will then be transformed into Hamilton cycles using the parity switcher in Section 10.4.

A bicycle B on V is a digraph with $V(B)=V$ which consists of exactly two vertex-disjoint (directed) cycles. A spanning bicycle B in a digraph G is a 1-factor of G which consists of exactly two vertex-disjoint cycles.

Let I_{1}, \ldots, I_{7} be a canonical interval partition of C into 7 intervals of equal length. Recall that a complete exceptional path system $C E P S$ completely spans I_{i} if $C E P S$ spans I_{i} and the vertex set of $C E P S$ is the union of all the clusters in I_{i}. Suppose that H is a digraph on $V(G) \backslash V_{0}$ which contains s complete exceptional path systems (for some s) and whose other edges lie in G. We say that H agrees with C if for every edge $v v^{\prime}$ of H which does not lie in one of the s complete exceptional path systems there is an i with $1 \leq i \leq k$ so that $v \in V_{i}$ and $v^{\prime} \in V_{i+1}$. So if $s=0$ then H agrees with C if and only if H winds around C.

Below we assume that the vertices in V_{1} and in $V_{k / 2+1}$ are ordered. A cycle absorber $C y A$ (with respect to C) in G is a digraph on $V(G) \backslash V_{0}$ with the following properties:
(CyA0) $C y A$ is the union of three 1-regular digraphs F, S and S^{\prime}, each with vertex set $V(G) \backslash V_{0} . \quad F_{\text {top }}, F_{\text {low }}, S$ and S^{\prime} each contain a complete exceptional path system (labelled $C E P S_{3}, C E P S_{5}, C E P S_{4}$ and $C E P S_{2}$ respectively) and $C E P S_{i}$ completely spans the interval I_{i}. Moreover, all the edges of $F \cup S \cup S^{\prime}$ which are not contained in $C E P S_{2} \cup \cdots \cup C E P S_{5}$ lie in $G-V_{0}$ and each of F, S and S^{\prime} agrees with C. Finally, $F^{\text {orig },} S^{\text {orig }}$ and $\left(S^{\prime}\right)^{\text {orig }}$ are pairwise edge-disjoint subdigraphs of G.
(CyA1) For each $j=1, \ldots, m$, let P_{j} denote the path of length $k / 7$ in $F_{\text {top }}$ starting at the j th vertex of V_{1} and ending in $V_{k / 7+1}$. (So each P_{j} contains precisely one vertex from each cluster in I_{1}.) Then $P_{j} \cup P_{j+1}$ forms a switchable pair with S for all $j=1, \ldots, m$ (with indices considered modulo m). Denote the switch by $C_{4, j}$.
(CyA2) There is a potential switch $C_{4, m+1}$ in $G-V_{0}$ so that S contains two independent edges of $C_{4, m+1}$ but the other two edges of $C_{4, m+1}$ do not lie in $C y A^{\text {orig }}$. Moreover, $V\left(C_{4, j}\right) \subseteq \bigcup_{V \in I_{1}} V$ for each $j=1, \ldots, m+1$ and all the $C_{4, j}$ are pairwise vertex-disjoint.
(CyA3) For each $j=1, \ldots, m+1$, denote the edges of $C_{4, j}$ which are contained in S by ℓ_{j} and r_{j}. Let L be the (ordered) sequence of edges $\ell_{1}, \ldots, \ell_{m+1}$ and R be the (ordered) sequence of edges r_{1}, \ldots, r_{m+1}. S is a bicycle on $V(G) \backslash V_{0}$ where one cycle contains all edges of L in the given order and the other cycle contains all edges of R in the given order.

Moreover, $F_{\text {low }}$ and S^{\prime} will satisfy the following conditions which are analogous to (CyA1)-(CyA3). In (CyA2'), we define $I_{4, \text { low }}$ to be the subinterval $V_{k / 2+1} \ldots V_{4 k / 7+1}$ of I_{4}.
(CyA1') For each $j=1, \ldots, m$, let P_{j}^{\prime} denote the path of length $k / 14$ in $F_{\text {low }}$ starting at the j th vertex of $V_{k / 2+1}$ and ending in $V_{4 k / 7+1}$. (So each P_{j}^{\prime} contains precisely one vertex from each cluster in $I_{4, \text { low. }}$.) Then $P_{j}^{\prime} \cup P_{j+1}^{\prime}$ forms a switchable pair with S^{\prime} for all $j=1, \ldots, m$ (with indices considered modulo m). Denote the switch by $C_{4, j}^{\prime}$.
(CyA2 ${ }^{\prime}$) There is a potential switch $C_{4, m+1}^{\prime}$ in $G-V_{0}$ so that S^{\prime} contains two independent edges of $C_{4, m+1}$ but the other two edges of $C_{4, m+1}^{\prime}$ do not lie in $C y A^{\text {orig }}$. Moreover, $V\left(C_{4, j}^{\prime}\right) \subseteq \bigcup_{V \in I_{4, \text { low }}} V$ for each $j=1, \ldots, m+1$ and all the $C_{4, j}^{\prime}$ are pairwise vertex-disjoint.
(CyA3') For each $j=1, \ldots, m+1$, denote the edges of $C_{4, j}^{\prime}$ which are contained in S^{\prime} by ℓ_{j}^{\prime} and r_{j}^{\prime}. Let L^{\prime} be the (ordered) sequence of edges $\ell_{1}^{\prime}, \ldots, \ell_{m+1}^{\prime}$ and R^{\prime} be the (ordered) sequence of edges $r_{1}^{\prime}, \ldots, r_{m+1}^{\prime} . S^{\prime}$ is a bicycle on $V(G) \backslash V_{0}$ where one cycle contains all edges of L^{\prime} in the given order and the other cycle contains all edges of R^{\prime} in the given order.

The switches $C_{4, j}$ and $C_{4, j}^{\prime}$ with $j<m$ will be used in the proof of Lemma 10.2 to 'transform' a given 1-regular graph H whose edges wind around C into a Hamilton cycle. We will not actually use the two switches $C_{4, m}$ and $C_{4, m}^{\prime}$ defined above. However, they make our description of the construction of F a little simpler. The potential switches $C_{4, m+1}$ and $C_{4, m+1}^{\prime}$ will be used to 'attach' the cycle absorber to the parity switcher defined in Section 10.4. This will ensure that the 'leftover' of the cycle absorber after the above transformation step also has a Hamilton decomposition.

Note that $C y A^{\text {orig }}$ is a spanning subdigraph of G in which the vertices in V_{0} have in- and outdegree 4 , while the others have in- and outdegree 3 . However, $C y A$ is not actually a subdigraph of G, so saying that it is a cycle absorber in G is a slight abuse of notation.

Figure 5. The exceptional factor which contains the complete exceptional path systems $C E P S_{i}$ of the (parity extended) cycle absorber. Each $C E P S_{i}$ spans the interval I_{i} and the diagram shows how these are assigned to the 1 -factors of the cycle absorber in (CyA0) and to the bicycles B_{i}^{\prime} of the parity switcher in the proof of Lemma 10.5 .

The complete exceptional path systems $C E P S_{i}$ contained in $C y A$ will be chosen within a single exceptional factor, which has parameters $(1,7)$ (see Figure 5). The assignment of the $C E P S_{i}$ to the different 1-factors of the cycle absorber (and the parity switcher) is chosen in such a way that the switches of the 1 -factor can be chosen to be vertex disjoint from the $C E P S_{i}$ contained in this 1-factor.
10.2. Using the cycle absorber. The following lemma shows that given an arbitrary 1-factor H of $G-V_{0}$ which winds around C and a cycle absorber $C y A$, we can 'almost' decompose $H \cup C y A$ into Hamilton cycles: we obtain a decomposition into at least two Hamilton cycles and at most two spanning bicycles in G. The final step of transforming the bicycles into Hamilton cycles is done by means of a 'parity switcher', defined in Section 10.4. (As discussed at the beginning of Section 10.4, the difficult case is when Lemma 10.2 yields a decomposition with exactly three Hamilton cycles and exactly one bicycle.)

Lemma 10.2. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll d \ll 1$, that $k / 14 \in \mathbb{N}$ and that (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme with $|G|=n$. Suppose that H is a 1 -factor of $G-V_{0}$ which winds around C. Let $C y A$ be a cycle absorber with respect to C in G such that CyA ${ }^{\text {orig }}$ and H are edge-disjoint. Then $H \cup C y A^{\text {orig }}$ has a decomposition into four 1-factors F_{1}, F_{2}, F_{3} and F_{4} of G satisfying the following conditions:
(i) F_{1} contains $C E P S_{3}^{\text {orig }}, F_{2}$ contains $C E P S_{5}^{\text {orig }}, F_{3}$ contains $C E P S_{4}^{\text {orig }}$ and F_{4} contains $C E P S_{2}^{\text {orig }}$ (where the $C E P S_{i}$ are as defined in (CyA0)).
(ii) F_{1} and F_{2} are Hamilton cycles in G.
(iii) Each of F_{3} and F_{4} is either a Hamilton cycle or a spanning bicycle in G. If F_{3} is a bicycle, then one of the cycles contains ℓ_{m+1} and the other contains r_{m+1}. Similarly, if F_{4} is a bicycle, then one of the cycles contains ℓ_{m+1}^{\prime} and the other contains r_{m+1}^{\prime}.

Proof. Similarly as for F (as defined in (CyA0)), we partition H into $H_{\text {top }}$ and $H_{\text {low }}$. So both $F_{\text {top }}$ and $H_{\text {top }}$ consist of m vertex-disjoint paths from V_{1} to $V_{k / 2+1}$ and both $F_{\text {low }}$ and $H_{\text {low }}$ consist of m vertex-disjoint paths from $V_{k / 2+1}$ to V_{1}. Let $T:=H_{\text {low }} \cup F_{\text {top }}$ and let $T^{\prime}:=H_{\text {top }} \cup F_{\text {low }}$. Then (CyA0) implies that both T and T^{\prime} are 1-regular digraphs on $V(G) \backslash V_{0}$ which agree with C and correspond to 1-factors $T^{\text {orig }}$ and $\left(T^{\prime}\right)^{\text {orig }}$ of G.

Our first aim is to perform switches between T and S to transform T into a Hamilton cycle on $V(G) \backslash V_{0}$. ($T^{\text {orig }}$ will then turn out to be a Hamilton cycle of G.) Suppose that T is not a Hamilton cycle. For $j=1, \ldots, m$, let P_{j} be as defined in (CyA1). Recall from (CyA0) that $C E P S_{3}$ is the complete exceptional path system contained in $T_{\text {top }}=F_{\text {top }}$. But since $C E P S_{3}$ completely spans I_{3}, the paths in $C E P S_{3}$ link all vertices of $V_{2 k / 7+1}$ to those in $V_{3 k / 7+1}$. It follows that every cycle D in T visits every cluster on C except possibly $V_{2 k / 7+2}, \ldots, V_{3 k / 7}$. In particular, the following assertion holds (where the P_{j} are as defined in (CyA1)):

For each $j=1, \ldots, m$, any cycle D in T either contains P_{j} or it avoids all vertices of P_{j}. Moreover, D contains at least one of the P_{j} and so it contains the j th vertex x_{j} of V_{1} for some j with $1 \leq j \leq m$.

We say that i with $1 \leq i<m$ is a switch index for T if x_{i} and x_{i+1} lie on different cycles of T (i.e. if the initial vertices of P_{i} and P_{i+1} lie on different cycles of T). Since T is not a Hamilton cycle, (\star) implies that there must be an i with $1 \leq i<m$ which is a switch index. Our approach will be to perform a switch between the cycles D and D^{\prime} which contain x_{i} and x_{i+1} respectively. This will reduce the number of cycles of T and turn S into a Hamilton cycle. We continue in this way until T is a Hamilton cycle. The only difference in the later steps is that S might already be a Hamilton cycle, in which case it is transformed into a bicycle after the switch.

More precisely, for $i=1, \ldots, m+1$, we define $L_{i}:=\left(\ell_{i}, \ldots, \ell_{m+1}\right)$ and $R_{i}:=$ $\left(r_{i}, \ldots, r_{m+1}\right)$. So $L_{1}=L$ and $R_{1}=R$ (where ℓ_{i}, r_{i}, L, R are as defined in (CyA3)). Suppose that $1 \leq i<m$ and that T_{i} and S_{i} are 1-regular digraphs on $V(G) \backslash V_{0}$ which satisfy $\left(\mathrm{a}_{i}\right)$ and $\left(\mathrm{b}_{i}\right)$ below as well as either $\left(\mathrm{CyA3}_{i}^{-}\right)$or $\left(\mathrm{CyA}_{i}^{+}\right)$:
(a_{i}) Let D be any cycle of T_{i}. For each $j=i+1, \ldots, m, D$ either contains P_{j} or it avoids all vertices of P_{j}. Moreover, let e_{i-1} denote the edge in $C_{4, i-1} \cap P_{i}$. Then D either contains all edges in $E\left(P_{i}\right) \backslash\left\{e_{i-1}\right\}$ (possibly D even contains P_{i}) or D avoids all vertices of P_{i}.
(b_{i}) All of x_{1}, \ldots, x_{i} lie on a common cycle in T_{i}.
$\left(\mathrm{CyA}_{i}^{+}\right) S_{i}$ is a bicycle on $V(G) \backslash V_{0}$ where one cycle contains all edges of L_{i} in the given order and the other cycle contains all edges of R_{i} in the given order.
$\left(\mathrm{CyA}_{i}^{-}\right) S_{i}$ is a Hamilton cycle on $V(G) \backslash V_{0}$ which contains all edges of L_{i} and R_{i} in the given order and where all edges of L_{i} come before all edges of R_{i}.
Thus if $i=1, T_{1}:=T$ and $S_{1}:=S$, then (\star) and (CyA3) together imply that (a_{i}), $\left(\mathrm{b}_{i}\right)$ and $\left(\mathrm{CyA}_{i}^{+}\right)$hold. (Note that we view $\left\{e_{0}\right\}$ as being the empty set, so the last part of (a_{1}) says that D either contains all edges of P_{1} or D avoids all vertices of P_{1}.) So suppose first that $\left(\mathrm{CyA}_{i}^{+}\right)$holds for some $1 \leq i<m$. We define a switch index for T_{i} in the same way as for T. If i is not a switch index, let $S_{i+1}:=S_{i}$ and $T_{i+1}:=T_{i}$. Then clearly $\left(\mathrm{a}_{i+1}\right),\left(\mathrm{b}_{i+1}\right)$ and $\left(\mathrm{CyA}_{i+1}^{+}\right)$hold. If i is a switch

Figure 6. Transforming S_{i} into S_{i+1}. The left hand side illustrates the case when S_{i} satisfies $\left(\mathrm{CyA}_{i}^{-}\right)$and the right hand side illustrates the case when S_{i} satisfies $\left(\mathrm{CyA}_{i}^{+}\right)$.
index, let D be the cycle of T_{i} which contains x_{i} and let D^{\prime} be the cycle of T_{i} which contains x_{i+1}. Then (a_{i}) implies that D contains all edges in $E\left(P_{i}\right) \backslash\left\{e_{i-1}\right\}$ and D^{\prime} contains P_{i+1}. But $e_{i-1} \notin C_{4, i}$ since $C_{4, i-1}$ and $C_{4, i}$ are vertex-disjoint by (CyA2). Thus we can carry out the $C_{4, i}$-exchange to obtain S_{i+1} and T_{i+1}. Then Proposition 10.1 implies that the vertices of D and D^{\prime} now lie on a common cycle $D^{\prime \prime}$ of T_{i+1} In particular, T_{i+1} satisfies $\left(\mathrm{b}_{i+1}\right)$. Moreover, this new cycle $D^{\prime \prime}$ will contain all edges in $E\left(P_{i+1}\right) \backslash\left\{e_{i}\right\}$. Together with the fact that $C_{4, i}$ avoids all the P_{j} for $j=i+2, \ldots, m$, it follows that T_{i+1} satisfies (a_{i+1}). Moreover, it is easy to see that S_{i+1} satisfies $\left(\mathrm{CyA}_{i+1}^{-}\right)$(see Figure 6). Suppose next that ($\mathrm{CyA} 3_{i}^{-}$) holds for some $1 \leq i<m$. If i is not a switch index, let $S_{i+1}:=S_{i}$ and $T_{i+1}:=T_{i}$. Then clearly $\left(\mathrm{a}_{i+1}\right),\left(\mathrm{b}_{i+1}\right)$ and $\left(\mathrm{CyA}_{i+1}^{-}\right)$hold. If i is a switch index, define D and D^{\prime} as above. Again carry out the $C_{4, i}$-exchange to obtain S_{i+1} and T_{i+1}. Again, Proposition 10.1 implies that the vertices of D and D^{\prime} now lie on a common cycle of T_{i+1}. Also, it is easy to see that $\left(\mathrm{a}_{i+1}\right),\left(\mathrm{b}_{i+1}\right)$ and $\left(\mathrm{CyA}_{i+1}^{+}\right)$hold (see Figure 6).

So, by induction, T_{m} and S_{m} satisfy $\left(\mathrm{a}_{m}\right)$ and $\left(\mathrm{b}_{m}\right)$ as well as one of $\left(\mathrm{CyA} 3_{m}^{+}\right)$ and (CyA3 3_{m}^{-}). Moreover, in both of the above cases, Proposition 10.1(ii) implies that all vertices which lie on a common cycle in T_{i} still lie on a common cycle in T_{i+1}. Together with (b_{m}) and the fact that by (\star) every cycle in $T=T_{1}$ contains x_{j} for some $1 \leq j \leq m$ this means that T_{m} is a Hamilton cycle. Note that both $C E P S_{3}$ and $C E P S_{4}$ are edge-disjoint (actually even vertex-disjoint) from all $C_{4, j}$ (by (CyA2) and the fact that $C E P S_{3}$ spans I_{3} and $C E P S_{4}$ spans I_{4}). Thus both
$C E P S_{3}$ and $C E P S_{4}$ are unaffected by the switches we carried out and so T_{m} and S_{m} still contain $C E P S_{3}$ and $C E P S_{4}$ respectively. So we can take $F_{1}:=T_{m}^{\text {orig }}$ and $F_{3}:=S_{m}^{\text {orig }}$. (In particular, Observation 7.4 implies that F_{1} is a Hamilton cycle of G and the argument for F_{3} is similar.).

In a similar way, we obtain F_{2} from T^{\prime} and F_{4} from S^{\prime}. This time, we let $T_{1}^{\prime}:=T^{\prime}$ and $S_{1}^{\prime}:=S^{\prime}$. We then carry out the above procedure with $S_{i}^{\prime}, T_{i}^{\prime}, P_{j}^{\prime}$ playing the roles of S_{i}, T_{i}, P_{j} to obtain a Hamilton cycle T_{m}^{\prime} on $V(G) \backslash V_{0}$. Since by (CyA2 ${ }^{\prime}$) both $C E P S_{2}$ and $C E P S_{5}$ are edge-disjoint from all $C_{4, j}^{\prime}$, both $C E P S_{2}$ and $C E P S_{5}$ are unaffected by the switches we carried out and so T_{m}^{\prime} and S_{m}^{\prime} still contain $C E P S_{5}$ and $C E P S_{2}$ respectively. We let $F_{2}:=\left(T_{m}^{\prime}\right)^{\text {orig }}$ and $F_{4}^{\prime}:=\left(S_{m}^{\prime}\right)^{\text {orig }}$.
10.3. Finding the cycle absorber. The following lemma guarantees the existence of a cycle absorber in a (k, m, ε, d)-scheme.

Lemma 10.3. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll d \ll 1$, that $k / 14, m / 2 \in \mathbb{N}$ and that (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme with $|G|=n$ and $C=V_{1} \ldots V_{k}$. Let I_{1}, \ldots, I_{7} be the canonical interval partition of C into 7 intervals of equal length. Let $E F$ be an exceptional factor with parameters $(1,7)$ with respect to C, \mathcal{P}. For each $i=1, \ldots, 7$, let $C E P S_{i}$ be the complete exceptional path system which is contained in $E F$ and completely spans I_{i}. Then there is a cycle absorber $C y A$ with respect to C in G which satisfies the following properties:
(i) $C E P S_{2}, \ldots, C E P S_{5}$ are the complete exceptional path systems described in (CyA0).
(ii) $C_{4, m+1} \subseteq G\left[V_{12}, V_{13}\right]$ and $C_{4, m+1}^{\prime} \subseteq G\left[V_{k / 2+12}, V_{k / 2+13}\right]$ (where $C_{4, m+1}$ and $C_{4, m+1}^{\prime}$ are as defined in (CyA2) and (CyA2') respectively).
Proof. We first construct $F_{\text {top }}$. Below, we assume the existence of an ordering of the vertices in any cluster V_{i}. Let $\mathcal{B}(C)$ be the union of $G\left[V_{i}, V_{i+1}\right]$ over all $i=1, \ldots, k$. So $\mathcal{B}(C)$ is a blow-up of C in which every edge of C corresponds to an $[\varepsilon, \geq d]$-superregular pair.
Claim 1. $\mathcal{B}(C)$ contains a system Q_{1}, \ldots, Q_{m} of vertex-disjoint paths and m vertexdisjoint copies $C_{4,1}, \ldots, C_{4, m}$ of C_{4} such that the following properties are satisfied:

- Q_{j} joins the j th vertex of V_{1} to the j th vertex of $V_{2 k / 7+1}$.
- For each $j=1, \ldots, m, C_{4, j}$ shares exactly one edge with Q_{j} and one edge with Q_{j+1} (where $Q_{m+1}:=Q_{1}$).
- $V\left(C_{4, j}\right) \subseteq \bigcup_{V \in I_{1}} V$ for each $j=1, \ldots, m$.

To prove the claim, we first apply the Blow-up lemma (Lemma 4.13) to $G\left[V_{4}, V_{5}\right]$ to find $m / 2$ vertex-disjoint copies $C_{4,1}, C_{4,3}, \ldots, C_{4, m-1}$ of C_{4}. Now we choose a perfect matching in each of the $C_{4, j}$. Next apply the Blow-up lemma to $G\left[V_{8}, V_{9}\right]$ to find $m / 2$ vertex-disjoint copies $C_{4,2}, C_{4,4}, \ldots, C_{4, m}$ of C_{4}. As before we choose a perfect matching in each of the $C_{4, j}$. This gives a perfect matching M_{1} in $G\left[V_{4}, V_{5}\right]$ and a perfect matching M_{2} in $G\left[V_{8}, V_{9}\right]$. Order the edges of each M_{i} such that the following properties are satisfied:

- Edges belonging to the same C_{4} are consecutive.
- The edges of $C_{4, j+2}$ come directly after those of $C_{4, j}$ (modulo m).
- The edges of $C_{4,1}$ are the first two edges of M_{1} and the edges of $C_{4,2}$ are the second and third edge of M_{2}.

These matchings induce a new ordering on the vertices in the clusters $V_{4}, V_{5}, V_{8}, V_{9}$ with which we replace the orderings chosen initially.

Now we apply Corollary 4.15 three times to obtain a system of m vertex-disjoint paths in $\mathcal{B}(C)$ which for each $j=1, \ldots, m$ link the j th vertex of V_{1} to the j th vertex of V_{4}, a system of m vertex-disjoint paths which link the j th vertex of V_{5} to the j th vertex of V_{8} and a system of m vertex-disjoint paths which link the j th vertex of V_{9} to the j th vertex of $V_{2 k / 7+1}$. The union of M_{1}, M_{2} and all these path systems forms a system Q_{1}, \ldots, Q_{m} of paths as required in Claim 1.

Recall that the paths in $C E P S_{3}$ join $V_{2 k / 7+1}$ to $V_{3 k / 7+1}$. Now let $Q_{1}^{\prime}, \ldots, Q_{m}^{\prime}$ be a system of vertex-disjoint paths in $\mathcal{B}(C)$ linking the vertices in $V_{3 k / 7+1}$ to those $V_{k / 2+1}$ (in an arbitrary way). We let $F_{\text {top }}:=Q_{1} \cup \ldots Q_{m} \cup C E P S_{3} \cup Q_{1}^{\prime} \cup \ldots Q_{m}^{\prime}$.
$F_{\text {low }}$ is constructed similarly, but this time we choose $C_{4,1}^{\prime}, C_{4,3}^{\prime}, \ldots, C_{4, m-1}^{\prime}$ in $G\left[V_{k / 2+4}, V_{k / 2+5}\right]$ and $C_{4,2}^{\prime}, C_{4,4}^{\prime}, \ldots, C_{4, m}^{\prime}$ in $G\left[V_{k / 2+8}, V_{k / 2+9}\right]$ (and $F_{\text {low }}$ will contain $\left.C E P S_{5}\right)$.

So let us now construct S. Let $\mathcal{B}^{\prime}(C)$ be obtained from $\mathcal{B}(C)$ by deleting all the edges in $F=F_{\text {top }} \cup F_{\text {low }}$ and define G^{\prime} similarly (since this decreases the in- and the outdegrees by at most 1 , the superregularity of the pairs $G^{\prime}\left[V_{i}, V_{i+1}\right]$ is not affected significantly). Choose a copy $C_{4, m+1}$ of C_{4} in $G^{\prime}\left[V_{12}, V_{13}\right]$. Let ℓ_{m+1} and r_{m+1} be a matching in $C_{4, m+1}$. For each $j=1, \ldots, m$ let ℓ_{j} and r_{j} be the edges of $C_{4, j}$ which are not contained in F.

When we refer to an endvertex of an edge e below, this is allowed to be either the initial or the final vertex of e (it will be clear from the context which one is meant). For all odd j with $1 \leq j<m$, apply Corollary 4.15 to find a system of m vertex-disjoint paths in $\mathcal{B}^{\prime}(C)$ linking the endvertex of ℓ_{j} in V_{5} to the endvertex of ℓ_{j+1} in V_{8} and the endvertex of r_{j} in V_{5} to the endvertex of r_{j+1} in V_{8}. Apply Corollary 4.15 again to find a system of m vertex-disjoint paths in $\mathcal{B}^{\prime}(C)$ such that one of these paths links the endvertex of ℓ_{m} in V_{9} to the endvertex of ℓ_{m+1} in V_{12}, another path links the endvertex of r_{m} in V_{9} to the endvertex of r_{m+1} in V_{12} and the remaining $m-2$ paths join the remaining vertices in V_{9} to those in V_{12}. We also choose a matching M_{3} in $G^{\prime}\left[V_{12}, V_{13}\right]$ which consists of $m-2$ edges and avoids the endvertices of ℓ_{m+1} and r_{m+1} (we find M_{3} by applying Proposition 4.14 to the subgraph of $G^{\prime}\left[V_{12}, V_{13}\right]$ obtained by deleting the endvertices of ℓ_{m+1} and $\left.r_{m+1}\right)$. Next we apply Corollary 4.15 to find a system of m vertex-disjoint paths in $\mathcal{B}^{\prime}(C)$ joining the vertices in V_{13} to those in $V_{3 k / 7+1}$.

Let \mathcal{Q} denote the system of paths obtained from the union of all the paths chosen previously, of $\ell_{1}, \ldots, \ell_{m+1}$, of r_{1}, \ldots, r_{m+1} and of the edges in M_{3}. So each path in \mathcal{Q} joins some vertex in V_{4} to some vertex in $V_{3 k / 7+1}$. Consider the system \mathcal{Q}^{\prime} of paths obtained by concatenating the paths in \mathcal{Q} with those in $C E P S_{4}$ (recall that $C E P S_{4}$ completely spans the interval $I_{4}=V_{3 k / 7+1} \ldots V_{4 k / 7+1}$). For each even j with $1 \leq j \leq m$, let r_{j}^{\prime} denote the vertex in $V_{4 k / 7+1}$ which is connected to the edge r_{j} by a path in \mathcal{Q}^{\prime} and define ℓ_{j}^{\prime} similarly. Apply Corollary 4.15 to find a system $\mathcal{Q}^{\prime \prime}$ of m vertex-disjoint paths in $\mathcal{B}^{\prime}(C)$ from $V_{4 k / 7+1}$ to V_{4} such that for each even j with

Figure 7. The construction of S.
$1 \leq j<m$ the vertex r_{j}^{\prime} is linked to the endvertex of r_{j+1} in V_{4} and ℓ_{j}^{\prime} is linked to the endvertex of ℓ_{j+1} in V_{4}. Also, ℓ_{m}^{\prime} is linked to ℓ_{1} and r_{m}^{\prime} is linked to r_{1} (see Figure 7). We let S be the union of all the paths in \mathcal{Q}^{\prime} and $\mathcal{Q}^{\prime \prime}$. Then F and S satisfy (CyA0)-(CyA3).
S^{\prime} is constructed similarly. This is possible as the switches $C_{4,1}^{\prime}, \ldots, C_{4, m+1}^{\prime}$ lie in $I_{4, \text { low }} \subseteq I_{4}$ whereas the complete exceptional path system $C E P S_{2}$ contained in S^{\prime} spans I_{2} (see Figure 5).
10.4. The parity switcher. Suppose that we are given a decomposition \mathcal{D} of a regular digraph into r edge-disjoint 1 -factors and suppose that the total number of cycles is K, say. If we carry out C_{4}-exchanges between the cycles in these 1 -factors, then Proposition 10.1 implies that the resulting total number of cycles either stays the same, increases by two or decreases by two after each exchange. So if e.g. r is odd and K is even, then we will never be able to transform \mathcal{D} into a set of edge-disjoint Hamilton cycles if we rely only on C_{4}-exchanges between cycles in \mathcal{D}. The following concept of 'triple switches' will allow us to change the parity of the total number of cycles in a decomposition. In particular, the resulting parity switcher will allow us to transform the spanning bicycles which are potentially returned by Lemma 10.2 into Hamilton cycles.

Let $K_{2,3}$ denote the orientation of a complete bipartite graph with vertex classes of size 2 and 3 in which every edge is oriented towards the vertex class of size 3. Note that $K_{2,3}$ is the edge-disjoint union of three matchings M_{1}, M_{2} and M_{3} of size 2 . Given edge-disjoint bicycles B_{1}, B_{2} and B_{3} on the same vertex set, we say that they are triply-switchable if for each $i=1,2,3$ there are independent edges ℓ_{i} and r_{i} lying on different cycles of B_{i} such that the union of ℓ_{i} and r_{i} over all $i=1,2,3$ forms a copy $K_{2,3}^{*}$ of $K_{2,3}$. We say that $K_{2,3}^{*}$ is a $B_{1} B_{2} B_{3}$-switch. A $K_{2,3}^{*}$-exchange consists of deleting the edges $\ell_{i}=: x x_{i}$ and $r_{i}=: y y_{i}$ from B_{i} and adding the edges $x y_{i}$ and $y x_{i}$ for each $i=1,2,3$ (see Figure 8). Thus for each $i=1,2,3$ one of the edges ℓ_{i}, r_{i} will be added to B_{i+1} and the other edge will be added to B_{i+2} (where the $B_{4}:=B_{1}$ and $B_{5}:=B_{2}$). Note that the digraph obtained from B_{i} via a $K_{2,3}^{*}$-exchange is a Hamilton cycle (for each $i=1,2,3$). Thus the union of three

Figure 8. Illustrating a $K_{2,3}^{*}$-exchange.
edge-disjoint triply-switchable bicycles has a decomposition into three edge-disjoint Hamilton cycles as well as a decomposition into six cycles (two for each B_{i}). As mentioned above, this parity difference will enable us to turn the bicycle(s) which are potentially returned by Lemma 10.2 into Hamilton cycles (without creating any additional bicycles elsewhere).

A parity extended cycle absorber PCA in G with respect to C is digraph on $V(G) \backslash V_{0}$ with the following properties:
(PCA1) $P C A$ is the union of two digraphs $C y A$ and $T S B$, each with vertex set $V(G) \backslash V_{0} . C y A=F \cup S \cup S^{\prime}$ is a cycle absorber in G. $T S B$ is the union of three 1-regular digraphs $B_{1}^{\prime}, B_{2}^{\prime}$ and B_{3}^{\prime} on $V(G) \backslash V_{0}$ such that each B_{i}^{\prime} contains a complete exceptional path system $C E P S\left(B_{i}^{\prime}\right)$ (but no other exceptional edges) and such that B_{i}^{\prime} is a bicycle on $V(G) \backslash V_{0}$. Let $B_{i}:=$ $\left(B_{i}^{\prime}\right)^{\text {orig. Then }} C y A^{\text {orig }}, B_{1}, B_{2}$ and B_{3} are pairwise edge-disjoint subdigraphs of G.
(PCA2) B_{1}, B_{2} and B_{3} are triply-switchable. Let $K_{2,3}^{*}$ denote the corresponding $B_{1} B_{2} B_{3}$-switch and let ℓ_{i}^{*} and r_{i}^{*} denote the edges of $K_{2,3}^{*}$ contained in B_{i}. (So ℓ_{i}^{*} and r_{i}^{*} lie on different cycles of B_{i}.)
(PCA3) Recall that ℓ_{m+1} and r_{m+1} are the two edges of the switch $C_{4, m+1}$ which are contained in S (where $C_{4, m+1}$ is as defined in (CyA2)). Then B_{1} contains the other two edges ℓ_{S} and r_{S} of $C_{4, m+1}$. Similarly, recall that ℓ_{m+1}^{\prime} and r_{m+1}^{\prime} are the two edges of the switch $C_{4, m+1}^{\prime}$ which are contained in S^{\prime} (where $C_{4, m+1}^{\prime}$ is as defined in $\left.\left(\mathrm{CyA2}^{\prime}\right)\right)$. Then B_{1} also contains the other two edges $\ell_{S^{\prime}}$ and $r_{S^{\prime}}$ of $C_{4, m+1}^{\prime}$.
(PCA4) B_{2} and B_{3} are pairwise switchable. Let $C_{4, B_{2} B_{3}}$-denote the corresponding switch.
(PCA5) All the switches $K_{2,3}^{*}, C_{4, m+1}, C_{4, m+1}^{\prime}$ and $C_{4, B_{2} B_{3}}$ are pairwise edge-disjoint. Both $C_{4, m+1}$ and $C_{4, m+1}^{\prime}$ are vertex-disjoint from $C E P S\left(B_{1}^{\prime}\right)$ while both $K_{2,3}^{*}$ and $C_{4, B_{2} B_{3}}$ are vertex-disjoint from $C E P S\left(B_{i}^{\prime}\right)$ for all $i=1,2,3$.
(PCA6) One cycle of the bicycle B_{1} contains the edges $\ell_{S}, \ell_{S^{\prime}}, \ell_{1}^{*}$ in that order while the other cycle of B_{1} contains $r_{S}, r_{S^{\prime}}, r_{1}^{*}$ in that order.
An s-fold parity extended cycle absorber $P C A(s)$ with respect to C in G consists of s parity extended cycle absorbers whose original versions are pairwise edge-disjoint. Note that $P C A(s)$ is a $6 s$-regular spanning subdigraph of $G^{\text {basic }}$ which contains precisely $7 s$ complete exceptional path systems (and no other exceptional edges). Moreover, $P C A(s)^{\text {orig }}$ is a spanning subdigraph of G and

$$
\begin{equation*}
d^{ \pm}(x)=7 s \quad \forall x \in V_{0} \quad \text { and } \quad d^{ \pm}(y)=6 s \quad \forall y \in V(G) \backslash V_{0} \tag{10.1}
\end{equation*}
$$

Lemma 10.4. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll d \ll 1$, that $k / 14 \in \mathbb{N}$ and that (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme with $|G|=n$. Suppose that H is an s-factor of $G-V_{0}$ such that H is a blow-up of C. Let $P C A(s)$ be an s-fold parity extended cycle absorber with respect to C in G such that $P C A(s)^{\text {orig }}$ and H are edge-disjoint. Then $H \cup P C A(s)^{\text {orig }}$ has a decomposition into $7 s$ edge-disjoint Hamilton cycles of G. Moreover, each of these Hamilton cycles contains the original version of one of the $7 s$ complete exceptional path systems contained in PCA(s) orig.

Proof. Let $P C A_{1}, \ldots, P C A_{s}$ denote the parity extended cycle absorbers contained in $P C A(s)$. We apply Proposition 6.1 to find a 1-factorization of H into H_{1}, \ldots, H_{s}. Since H is a blow-up of C, each H_{i} winds around C. We claim that $H_{i} \cup P C A_{i}^{\text {orig }}$ has a decomposition into Hamilton cycles $C_{7(i-1)+1}, \ldots, C_{7 i}$ of G.

Note that the claim follows if we can prove it for the case $i=1$. So let $C y A$ and $T S B=B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{3}^{\prime}$ be as defined in (PCA1)-(PCA6). Apply Lemma 10.2 to obtain a decomposition of $H_{1} \cup C y A^{\text {orig }}$ into 1-factors F_{1}, \ldots, F_{4} satisfying the following conditions:
(a) F_{1} and F_{2} are Hamilton cycles in G.
(b) Each of F_{3} and F_{4} is either a Hamilton cycle or a spanning bicycle in G. If F_{3} is a bicycle, then one of the cycles contains ℓ_{m+1} and the other contains r_{m+1}. Similarly, if F_{4} is a bicycle, then one of the cycles contains ℓ_{m+1}^{\prime} and the other contains r_{m+1}^{\prime}.
(c) Each F_{i} contains (the original version of) a complete exceptional path system $C E P S_{i}^{*}$ (which is one of those contained in $P C A(1)^{\text {orig }}$). Moreover, $C E P S_{3}^{*}$ spans I_{4} and $C E P S_{4}^{*}$ spans I_{2} (where I_{i} is the i th interval of the canonical interval partition into 7 intervals defined earlier).
If both F_{3} and F_{4} are Hamilton cycles, we perform the $K_{2,3}^{*}$-exchange to decompose $T S B^{\text {orig }}=B_{1} \cup B_{2} \cup B_{3}$ into three edge-disjoint Hamilton cycles of G. Then these Hamilton cycles together with F_{1}, \ldots, F_{4} form a Hamilton decomposition of $H_{1} \cup$ $P C A_{1}^{\text {orig }}$.

So suppose next that both F_{3} and F_{4} are bicycles. First perform the $C_{4, m+1^{-}}$ exchange. This turns both F_{3} and B_{1} into Hamilton cycles. Let B_{1}^{1} denote the Hamilton cycle obtained from B_{1}. Then (PCA6) implies that the edges $\ell_{S^{\prime}}, \ell_{1}^{*}, r_{S^{\prime}}, r_{1}^{*}$ appear on B_{1}^{1} in that order. Next we perform the $C_{4, m+1}^{\prime}$-exchange. This turns F_{4}
into a Hamilton cycle and B_{1}^{1} into a bicycle B_{1}^{2}. Note that one of the cycles of B_{1}^{2} contains ℓ_{1}^{*} while the other cycle contains r_{1}^{*} (this is a special case of the argument illustrated in Figure 6). So we can now perform the $K_{2,3}^{*}$-exchange. This turns each of B_{1}^{2}, B_{2} and B_{3} into a Hamilton cycle. Altogether this gives a Hamilton decomposition of $H_{1} \cup P C A_{1}^{\text {orig }}$.

So suppose next that F_{3} is a bicycle but F_{4} is a Hamilton cycle. In this case we perform the $C_{4, m+1}$-exchange. This turns both F_{3} and B_{1} into Hamilton cycles. We then perform the $C_{4, B_{2} B_{3}}$-exchange. This turns both B_{2} and B_{3} into Hamilton cycles. As before, altogether this gives a Hamilton decomposition of $H_{1} \cup P C A_{1}^{\text {orig }}$.

The case when F_{3} is a Hamilton cycle but F_{4} is a bicycle is similar to the previous case, but we perform the $C_{4, m+1}^{\prime}$-exchange instead of the $C_{4, m+1}$-exchange.

The 'moreover part' follows since the switches involved in the above argument are edge-disjoint from the complete exceptional path systems of the bicycles and Hamilton cycles involved in the corresponding exchanges. More precisely, for the Hamilton cycles originating from the B_{i}, the 'moreover part follows from (PCA1) and (PCA5). For F_{1} and F_{2}, it follows from (a) and (c) above. For F_{3}, it follows from (CyA2) and (c), and for F_{4} it follows from (CyA2') and (c).

Lemma 10.5. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll d \ll 1$, that $s / m \ll d$ and that $k / 14, m / 2 \in \mathbb{N}$. Let (G, \mathcal{P}, R, C) be a (k, m, ε, d)-scheme with $|G|=n$. Suppose that $E F_{1}, \ldots, E F_{s}$ are exceptional factors with parameters $(1,7)$ with respect to C, \mathcal{P} whose original versions are pairwise edge-disjoint. Then there exists an s-fold parity extended cycle absorber $P C A(s)$ with respect to C in G such that the $7 s$ complete exceptional path systems contained in $P C A(s)$ are precisely those in $E F_{1} \cup \cdots \cup E F_{s}$.

Proof. Choose an additional constant ε^{\prime} with $\varepsilon, s / m \ll \varepsilon^{\prime} \ll d$. Let G^{\prime} be the digraph obtained from G by deleting all the edges in $E F_{1}^{\text {orig }}, \ldots, E F_{s}^{\text {orig }}$. Note that $\left|N_{G}^{+}(x) \backslash N_{G^{\prime}}^{+}(x)\right| \leq 7 s \leq\left(\varepsilon^{\prime} / 3\right)^{2} m$ for every vertex x of G and the analogous condition holds for the inneighbourhoods of x. Thus Lemma 7.1(ii) implies that ($G^{\prime}, \mathcal{P}, R, C$) is still a $\left(k, m, \varepsilon^{\prime}, d\right)$-scheme.

Let us first show how to find a single parity extended cycle absorber $P C A_{1}$ with respect to C in G^{\prime}. Let I_{1}, \ldots, I_{7} be the canonical interval partition of C into 7 intervals I_{1}, \ldots, I_{7} of equal length and let $C E P S_{i}$ denote the complete exceptional path system in $E F_{1}$ which completely spans I_{i} (for all $i=1, \ldots, 7$). Apply Lemma 10.3 to find a cycle absorber $C y A$ with respect to C in G^{\prime} which contains $C E P S_{2}, \ldots, C E P S_{5}$ (in the way described in (CyA0)).

Recall that ℓ_{S} and r_{S} denote the edges of the (potential) switch $C_{4, m+1}$ described in (CyA2) and (PCA3) which are not contained in $C y A$. Similarly, recall $\ell_{S^{\prime}}$ and $r_{S^{\prime}}$ denote the edges of the (potential) switch $C_{4, m+1}^{\prime}$ described in (CyA2 ${ }^{\prime}$) and (PCA3) which are not contained in $C y A$. Recall from Lemma 10.3 that ℓ_{S} and r_{S} lie in $G^{\prime}\left[V_{12}, V_{13}\right]$ and that $\ell_{S^{\prime}}$ and $r_{S^{\prime}}$ lie in $G^{\prime}\left[V_{k / 2+12}, V_{k / 2+13}\right]$. Remove the edges of $C y A^{\text {orig }}$ from G^{\prime} to obtain $G^{\prime \prime}$. Let $\mathcal{B}^{\prime \prime}(C)$ be the union of $G^{\prime \prime}\left[V_{i}, V_{i+1}\right]$ over all $i=1, \ldots, k$. Proposition 4.3(iii) implies that $\mathcal{B}^{\prime \prime}(C)$ is a blow-up of C in which every edge of C corresponds to an $\left[2 \sqrt{\varepsilon^{\prime}}, \geq d\right]$-superregular pair.

When we refer to an endvertex of an edge e below, this is allowed to be either the initial or the final vertex of e (it will be clear from the context which one is meant). Our next aim is to find $T S B$. We start by finding B_{1}^{\prime}. First we apply Proposition 4.14 to choose a perfect matching in $G^{\prime \prime}\left[V_{12}, V_{13}\right]$ which extends ℓ_{S} and r_{S}. Now apply Corollary 4.15 to find a system of m vertex-disjoint paths in $\mathcal{B}^{\prime \prime}(C)$ which link all vertices of V_{13} to those in $V_{k / 2+12}$ such that the endvertex of ℓ_{S} in V_{13} is linked to the endvertex of $\ell_{S^{\prime}}$ in $V_{k / 2+12}$ and the endvertex of r_{S} in V_{13} is linked to the endvertex of $r_{S^{\prime}}$ in $V_{k / 2+12}$. Choose a perfect matching in $G^{\prime \prime}\left[V_{k / 2+12}, V_{k / 2+13}\right]$ which extends $\ell_{S^{\prime}}$ and $r_{S^{\prime}}$.

Next choose a copy $K_{2,3}^{*}$ of $K_{2,3}$ in $G^{\prime \prime}\left[V_{k / 2+16}, V_{k / 2+17}\right]$. For each $i=1,2,3$ let ℓ_{i}^{*} and r_{i}^{*} be two independent edges in $K_{2,3}^{*}$ such that all these six edges are distinct from each other (and so $K_{2,3}^{*}$ is the union of all these six edges). Now apply Lemma 4.15 to find a system of m vertex-disjoint paths in $\mathcal{B}^{\prime \prime}(C)$ which link the vertices in $V_{k / 2+13}$ to those in $V_{k / 2+16}$ in such a way that the endvertex of $\ell_{S^{\prime}}$ in $V_{k / 2+13}$ is linked to the endvertex of ℓ_{1}^{*} in $V_{k / 2+16}$ and the endvertex of $r_{S^{\prime}}$ in $V_{k / 2+13}$ is linked to the endvertex of r_{1}^{*} in $V_{k / 2+16}$. Extend ℓ_{1}^{*} and r_{1}^{*} into a perfect matching of $G^{\prime \prime}\left[V_{k / 2+16}, V_{k / 2+17}\right]$. Now apply Lemma 4.15 to find a system of m vertex-disjoint paths in $\mathcal{B}^{\prime \prime}(C)$ which (arbitrarily) link all vertices of $V_{k / 2+17}$ to those in $V_{5 k / 7+1}$. Altogether this gives us a system \mathcal{Q} of m vertex-disjoint paths joining all vertices in V_{12} to all vertices in $V_{5 k / 7+1}$.

Now extend this path system by concatenating the paths in \mathcal{Q} with the ones forming $C E P S_{6}$. (Recall that $C E P S_{6}$ spans the interval $I_{6}=V_{5 k / 7+1} \ldots V_{6 k / 7+1}$ completely.) Denote the resulting path system by \mathcal{Q}^{\prime}. Order the vertices of V_{12} so that the first vertex is the endvertex of ℓ_{S} and the last vertex is the endvertex of r_{S}. For each $j=1, \ldots, m$, let $q_{j} \in V_{6 k / 7+1}$ denote the vertex which is linked to the j th vertex of V_{12} by a path in \mathcal{Q}^{\prime}. Thus the path in \mathcal{Q}^{\prime} ending in q_{1} contains $\ell_{S}, \ell_{S^{\prime}}, \ell_{1}^{*}$ (in that order) while the path in \mathcal{Q}^{\prime} ending in q_{m} contains $r_{S}, r_{S^{\prime}}, r_{1}^{*}$ (in that order).

Now apply Lemma 4.15 to find a system $\mathcal{Q}^{\prime \prime}$ of m vertex-disjoint paths in $\mathcal{B}^{\prime \prime}(C)$ which link each q_{j} to the $(j+2)$ nd vertex in V_{12} (where the indices are considered modulo m). Let B_{1}^{\prime} be the union of all the paths in \mathcal{Q}^{\prime} and $\mathcal{Q}^{\prime \prime}$. Then B_{1}^{\prime} is a bicycle on $V(G) \backslash V_{0}$ and $B_{1}:=\left(B_{1}^{\prime}\right)^{\text {orig }}=\mathcal{Q} \cup C E P S_{6}^{\text {orig }} \cup \mathcal{Q}^{\prime \prime}$ satisfies (PCA3) and (PCA6).

We next show how to find B_{2}^{\prime}. Remove all edges of B_{1} from $G^{\prime \prime}$ to obtain $G^{\prime \prime \prime}$. Let $\mathcal{B}^{\prime \prime \prime}(C)$ be the union of $G^{\prime \prime \prime}\left[V_{i}, V_{i+1}\right]$ over all $i=1, \ldots, k$. Extend ℓ_{2}^{*} and r_{2}^{*} into a perfect matching of $G^{\prime \prime \prime}\left[V_{k / 2+16}, V_{k / 2+17}\right]$. Choose a copy $C_{4, B_{2} B_{3}}$ of C_{4} in $G^{\prime \prime \prime}\left[V_{k / 2+20}, V_{k / 2+21}\right]$. Choose two independent edges ℓ_{2}° and r_{2}^{\diamond} of $C_{4, B_{2} B_{3}}$ and let ℓ_{3}^{\diamond} and r_{3}^{\diamond} denote the other two edges. Now apply Lemma 4.15 to find a system of m vertex-disjoint paths in $\mathcal{B}^{\prime \prime \prime}(C)$ which link all vertices of $V_{k / 2+17}$ to those in $V_{k / 2+20}$ such that the endvertex of ℓ_{2}^{*} in $V_{k / 2+17}$ is linked to the endvertex of ℓ_{2}° in $V_{k / 2+20}$ and the endvertex of r_{2}^{*} in $V_{k / 2+17}$ is linked to the endvertex of r_{2}^{\diamond} in $V_{k / 2+20}$. Extend ℓ_{2}^{\diamond} and r_{2}^{\diamond} into a perfect matching of $G^{\prime \prime \prime}\left[V_{k / 2+20}, V_{k / 2+21}\right]$. Now apply Lemma 4.15 to find a system of m vertex-disjoint paths in $\mathcal{B}^{\prime \prime \prime}(C)$ which (arbitrarily) link all vertices of $V_{k / 2+21}$ to those in $V_{6 k / 7+1}$. Altogether this gives us a system \mathcal{S} of m vertex-disjoint paths joining all vertices in $V_{k / 2+16}$ to all vertices in $V_{6 k / 7+1}$.

Now extend this path system by concatenating the paths in \mathcal{S} with the ones forming $C E P S_{7}$. (Recall that $C E P S_{7}$ spans the interval $I_{7}=V_{6 k / 7+1} \ldots V_{1}$ completely.)

Denote the resulting path system by \mathcal{S}^{\prime}. Order the vertices of $V_{k / 2+16}$ so that the first vertex is the endvertex of ℓ_{2}^{*} and the last vertex is the endvertex of r_{2}^{*}. For each $j=1, \ldots, m$, let $s_{j} \in V_{1}$ denote the vertex which is linked to the j th vertex of $V_{k / 2+16}$ by a path in \mathcal{S}^{\prime}. Now apply Lemma 4.15 to find a system $\mathcal{S}^{\prime \prime}$ of m vertexdisjoint paths in $\mathcal{B}^{\prime \prime \prime}(C)$ which link each s_{j} to the $(j+2)$ nd vertex in $V_{k / 2+16}$ (where the indices are considered modulo m). Let B_{2}^{\prime} be the union of all the paths in \mathcal{S}^{\prime} and $\mathcal{S}^{\prime \prime}$. Then B_{2}^{\prime} is a bicycle on $V(G) \backslash V_{0}$. B_{3}^{\prime} can be chosen in a similar way as B_{2}^{\prime} except that it contains $\ell_{3}^{*}, r_{3}^{*}, \ell_{3}^{\diamond}, r_{3}^{\diamond}$ and $C E P S_{1}$ instead of $\ell_{2}^{*}, r_{2}^{*}, \ell_{2}^{\diamond}, r_{2}^{\diamond}$ and $C E P S_{7}$. Let $T S B:=B_{1} \cup B_{2} \cup B_{3}$ and $P C A_{1}:=C y A \cup T S B$. Then $P C A_{1}$ satisfies (PCA1)-(PCA6)

We now remove the edges of $P C A_{1}^{\text {orig }}$ from G^{\prime} and repeat the above process to find the remaining $s-1$ edge-disjoint parity extended cycle absorbers $P C A_{2}, \ldots, P C A_{s}$. To see that this is possible, denote the digraph obtained from G^{\prime} by the removal of the edges of $P C A_{1}^{\text {orig }}, \ldots, P C A_{i}^{\text {orig }}$ by G_{i} (where $i<s$). Note that $\mid N_{G^{\prime}}^{+}(x) \backslash$ $N_{G_{i}}^{+}(x) \mid \leq 7 s \leq \varepsilon^{\prime} m$ for every vertex x of G^{\prime} and the analogous condition holds for the inneighbourhoods of x. Thus by Lemma 7.1(ii) $\left(G_{i}, \mathcal{P}, R, C\right)$ is still a $\left(k, m, 3 \sqrt{\varepsilon^{\prime}}, d\right)$ scheme.

11. Proof of Theorem 1.2

The following lemma shows that we can cover all edges induced by a small exceptional set using a small number of edge-disjoint Hamilton cycles.

Lemma 11.1. Suppose that $0<1 / n \ll \varepsilon \ll \nu \leq \tau \ll \alpha \leq 1$. Let G be a robust (ν, τ)-outexpander with $\delta^{0}(G) \geq \alpha n$ and let V_{0} be a set of vertices in G with $\left|V_{0}\right| \leq \varepsilon n$. Then there is a set of εn edge-disjoint Hamilton cycles in G which contain all edges of $G\left[V_{0}\right]$.
Proof. Note that when viewed as an undirected graph, $G\left[V_{0}\right]$ has maximum degree less than εn. So by Vizing's theorem, we can partition the edges of $G\left[V_{0}\right]$ into $t:=\varepsilon n$ matchings M_{1}, \ldots, M_{t} (some of these may be empty). For each matching M_{i} in turn, we find a Hamilton cycle C_{i} which contains all edges of M_{i} and which is edge-disjoint from C_{1}, \ldots, C_{i-1}. Suppose that we have found C_{1}, \ldots, C_{i-1}. Let G_{i} be the graph obtained from G by removing the edges of C_{1}, \ldots, C_{i-1}. Note that G_{i} is still a robust $(\nu / 2, \tau)$-outexpander with $\delta^{0}\left(G_{i}\right) \geq \alpha n-(i-1) \geq \alpha n / 2$. Let G_{i}^{\prime} be the graph obtained from G_{i} by contracting the edges of M_{i}. More precisely, we successively replace each directed edge $a b$ of M_{i} by a vertex whose outneighbours are the current outneighbours of b and whose inneighbours are the current inneighbours of a. Then G_{i}^{\prime} is still a robust $(\nu / 3,2 \tau)$-outexpander with $\delta^{0}\left(G_{i}^{\prime}\right) \geq \alpha n / 3$. Thus G_{i}^{\prime} contains a Hamilton cycle C_{i}^{\prime} by Theorem 6.2. But C_{i}^{\prime} corresponds to a Hamilton cycle C_{i} in G_{i} (and thus G) containing M_{i}. So we can continue until we have found C_{1}, \ldots, C_{t} as required.

Before proving Theorem 1.2, we will combine the chord absorbing step and the cycle absorbing step into a single 'robust decomposition' lemma. Roughly speaking, this means that we can find a sparse 'robustly decomposable digraph' G^{rob}, so that for an arbitrary very sparse regular digraph H on the same vertex set, the digraph
$H \cup G^{\text {rob }}$ always has a Hamilton decomposition. We will state a variant of this lemma in Section 12. This variant will be used in $[14,32]$. The main advantage of combining the chord absorbing step and the cycle absorbing step into a single lemma is that in future applications one will not need to know the definitions of the chord absorber and (the more involved) definition of the cycle absorber in order to apply it.

Lemma 11.2. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll 1 / q \ll 1 / f \ll r_{1} / m \ll d \ll$ $1 / \ell^{\prime}, 1 / g \ll 1$ and that $r k^{2} \leq m$. Let

$$
r_{2}:=96 \ell^{\prime} g^{2} k r, \quad r_{3}:=r f k / q, \quad r^{\diamond}:=r_{1}+r_{2}+r-(q-1) r_{3}, \quad s^{\prime}:=r f k+7 r^{\diamond}
$$

and suppose that $k / 14, k / f, k / g, q / f, m / 4 \ell^{\prime}, f m / q, 2 f k / 3 g(g-1) \in \mathbb{N}$. Suppose that $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is an ($\ell^{\prime}, k, m, \varepsilon, d$)-setup with $|G|=n$ and $C=V_{1} \ldots V_{k}$. Suppose that \mathcal{P}^{*} is a (q / f)-refinement of \mathcal{P} and that $E F_{1}, \ldots, E F_{r_{3}}$ are exceptional factors with parameters $(q / f, f)$ with respect to C, \mathcal{P}^{*} whose original versions are pairwise edge-disjoint. Let $\mathcal{E F}$ be the union of the $E F_{i}$ over all $i=1, \ldots, r_{3}$. Then there exists a spanning subdigraph $C A^{\diamond}(r)$ of $G-V_{0}$ for which the following holds:
(i) $C A^{\diamond}(r)$ is an $\left(r_{1}+r_{2}\right)$-regular spanning subdigraph of $G-V_{0}$ which is edgedisjoint from $\mathcal{E} \mathcal{F}^{\text {orig }}$.
(ii) Suppose that $E F_{1}^{\prime}, \ldots, E F_{r^{\circ}}^{\prime}$ are exceptional factors with parameters $(1,7)$ with respect to C, \mathcal{P} such that the original versions of all these exceptional factors are pairwise edge-disjoint from each other and edge-disjoint from $C A^{\diamond}(r) \cup \mathcal{E} \mathcal{F}^{\text {orig }}$. Let $\mathcal{E} \mathcal{F}^{\prime}$ be the union of the $E F_{i}^{\prime}$ over all $i=1, \ldots, r^{\diamond}$. Then there exists a spanning subdigraph $P C A^{\diamond}(r)$ of $G-V_{0}$ for which the following holds:
(a) $P C A^{\diamond}(r)$ is a $5 r^{\diamond}$-regular spanning subdigraph of $G-V_{0}$ which is edgedisjoint from $C A^{\diamond}(r) \cup\left(\mathcal{E F} \cup \mathcal{E} \mathcal{F}^{\prime}\right)^{\text {orig }}$.
(b) Let $\mathcal{C E P S}$ be the set consisting of all the s^{\prime} complete exceptional path systems contained in $\mathcal{E F} \cup \mathcal{E} \mathcal{F}^{\prime}$. Whenever H is an r-factor of $G-V_{0}$ which is edge-disjoint from $G^{\mathrm{rob}}:=C A^{\diamond}(r) \cup P C A^{\diamond}(r) \cup\left(\mathcal{E F} \cup \mathcal{E} \mathcal{F}^{\prime}\right)^{\text {orig }}$, then $H \cup G^{\mathrm{rob}}$ has a decomposition into s^{\prime} edge-disjoint Hamilton cycles $C_{1}, \ldots, C_{s^{\prime}}$ of G. Moreover, for each $i=1, \ldots, s^{\prime}$, the basic version $C_{i}^{\text {basic }}$ of C_{i} contains one of the complete exceptional path systems from $\mathcal{C E P S}$.
The analogue holds for an ($\left.\ell^{\prime}, k, m, \varepsilon, d\right)$-bi-setup $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ if we assume in addition that H is bipartite with vertex classes $\cup \mathcal{V}_{\text {even }}$ and $\cup \mathcal{V}_{\text {odd }}$ (where $\mathcal{V}_{\text {even }}$ is the set of all those V_{i} such that i is even and $\mathcal{V}_{\text {odd }}$ is defined analogously).

Note that the definition of an exceptional factor and (i) together imply that in the original version $C A^{\diamond}(r) \cup \mathcal{E F}{ }^{\text {orig }}$ of $C A^{\diamond}(r) \cup \mathcal{E} \mathcal{F}$ we have

$$
\begin{equation*}
d^{ \pm}(x)=r_{3} q \quad \forall x \in V_{0} \quad \text { and } \quad d^{ \pm}(y)=r_{1}+r_{2}+r_{3} \quad \forall y \in V(G) \backslash V_{0} . \tag{11.1}
\end{equation*}
$$

Similarly, in the original version $P C A^{\diamond}(r) \cup\left(\mathcal{E} \mathcal{F}^{\prime}\right)^{\text {orig }}$ of $P C A^{\diamond}(r) \cup \mathcal{E} \mathcal{F}^{\prime}$ we have

$$
\begin{equation*}
d^{ \pm}(x)=7 r^{\diamond} \quad \forall x \in V_{0} \quad \text { and } \quad d^{ \pm}(y)=6 r^{\diamond} \quad \forall y \in V(G) \backslash V_{0} \tag{11.2}
\end{equation*}
$$

In order to construct $C A^{\diamond}(r)$ we will choose a chord absorber $C A$ with $C A^{\text {exc }}=\mathcal{E F}$. Similarly, in order to construct $P C A^{\diamond}(r)$ we will choose a parity extended cycle
absorber $P C A\left(r^{\diamond}\right)$ such that the complete exceptional path systems contained in $P C A\left(r^{\diamond}\right)$ are those in $\mathcal{E} \mathcal{F}^{\prime}$.

Proof of Lemma 11.2. Choose new constants ε_{1}, d_{1} such that $\varepsilon \ll \varepsilon_{1} \ll 1 / q \ll$ $1 / f \ll r_{1} / m \ll d_{1} \ll d$. Note that

$$
\begin{equation*}
r / m, r_{2} / m, q r_{3} / m \ll \varepsilon \quad \text { and } \quad r^{\diamond} \leq d_{1} m . \tag{11.3}
\end{equation*}
$$

We first apply Lemma 9.4 with $\varepsilon_{1}, r_{1}, r_{2}, r_{3}$ playing the roles of $\varepsilon^{\prime}, r_{0}, r_{0}^{\prime}, r_{0}^{\prime \prime}$ to find a chord absorber $C A$ for C, U^{\prime} with parameters $\left(\varepsilon_{1}, r_{1}, r_{2}, r_{3}, q, f\right)$ such that $C A^{\text {exc }}=$ $\mathcal{E F}$. Let $C A^{\diamond}(r):=C A \backslash C A^{\text {exc }}$. Then (9.1) and the fact that $C A^{\text {exc }}$ is r_{3}-regular imply that $C A^{\diamond}(r)$ satisfies (i).

Note that by definition of a setup, (G, \mathcal{P}, R, C) is a (k, m, ε, d)-scheme. Let G_{1}
 obtained from G by deleting $r_{3} q$ outedges and $r_{3} q$ inedges at every vertex in V_{0} and deleting $r_{1}+r_{2}+r_{3}$ outedges and $r_{1}+r_{2}+r_{3}$ inedges at every vertex in $V(G) \backslash V_{0}$. But $r_{3} q \leq \varepsilon m$ and $r_{1}+r_{2}+r_{3} \leq d_{1} m$ by (11.3). So Lemma 7.1 implies that (G_{1}, \mathcal{P}, R, C) is still a $\left(k, m, 3 \sqrt{d_{1}}, d\right)$-scheme. Since $r^{\diamond} / m \leq d_{1} \ll d$ by (11.3), we can apply Lemma 10.5 to (G_{1}, \mathcal{P}, R, C) to obtain an r^{\diamond}-fold parity extended cycle absorber $P C A\left(r^{\diamond}\right)$ such that the complete exceptional path systems contained in $P C A\left(r^{\diamond}\right)$ are precisely those in $\mathcal{E} \mathcal{F}^{\prime}$. Let $P C A^{\diamond}(r):=P C A\left(r^{\diamond}\right) \backslash \mathcal{E} \mathcal{F}^{\prime}$. Then (10.1) implies that $P C A^{\diamond}(r)$ satisfies (ii)(a).

To check (ii)(b), suppose that H is an r-factor of $G-V_{0}$ which is edge-disjoint from $G^{\mathrm{rob}}=C A^{\text {orig }} \cup P C A\left(r^{\diamond}\right)^{\text {orig }}$. Note that an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-setup is also an ($\left.\ell^{\prime}, k, m, \varepsilon_{1}, d\right)$-setup. So we can apply Lemma 9.7 to the ($\ell^{\prime}, k, m, \varepsilon, d$)-setup

$$
\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)
$$

and the chord absorber $C A=\mathcal{B}(C)^{*} \cup \mathcal{B}\left(U^{\prime}\right) \cup C A^{\text {exc }}$ with parameters $\left(\varepsilon_{1}, r_{1}, r_{2}, r_{3}, q, f\right)$ chosen before. This gives us a set \mathcal{C}_{1} of $r f k$ edge-disjoint Hamilton cycles in G such that the following conditions hold:

- Altogether the Hamilton cycles in \mathcal{C}_{1} contain all the edges of $H \cup \mathcal{B}\left(U^{\prime}\right) \cup$ $\left(C A^{\text {exc }}\right)^{\text {orig }}$. Moreover, all remaining edges of these Hamilton cycles are contained in $\mathcal{B}(C)^{*}$.
- The digraph H_{1} obtained from $C A^{\text {orig }}$ by deleting all the edges lying on Hamilton cycles in \mathcal{C}_{1} is a regular blow-up of C of degree $\left(r_{1}+r_{2}+r-(q-\right.$ 1) $r f k / q)=r^{\diamond}$.
- The basic version of each cycle in \mathcal{C}_{1} contains one of the s complete exceptional path systems contained in $C A^{\mathrm{exc}}=\mathcal{E} \mathcal{F}$.
Finally, we apply Lemma 10.4 to the (k, m, ε, d)-scheme (G, \mathcal{P}, R, C) with H_{1} playing the role of H and with the r^{\diamond}-fold parity extended cycle absorber $P C A\left(r^{\diamond}\right)$ chosen before to find a Hamilton decomposition \mathcal{C}_{2} of $H_{1} \cup P C A\left(r^{\diamond}\right)^{\text {orig }}$ such that each Hamilton cycle in \mathcal{C}_{2} contains one of the $7 r^{\diamond}$ complete exceptional path systems contained in $P C A\left(r^{\diamond}\right)$, and thus one of the complete exceptional path systems contained in $\mathcal{E} \mathcal{F}^{\prime}$. Then $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ is a Hamilton decomposition of $H \cup G^{\mathrm{rob}}$ as required in (ii)(b).

For the bipartite analogue, we apply the bipartite version of Lemmas 9.4 and 9.7 in the above argument. Since a ($\ell^{\prime}, k, m, \varepsilon, d$)-bi-setup is a (k, m, ε, d)-scheme, the remainder of the proof is the identical.

Finally, we can put together all of the previous results in order to prove Theorem 1.2. First we apply Szemerédi's regularity lemma to G. Based on the resulting partition, we find a consistent system and a universal walk (so that we have a corresponding setup). Within these, we find and remove a preprocessing graph $P G$, a chord absorber $C A$ and a parity extended cycle absorber $P C A$. (Actually, instead of choosing $C A$ and $P C A$ separately, we choose suitable exceptional factors and apply Lemma 11.2 to find a robustly decomposable graph $G^{\text {rob }}$ which is essentially the union of $C A$ and $P C A$.) Then we apply Lemma 11.1 to cover all edges of $G\left[V_{0}\right]$. Next we find an approximate Hamilton decomposition using Theorem 1.3 in the remainder $G^{\#}$ of G, which leaves a sparse leftover H_{0}. We then find a Hamilton decomposition of $H_{0} \cup P G^{\text {orig }} \cup G^{\mathrm{rob}}$.
Proof of Theorem 1.2. Let $\tau^{*}:=\tau(\alpha / 2)$ be as defined in Theorem 1.3. Choose $\tau \leq \tau^{*}$ such that $0<\tau \ll \alpha$. Note that whenever $\nu^{\prime} \leq \nu$, every robust $(\nu, \tau)-$ outexpander is also a robust $\left(\nu^{\prime}, \tau\right)$-outexpander. So we may assume that $0 \ll \nu \ll \tau$. Choose $n_{0} \in \mathbb{N}$ so that $0<1 / n_{0} \ll \nu$. (τ and n_{0} will be the constants returned by Theorem 1.2.) Now let G be an r-regular robust (ν, τ)-outexpander on $n \geq n_{0}$ vertices with $r \geq \alpha n$. We have to show that G has a Hamilton decomposition. Choose additional positive constants so that

$$
\begin{align*}
0<1 / n_{0} & \ll \eta \ll d_{0}^{\prime} \ll d_{0}^{\prime \prime} \ll 1 / k_{2}^{*} \ll 1 / k_{1}^{*} \ll \varepsilon_{0} \ll \varepsilon_{1} \ll \varepsilon_{2} \ll \varepsilon \ll \varepsilon^{\prime} \ll \\
11.4) & <1 / q \ll 1 / f \ll d_{1} \ll d \ll \nu \ll \tau \ll \alpha<1 \text { and } d \ll 1 / g \ll \zeta \leq 1 / 2, \tag{11.4}
\end{align*}
$$

and where $n_{0}, k_{1}^{*}, k_{2}^{*}, q, f, g \in \mathbb{N}$. Let

$$
\begin{equation*}
\ell^{\prime}:=\frac{64 \cdot 36}{\nu^{6}}, \quad s:=\frac{64 \cdot 10^{7}}{\nu^{6}} \text { and } \ell^{*}:=f^{2} . \tag{11.5}
\end{equation*}
$$

Note that we can choose $q, f \in \mathbb{N}$ and ν in such a way that $q / f, 50 \ell^{*} /(s-1), \ell^{*} / 7 \in \mathbb{N}$. As before, we can replace ν with a suitable $\nu^{\prime}<\nu$ if necessary (and then prove the theorem for all $\left(\nu^{\prime}, \tau\right)$-outexpanders), so we can ensure that these divisibility conditions hold.

Apply Szemerédi's regularity lemma (Lemma 4.1) with parameters $\varepsilon_{0}, d, k_{1}^{*}$ to obtain a partition $\mathcal{P}_{0}=\left\{V_{0}^{\prime}, \ldots, V_{k_{0}}^{\prime}\right\}$ of the vertices of G into k_{0} clusters and an exceptional set V_{0}^{\prime}, where $1 / k_{2}^{*} \ll 1 / k_{0} \leq 1 / k_{1}^{*}$ and $\left|V_{0}^{\prime}\right| \leq \varepsilon_{0} n$. Note that by adding at most $42 g(g-1) f$ clusters to the exceptional set if necessary, we may assume that $k_{0} / 14, k_{0} / f, k_{0} / g, 2 f k_{0} / 3 g(g-1) \in \mathbb{N}$. Moreover, by moving at most ℓ^{*} vertices from each cluster V_{i}^{\prime} to the exceptional set we may assume that the cluster size is divisible by ℓ^{*}. Note that we still have that $\left|V_{0}^{\prime}\right| \leq 2 \varepsilon_{0} n$. Let R_{0} denote the corresponding reduced digraph. So every edge of R_{0} corresponds to an ($2 \varepsilon_{0}, \geq d$)-regular pair. Let

$$
k:=\ell^{*} k_{0} .
$$

So

$$
1 / k_{2}^{*} \leq 1 / k \leq 1 / k_{1}^{*}
$$

and $k / 14, k / f, k / g, 2 f k / 3 g(g-1), 50 k /(s-1) \in \mathbb{N}$. By Lemma 5.1, R_{0} is a robust $(\nu / 2,2 \tau)$-outexpander with minimum semidegree at least $\alpha k_{0} / 2$. So by Theorem 6.2, R_{0} contains a Hamilton cycle C_{0}.

Apply Lemma 4.7 with C_{0} playing the role of C to obtain an ε_{0}-uniform ℓ^{*} refinement $\mathcal{P}=\left\{V_{0}^{\prime}, V_{1} \ldots, V_{k}\right\}$ of \mathcal{P}_{0}. Let R be the digraph obtained from R_{0} by
replacing every V_{i}^{\prime} by the ℓ^{*} subclusters in \mathcal{P} which are contained in V_{i}^{\prime} and by replacing every edge $V_{i}^{\prime} V_{j}^{\prime}$ of R_{0} by a complete bipartite graph $K_{\ell^{*}, \ell^{*}}$ between the two corresponding sets of subclusters in \mathcal{P}, where all the edges of $K_{\ell^{*}, \ell^{*}}$ are oriented towards those subclusters which are contained in V_{j}^{\prime}. So R is an ℓ^{*}-fold blow-up of R_{0} and $|R|=k$. By Lemma 4.7(ii) each edge of R corresponds to an $\left(\varepsilon_{1}, \geq d\right)$ regular pair in G. Moreover, Lemma 5.3 implies that R is still a robust $\left(\nu^{3} / 8,4 \tau\right)$ outexpander with minimum semidegree at least $\alpha k / 2$. Let C be a Hamilton cycle in R obtained from C_{0} by winding ℓ^{*} times around C_{0}. By relabeling the clusters in \mathcal{P} if necessary, we may assume that $C=V_{1} \ldots V_{k}$. Later on will use that this construction satisfies (CSys8) with $1 / 2$ playing the role of θ (since \mathcal{P} is an ε_{0}-uniform ℓ^{*}-refinement of \mathcal{P}_{0}).

Apply Lemma 9.1 to R and C in order to obtain a universal walk U for C with parameter ℓ^{\prime}. Let H be the spanning subgraph of R which consists of all the edges contained in $C \cup U$. Thus $\Delta(H) \leq 2\left(1+\ell^{\prime}\right) \leq 1 / \nu^{7}$. Since each edge of R corresponds to an $\left(\varepsilon_{1}, \geq d\right)$-regular pair in G, Lemma 4.4 implies that we can move $\sqrt{\varepsilon_{1}}\left|V_{i}\right|$ vertices from each V_{i} to the exceptional set V_{0}^{\prime} to achieve that every edge of H (and thus of $C \cup U)$ corresponds to an $\left[\varepsilon_{2} / 2, \geq d\right]$-superregular pair in G. We denote the modified exceptional set by V_{0} and still denote the modified clusters by V_{1}, \ldots, V_{k}. From now on, we will view C as a cycle on these clusters and U as a universal walk on these clusters. We also still write \mathcal{P} for the partition of $V(G)$ into the exceptional set V_{0} and clusters V_{1}, \ldots, V_{k}. Let

$$
m:=\left|V_{1}\right|=\cdots=\left|V_{k}\right|
$$

By adding at most $200 \ell^{\prime} q / f$ vertices from each cluster in \mathcal{P} to V_{0} if necessary, we may assume that $m / 50, m / 4 \ell^{\prime}, f m / q \in \mathbb{N}$ (in particular, m is even). Note that

$$
\begin{equation*}
\left|V_{0}\right| \leq\left|V_{0}^{\prime}\right|+\sqrt{\varepsilon_{1}} n+200 \ell^{\prime} q / f \leq \varepsilon_{2} n \tag{11.6}
\end{equation*}
$$

and that every edge of R still corresponds to an $\left(\varepsilon_{2}, \geq d\right)$-regular pair in G and every edge of $C \cup U$ still corresponds to an $\left[\varepsilon_{2}, \geq d\right]$-regular pair in G. Let

$$
\begin{equation*}
r_{0}:=\eta r, \quad r_{0}^{\prime}:=d_{0}^{\prime} m, \quad r_{0}^{\prime \prime}:=d_{0}^{\prime \prime} m \quad \text { and } \quad r_{1}:=d_{1} m \tag{11.7}
\end{equation*}
$$

(11.4) and the fact that $\eta \alpha n \leq r_{0}=\eta r \leq \eta n$ together imply that

$$
\begin{equation*}
1 / n_{0} \ll r_{0} / m \ll r_{0}^{\prime} / m \ll r_{0}^{\prime \prime} / m \ll 1 / k \tag{11.8}
\end{equation*}
$$

Let G_{0} denote the digraph obtained from G by deleting all the edges between vertices in V_{0}. Then

$$
\left(G_{0}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)
$$

is a consistent $\left(\ell^{*}, k, m, \varepsilon_{2}, d, \nu^{3} / 8,4 \tau, \alpha / 2,1 / 2\right)$-system.
Apply Lemma 4.7 to obtain an ε_{2}-uniform ℓ^{\prime}-refinement \mathcal{P}^{\prime} of \mathcal{P}. Let U^{\prime} be the universal subcluster walk with respect to C, U and \mathcal{P}^{\prime}. (So U^{\prime} satisfies (ST2).) Then

$$
\left(G_{0}, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)
$$

is an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-setup. Here we use that Lemma $4.7(\mathrm{i})$ implies that (ST3) is satisfied.

Apply Lemma 4.7 to obtain an η-uniform 50-refinement $\mathcal{P}^{\prime \prime}$ of \mathcal{P}. Apply Lemma 8.6 to the consistent system $\left(G_{0}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ to find a preprocessing graph $P G$
in $G_{0}^{\text {basic }}$ with parameters $\left(s, \varepsilon^{\prime}, d, r_{0}^{\prime}, r_{0}^{\prime \prime}, r_{0}, \zeta\right)$ with respect to $C, R, \mathcal{P}^{\prime \prime}$. (Here (11.4) and (11.8) imply that the conditions of the lemma are satisfied.)

Let G_{1} be obtained from G_{0} by deleting all edges in $P G^{\text {orig. Thus (8.3) implies }}$ that G_{1} is obtained from G_{0} by deleting $r_{0}(s-1)$ outedges and $r_{0}(s-1)$ inedges at every vertex in V_{0} and by deleting $r_{0}^{\prime \prime}$ outedges and $r_{0}^{\prime \prime}$ inedges at every vertex in $V(G) \backslash V_{0}$. But $r_{0}(s-1), r_{0}^{\prime \prime} \leq \varepsilon m$ by (11.4) and (11.8). So Lemma 7.1(i) implies that

$$
\left(G_{1}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)
$$

is still a consistent $\left(\ell^{*}, k, m, 3 \sqrt{\varepsilon}, d, \nu^{3} / 16,4 \tau, \alpha / 4,1 / 4\right)$-system. Furthermore, Lemma 9.2 implies that ($G_{1}, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}$) is still an ($\left.\ell^{\prime}, k, m, \varepsilon^{1 / 3}, d\right)$-setup. Let

$$
r^{*}:=r_{0}^{\prime \prime}-(s-1) r_{0}, \quad r_{2}:=96 \ell^{\prime} g^{2} k r^{*} \text { and } r_{3}:=\frac{r^{*} f k}{q}
$$

Note that

$$
\begin{align*}
r^{*} k^{2} \leq r_{0}^{\prime \prime} k^{2} & \leq r_{0}^{\prime \prime}\left(k_{2}^{*}\right)^{2}=d_{0}^{\prime \prime} m\left(k_{2}^{*}\right)^{2} \leq d_{1} m=r_{1} \tag{11.9}\\
& \leq m . \tag{11.10}
\end{align*}
$$

In particular, (11.9) implies that

$$
\begin{equation*}
r^{*}, r_{0}^{\prime \prime}, r_{2}, r_{3} \leq r_{1} \stackrel{(11.7)}{=} d_{1} m . \tag{11.11}
\end{equation*}
$$

So

$$
\begin{equation*}
\frac{r_{2}}{m} \stackrel{(11.11)}{\leq} d_{1} \stackrel{(11.4)}{<} d \text { and } \frac{r_{3}}{m} \leq \frac{r^{*} k}{m} \stackrel{(11.9)}{\leq} \frac{r_{0}^{\prime \prime} k_{2}^{*}}{m} \stackrel{(11.7)}{=} d_{0}^{\prime \prime} k_{2}^{*} \stackrel{(11.4)}{<} \varepsilon . \tag{11.12}
\end{equation*}
$$

Also, note that (11.5) implies that $f / \ell^{*}=1 / f \ll 1$. Moreover, $r_{3} q / f m=r^{*} k / m \ll$ d by (11.12). Apply Lemma 4.7 to obtain an ε-uniform q / f-refinement $\mathcal{P}^{\prime \prime \prime}$ of \mathcal{P}. Apply Lemma 7.6 to ($G_{1}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C$) in order to obtain exceptional factors $E F_{1}, \ldots, E F_{r_{3}}$ with parameters $(q / f, f)$ with respect to $C, \mathcal{P}^{\prime \prime \prime}$ such that the original versions of all these exceptional factors are pairwise edge-disjoint. Let $\mathcal{E F}$ denote the union of the $E F_{i}$ over all $i=1, \ldots, r_{3}$. Let

$$
r^{\diamond}:=r_{1}+r_{2}+r^{*}-(q-1) r_{3} .
$$

Note that

$$
\begin{equation*}
r^{\diamond} / m \leq\left(r_{1}+r_{2}+r^{*}\right) / m \stackrel{(11.11)}{\leq} 3 d_{1} \stackrel{(11.4)}{<} d . \tag{11.13}
\end{equation*}
$$

(11.10) guarantees that we can now apply Lemma 11.2 to the ($\left.\ell^{\prime}, k, m, \varepsilon^{1 / 3}, d\right)$-setup $\left(G_{1}, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ with r^{*} playing the role of r and with the exceptional factors $E F_{1}, \ldots, E F_{r_{3}}$ chosen before to find a spanning subdigraph $C A^{\diamond}\left(r^{*}\right)$.

Let G_{2} be obtained from G_{1} by deleting all edges in $C A^{\diamond}\left(r^{*}\right) \cup \mathcal{E} \mathcal{F}^{\text {orig }}$. Thus (11.1) implies that G_{2} is obtained from G_{1} by deleting $r_{3} q$ outedges and $r_{3} q$ inedges at every vertex in V_{0} and by deleting $r_{1}+r_{2}+r_{3}$ outedges and $r_{1}+r_{2}+r_{3}$ inedges at every vertex in $V(G) \backslash V_{0}$. But $r_{3} q=r^{*} f k \leq d_{1} m$ by (11.4) and (11.9) while $r_{1}+r_{2}+$ $r_{3} \leq 3 d_{1} m$ by (11.11). So Lemma 7.1 implies that ($G_{2}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C$) is still a consistent ($\left.\ell^{*}, k, m, 3 \sqrt{3 d_{1}}, d, \nu^{3} / 32,4 \tau, \alpha / 8,1 / 8\right)$-system. Together with (11.13) this shows that we can apply Lemma 7.6 to $\left(G_{2}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C\right)$ in order to obtain exceptional factors $E F_{1}^{\prime}, \ldots, E F_{r^{\circ}}^{\prime}$ with parameters $(1,7)$ with respect to C, \mathcal{P} such
that the original versions of all these exceptional factors are pairwise edge-disjoint. Let $\mathcal{E} \mathcal{F}^{\prime}$ denote the union of the $E F_{i}^{\prime}$ over all $i=1, \ldots, r^{\diamond}$.

Let $P C A^{\diamond}\left(r^{*}\right)$ be as guaranteed by Lemma 11.2(ii). Let

$$
G^{\mathrm{rob}}:=C A^{\diamond}\left(r^{*}\right) \cup P C A^{\diamond}\left(r^{*}\right) \cup\left(\mathcal{E} \mathcal{F} \cup \mathcal{E} \mathcal{F}^{\prime}\right)^{\text {orig }} \quad \text { and } \quad G^{\text {absorb }}:=P G^{\text {orig }} \cup G^{\mathrm{rob}} .
$$

Let $r_{0}^{\text {abs }}$ be the outdegree of the exceptional vertices (i.e. those in V_{0}) in $G^{\text {absorb }}$. Then (8.3), (11.1) and (11.2) imply that $r_{0}^{\text {abs }}$ is also the indegree of the exceptional vertices. Moreover, they imply that

$$
r_{0}^{\mathrm{abs}}=r_{0}(s-1)+r_{3} q+7 r^{\diamond} .
$$

Let $r^{\text {abs }}$ be the outdegree of the non-exceptional vertices in $G^{\text {absorb }}$. Again, (8.3), (11.1) and (11.2) imply that $r^{\text {abs }}$ is also the indegree of the non-exceptional vertices Moreover,

$$
r^{\mathrm{abs}}=r_{0}^{\prime \prime}+\left(r_{1}+r_{2}+r_{3}\right)+6 r^{\diamond} .
$$

But

$$
\begin{aligned}
r_{0}^{\text {abs }}-r^{\text {abs }} & =r_{0}(s-1)+(q-1) r_{3}+r^{\diamond}-r_{0}^{\prime \prime}-r_{1}-r_{2} \\
& =r_{0}(s-1)+(q-1) r_{3}+\left(r_{1}+r_{2}+r^{*}-(q-1) r_{3}\right)-r_{0}^{\prime \prime}-r_{1}-r_{2} \\
& =r_{0}(s-1)+r^{*}-r_{0}^{\prime \prime}=0 .
\end{aligned}
$$

So $G^{\text {absorb }}$ is $r^{\text {abs_regular. Moreover, }}$

$$
\begin{equation*}
r^{\mathrm{abs}} \leq r_{0}^{\prime \prime}+\left(r_{1}+r_{2}+r_{3}\right)+6\left(r_{1}+r_{2}+r^{*}\right) \stackrel{(11.11)}{\leq} 22 d_{1} m \stackrel{(11.4)}{\ll} d m \leq d n . \tag{11.14}
\end{equation*}
$$

Let G^{\triangle} denote the digraph obtained from G by removing the edges of $G^{\text {absorb }}$. Let $r^{\triangle}:=r-r^{\text {abs }}$ be the degree of G^{\triangle}. Note that (11.14) implies that G^{\triangle} is still a robust $(\nu / 2, \tau)$-outexpander with $\delta^{0}\left(G^{\triangle}\right)=r^{\Delta} \geq \alpha n / 2$. Let $r^{\#}:=r^{\triangle}-\varepsilon n$. Then (11.6) implies that we can apply Lemma 11.1 to obtain a set \mathcal{C}^{Δ} of εn edgedisjoint Hamilton cycles in G^{\triangle} which cover all the edges in $G^{\triangle}\left[V_{0}\right]$. Let $G^{\#}$ be the $r \#$-regular digraph obtained from G^{\triangle} by deleting all the edges in these Hamilton cycles.

Note that $r-r^{\#}=r^{\text {abs }}+\varepsilon n \leq d n+\varepsilon n \leq 2 d n$ by (11.14). Thus $G^{\#}$ is still a robust $(\nu / 2, \tau)$-outexpander (and thus also a robust ($\nu / 2, \tau^{*}$)-outexpander) with $\delta^{0}\left(G^{\#}\right)=r^{\#} \geq \alpha n / 2$. Together with our choice of τ^{*}, ν, η and n_{0} this shows that we can apply Theorem 1.3 to obtain a set $\mathcal{C}^{\#}$ of $r^{\#}-\eta r=r^{\#}-r_{0}$ edge-disjoint Hamilton cycles in $G^{\#}$. Let H_{0} be the digraph obtained from $G^{\#}$ by deleting all the edges in these Hamilton cycles. Note that our application of Lemma 11.1 ensures that V_{0} forms an independent set in H_{0} and so H_{0} is a r_{0}-regular subdigraph of G_{0}. Together with (11.4) and (11.8) this ensures that we can apply Corollary 8.5 to ($G_{0}, \mathcal{P}_{0}, R_{0}, C_{0}, \mathcal{P}, R, C$) with $H_{0}, \mathcal{P}^{\prime \prime}$ playing the roles of H, \mathcal{P}^{\prime} and with the preprocessing graph $P G$ with parameters $\left(s, \varepsilon^{\prime}, d, r_{0}^{\prime}, r_{0}^{\prime \prime}, r_{0}, \zeta\right)$ chosen before to obtain a set \mathcal{C}_{0} of $r_{0} s$ edge-disjoint Hamilton cycles such that the following conditions hold:

- Altogether the Hamilton cycles in \mathcal{C}_{0} contain all edges of H_{0} and each of these Hamilton cycles lies in $H_{0} \cup P G^{\text {orig }}$.
- Let $P G^{\prime}$ be the digraph obtained from $P G^{\text {orig }}$ by deleting all the edges lying in the Hamilton cycles in \mathcal{C}_{0}. Then every vertex $x \in V_{0}$ is isolated in $P G^{\prime}$
and every vertex $x \in V(G) \backslash V_{0}$ has in- and outdegree $r_{0}^{\prime \prime}-(s-1) r_{0}=r^{*}$ in $P G^{\prime}$.
The second condition above implies that $H_{1}:=P G^{\prime}-V_{0}$ is an r^{*}-regular subdigraph of $G_{0}-V_{0}$. Lemma 11.2(ii)(b) guarantees that $H_{1} \cup G^{\text {rob }}$ has a Hamilton decomposition \mathcal{C}_{1}. Then $\mathcal{C}^{\triangle} \cup \mathcal{C} \# \cup \mathcal{C}_{0} \cup \mathcal{C}_{1}$ is a Hamilton decomposition of G, as required.

12. Statement of the robust decomposition lemma for further use

We now present a 'standalone' version (Lemma 12.1) of the robust decomposition lemma (Lemma 11.2) which is suitable for further use. Instead of exceptional edges and exceptional path systems, it involves 'fictive edges' and 'special path systems'. One can use these in the same way as in the current proof to deal with edges at exceptional vertices. A crucial additional advantage is that one can also use them to deal with a small number of edges connecting G to another digraph. In particular, in [32] we can use it for a digraph G^{*} which consists of robust expanders G and G^{\prime} which are connected by a small number of edges (so G^{*} is not a robust expander). Similarly, in the bipartite version, we can apply it to an 'almost bipartite' digraph and use the fictive edges to deal e.g. with the small number of edges which do not respect the (approximate) bipartition. This is the case in [14].

Suppose that (G, \mathcal{P}, R, C) is an (k, m, ε, d)-scheme with $C=V_{1} \ldots V_{k}$. The next definition is a generalization of a complete exceptional path system. Suppose that $k / L, m / K \in \mathbb{N}$ and let \mathcal{I} be the canonical interval partition of C into L intervals of equal length. A special path system $S P S$ (with respect to C) with parameters (K, L) spanning an interval $I=U_{j} U_{j+1} \ldots U_{j^{\prime}}$ with $I \in \mathcal{I}$ consists of m / K vertex-disjoint paths $P_{1}, \ldots, P_{m / K}$ such that the following conditions hold.
(SPS1) Every P_{s} has its initial vertex in U_{j} and its final vertex in $U_{j^{\prime}}$.
(SPS2) $S P S$ contains a matching Fict $(S P S)$ such that all the edges in Fict $(S P S)$ avoid the endclusters U_{j} and $U_{j^{\prime}}$ of I and such that $E\left(P_{s}\right) \backslash$ Fict $(S P S) \subseteq$ $E(G)$.
(SPS3) SPS contains precisely m / K vertices from every cluster in I and no other vertices.
The edges in Fict $(S P S)$ are called fictive edges of $S P S$. Note that a complete exceptional path system $C E P S$ containing a complete exceptional sequence $C E S$ is a special path system where $C E S$ plays the role of the set of fictive edges.

Suppose that \mathcal{P}^{*} is a K-refinement of \mathcal{P}. For each cluster $U \in \mathcal{P}$, let $U(1), \ldots, U(K)$ denote the subclusters of U in \mathcal{P}^{*}. Consider a special path system $S P S$ as above. We say that SPS has style b if its vertex set is $U_{j}(b) \cup \cdots \cup U_{j^{\prime}}(b)$. A special factor $S F$ with parameters (K, L) (with respect to C, \mathcal{P}^{*}) is a 1-regular digraph on $V(G) \backslash V_{0}$ satisfying the following properties:
(SF1) On each of the L intervals $I \in \mathcal{I}, S F$ induces the vertex-disjoint union of K special path systems.
(SF2) Moreover, for each $I \in \mathcal{I}$ and each $b=1, \ldots, K$, exactly one of the special path systems in $S F$ spanning I has style b.
We write Fict $(S F)$ for the union of the sets Fict $(S P S)$ over all the $K L$ special path systems $S P S$ contained in $S F$ and call the edges in Fict $(S F)$ fictive edges of $S F$.

Note that an exceptional factor $E F$ is a special factor where the exceptional edges in $E F$ play the role of the fictive edges.

We will always view fictive edges as being distinct from each other and from the edges in other digraphs. So if we say that $S F_{1}, \ldots, S F_{r}$ are pairwise edge-disjoint from each other and from some digraph Q on $V(G) \backslash V_{0}$, then this means that Q and all the $S F_{i} \backslash \operatorname{Fict}\left(S F_{i}\right)$ are pairwise edge-disjoint, but for example there could be an edge from x to y in Q as well as in Fict $\left(S F_{i}\right)$ for five indices i (say). But these are the only instances of multiedges that we allow, i.e. if there is more than one edge from x to y, then all but at most one of these edges are fictive edges.

Given two multidigraphs M and M^{\prime} on the same vertex set, we write $M+M^{\prime}$ for the multidigraph whose vertex set is $V(M)=V\left(M^{\prime}\right)$ and in which the multiplicity of $x y$ is the sum of the multiplicities of $x y$ in M and in M^{\prime} (for all $x, y \in V(M)$). So in the above example $Q+S F_{1}+\cdots+S F_{r}$ contains six edges from x to y.

We can now state the variant of the robust decomposition lemma. The proof is the same as that of Lemma 11.2 - the special factors play the role of the exceptional factors and the Hamilton cycles in Lemma 12.1 correspond to the basic versions of the Hamilton cycles returned by Lemma 11.2. The existence of fictive edges means that we formally consider multidigraphs (rather than digraphs) at several steps. However, this does not affect the argument. Indeed, fictive edges only occur within (pre-defined) special path systems and these are fixed building blocks that are never modified during the construction of the Hamilton cycles. The only other difference is that in Lemma 12.1, H need not be a subdigraph of G, but this does not affect the proof either.

Lemma 12.1. Suppose that $0<1 / n \ll 1 / k \ll \varepsilon \ll 1 / q \ll 1 / f \ll r_{1} / m \ll d \ll$ $1 / \ell^{\prime}, 1 / g \ll 1$ and that $r k^{2} \leq m$. Let

$$
r_{2}:=96 \ell^{\prime} g^{2} k r, \quad r_{3}:=r f k / q, \quad r^{\diamond}:=r_{1}+r_{2}+r-(q-1) r_{3}, \quad s^{\prime}:=r f k+7 r^{\diamond}
$$

and suppose that $k / 14, k / f, k / g, q / f, m / 4 \ell^{\prime}, f m / q, 2 f k / 3 g(g-1) \in \mathbb{N}$. Suppose that $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ is an ($\left.\ell^{\prime}, k, m, \varepsilon, d\right)$-setup with $|G|=n, V_{0}=\emptyset$ and $C=V_{1} \ldots V_{k}$. Suppose that \mathcal{P}^{*} is a (q / f)-refinement of \mathcal{P} and that $S F_{1}, \ldots, S F_{r_{3}}$ are edge-disjoint special factors with parameters $(q / f, f)$ with respect to C, \mathcal{P}^{*}. Let $\mathcal{S F}:=S F_{1}+\cdots+S F_{r_{3}}$. Then there exists a spanning subdigraph $C A^{\diamond}(r)$ of G for which the following holds:
(i) $C A^{\diamond}(r)$ is an $\left(r_{1}+r_{2}\right)$-regular spanning subdigraph of G which is edge-disjoint from $\mathcal{S F}$.
(ii) Suppose that $S F_{1}^{\prime}, \ldots, S F_{r}^{\prime}$ are special factors with parameters $(1,7)$ with respect to C, \mathcal{P} which are edge-disjoint from each other and from $C A^{\circ}(r)+$ $\mathcal{S F}$. Let $\mathcal{S \mathcal { F } ^ { \prime }}:=S F_{1}^{\prime}+\cdots+S F_{r^{\circ}}^{\prime}$. Then there exists a spanning subdigraph $P C A^{\diamond}(r)$ of G for which the following holds:
(a) $P C A^{\diamond}(r)$ is a $5 r^{\diamond}$-regular spanning subdigraph of G which is edge-disjoint from $C A^{\diamond}(r)+\mathcal{S F}+\mathcal{S F}^{\prime}$.
(b) Let $\mathcal{S P S}$ be the set consisting of all the s^{\prime} special path systems contained in $\mathcal{S F}+\mathcal{S F}^{\prime}$. Whenever H is an r-regular digraph on $V(G)$ which is edge-disjoint from $G^{\mathrm{rob}}:=C A^{\diamond}(r)+P C A^{\diamond}(r)+\mathcal{S F}+\mathcal{S} \mathcal{F}^{\prime}$, then $H+G^{\mathrm{rob}}$ has a decomposition into s^{\prime} edge-disjoint Hamilton cycles $C_{1}, \ldots, C_{s^{\prime}}$.

Moreover, C_{i} contains one of the special path systems from $\mathcal{S P} \mathcal{S}$, for each $i=1, \ldots, s^{\prime}$.
The analogue holds for an $\left(\ell^{\prime}, k, m, \varepsilon, d\right)$-bi-setup $\left(G, \mathcal{P}, \mathcal{P}^{\prime}, R, C, U, U^{\prime}\right)$ if we assume in addition that H is bipartite with vertex classes $\bigcup \mathcal{V}_{\text {even }}$ and $\bigcup \mathcal{V}_{\text {odd }}$ (where $\mathcal{V}_{\text {even }}$ is the set of all those V_{i} such that i is even and $\mathcal{V}_{\text {odd }}$ is defined analogously).

13. Proofs of Theorems 1.1 and 1.4

The next result implies that a regular oriented graph with minimum semidegree at little larger than $3 n / 8$ is a robust outexpander. Together with Theorem 1.2 this implies Theorem 1.1.

Lemma 13.1. Let $0<1 / n \ll \nu \ll \tau \leq \varepsilon / 2 \leq 1$ and suppose that G is an oriented graph on n vertices with $\delta^{+}(G)+\delta^{-}(G)+\delta(G) \geq 3 n / 2+\varepsilon n$. Then G is a robust (ν, τ)-outexpander.

Proof. Suppose not and let $X \subseteq V(G)$ be a set of vertices such that $\tau n \leq|X| \leq$ $(1-\tau) n$ and $\left|R N_{\nu}^{+}(X)\right|<|X|+\nu n$. Let $A:=X \cap R N_{\nu}^{+}(X), B:=R N_{\nu}^{+}(X) \backslash X$, $D:=X \backslash R N_{\nu}^{+}(X)$ and $C:=V(G) \backslash(A \cup B \cup D)$. Note that

$$
\begin{equation*}
|B|<|D|+\nu n \tag{13.1}
\end{equation*}
$$

Claim 1. $|A|+|B|+|D| \geq 2 \delta^{+}(G)-2 \tau n$
To prove the claim, let us first assume that $|A| \geq \tau n / 2$. Note that $e(A, C \cup D) \leq$ $\nu n(|C|+|D|)$ since every vertex in $C \cup D$ has at most νn inneighbours in $X \supseteq A$. Thus

$$
\begin{aligned}
e(A, A \cup C \cup D) & =e(A, A)+e(A, C \cup D) \leq \frac{|A|^{2}}{2}+\nu n(|C|+|D|) \\
& \leq \frac{|A|^{2}}{2}+\frac{2 \nu}{\tau}|A|(|C|+|D|) \leq \frac{|A|^{2}}{2}+|A| \frac{\tau n}{2}
\end{aligned}
$$

So there exists a vertex $x \in A$ such that $\left|N^{+}(x) \cap(A \cup C \cup D)\right| \leq|A| / 2+\tau n / 2$. Hence $\delta^{+}(G) \leq d^{+}(x) \leq|A| / 2+|B|+\tau n / 2$. Together with (13.1) this implies Claim 1 in this case.

So let us next assume that $|A| \leq \tau n / 2$. Then $|D| \geq \tau n / 2$ and

$$
\begin{aligned}
e(D, A \cup C \cup D) & =e(D, A)+e(D, C \cup D) \leq|D| \frac{\tau n}{2}+\nu n(|C|+|D|) \\
& \leq|D| \frac{\tau n}{2}+\frac{2 \nu}{\tau}|D|(|C|+|D|) \leq|D| \frac{3 \tau n}{4}
\end{aligned}
$$

So there exists a vertex $x \in D$ such that $\left|N^{+}(x) \cap(A \cup C \cup D)\right| \leq 3 \tau n / 4$. Hence $\delta^{+}(G) \leq d^{+}(x) \leq|B|+3 \tau n / 4$. As before, together with (13.1) this implies Claim 1.
Claim 2. $|B|+|C|+|D| \geq 2 \delta^{-}(G)-3 \nu n$
To prove Claim 2, we first consider the case when $C \neq \emptyset$. An averaging argument shows that there is a vertex $x \in C$ with $\left|N^{-}(x) \cap C\right| \leq|C| / 2$. But since $\left|N^{-}(x) \cap X\right| \leq$ νn this means that $\delta^{-}(G) \leq d^{-}(x) \leq|B|+|C| / 2+\nu n$. Together with (13.1) this implies Claim 2.

So let us now assume that $C=\emptyset$. Together with the fact that $|A \cup B|=$ $\left|R N_{\nu}^{+}(X)\right|<|X|+\nu n \leq(1-\tau) n+\nu n<n$ this implies that $D \neq \emptyset$. But each
vertex $x \in D$ satisfies $\left|N^{-}(x) \cap X\right| \leq \nu n$ and so $\delta^{-}(G) \leq d^{-}(x) \leq \nu n+|B|$. Together with (13.1) this implies Claim 2.

Claim 3. $|A|+|B|+|C| \geq \delta(G)-2 \nu n$
This clearly holds if $D=\emptyset$ (since $\delta(G)<n$). So suppose that $D \neq \emptyset$. Then $e(D, D) \leq e(X, D) \leq \nu n|D|$ and so there is a vertex $x \in D$ with $\left|N^{+}(x) \cap D\right| \leq \nu n$. But since $D \cap R N_{\nu}^{+}(X)=\emptyset$ we also have that $\left|N^{-}(x) \cap D\right| \leq \nu n$. Thus $d(x) \leq$ $|A|+|B|+|C|+2 \nu n$, which in turn implies Claim 3.

Now Claims 1-3 together imply that

$$
3 n \stackrel{(13.1)}{\geq} 3|A|+4|B|+3|C|+2|D|-\nu n \geq 2\left(\delta^{+}(G)+\delta^{-}(G)+\delta(G)\right)-3 \tau n>3 n,
$$

a contradiction.

Proof of Theorem 1.1. Let $\tau^{*}:=\tau(3 / 8)$, where $\tau(3 / 8)$ is as defined in Theorem 1.2. Choose new constants $n_{0} \in \mathbb{N}$ and ν, τ such that $0<1 / n_{0} \ll \nu \ll \tau \leq$ $\varepsilon / 2, \tau^{*}$. Lemma 13.1 implies that G is a robust (ν, τ)-outexpander and thus also a robust $\left(\nu, \tau^{*}\right)$-outexpander. So we can apply Theorem 1.2 with $\alpha:=3 / 8$ to find a Hamilton decomposition of G.

The next result implies that a regular digraph with minimum semidegree at little larger than $n / 2$ is a robust outexpander. Similarly as before, together with Theorem 1.2 this implies Theorem 1.4.

Lemma 13.2. Suppose that $0<\nu \leq \tau \leq \varepsilon<1$ are such that $\varepsilon \geq 2 \nu / \tau$. Let G be a digraph on n vertices with minimum semidegree $\delta^{0}(G) \geq(1 / 2+\varepsilon) n$. Then G is a robust (ν, τ)-outexpander.

Proof. Consider any set $S \subseteq V(G)$ with $\tau n \leq|S| \leq(1-\tau) n$. Let $R N:=R N_{\nu, G}^{+}(S)$. We have to show that $|R N| \geq|S|+\nu n$. Suppose first that $|S| \geq n / 2$. Then every vertex of G has at least $\varepsilon n \geq \nu n$ inneighbours in S. So $R N=V(G)$. So we may assume that $|S| \leq n / 2$. But

$$
\begin{aligned}
(1 / 2+\varepsilon) n|S| \leq e(S, V(G)) & =e(S, R N)+e(S, V(G) \backslash R N) \leq|S||R N|+\nu n^{2} \\
& \leq|S||R N|+\frac{\nu}{\tau} n|S|
\end{aligned}
$$

and so $|R N| \geq(1 / 2+\varepsilon-\nu / \tau) n \geq(1+\varepsilon) n / 2 \geq|S|+\nu n$, as required.

Proof of Theorem 1.4. Let $\tau^{*}:=\tau(1 / 2)$, where $\tau(1 / 2)$ is as defined in Theorem 1.2. Choose new constants $n_{0} \in \mathbb{N}$ and ν, τ such that $0<1 / n_{0} \ll \nu \ll \tau \leq \varepsilon, \tau^{*}$. Lemma 13.2 implies that G is a robust (ν, τ)-outexpander and thus also a robust $\left(\nu, \tau^{*}\right)$-outexpander. So we can apply Theorem 1.2 with $\alpha:=1 / 2$ to find a Hamilton decomposition of G.

14. Acknowledgements

We would like to thank John Lapinskas for an idea which led to a simplification of the cycle absorbing argument. We are extremely grateful to Allan Lo for his detailed comments on a draft of this paper.

References

[1] N. Alon, R.A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the regularity lemma, Journal of Algorithms 16 (1994), 80-109.
[2] N. Alon, G. Gutin and M. Krivelevich, Algorithms with large domination ratio, Journal of Algorithms 50 (2004), 118-131.
[3] N. Alon and A. Shapira, Testing subgraphs in directed graphs, Journal of Computer and System Sciences 69 (2004), 354-382.
[4] B. Alspach, The wonderful Walecki construction, Bull. Inst. Combin. Appl. 52 (2008), 7-20.
[5] B. Alspach, J.C. Bermond and D. Sotteau, Decompositions into cycles. I. Hamilton decompositions, Cycles and rays (Montreal, PQ, 1987), Kluwer Acad. Publ., Dordrecht, 1990, 9-18.
[6] B. Alspach, D. Bryant and D. Dyer, Paley graphs have Hamilton decompositions, Discrete Mathematics 312 (2012), 113-118.
[7] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer 2000.
[8] J.C. Bermond and C. Thomassen, Cycles in digraphs - a survey, J. Graph Theory 5 (1981), 1-43.
[9] B. Bollobás and A. Frieze, On matchings and Hamiltonian cycles in random graphs. Random graphs '83 (Poznan, 1983), North-Holland Math. Stud., 118, North-Holland, Amsterdam (1985), 23-46.
[10] A. Bondy, Basic graph theory: paths and circuits, in Handbook of Combinatorics, Vol. 1, Elsevier, Amsterdam (1995), 3-110.
[11] D. Christofides, P. Keevash, D. Kühn and D. Osthus, A semi-exact degree condition for Hamilton cycles in digraphs, SIAM Journal Discrete Mathematics 24 (2010), 709-756.
[12] D. Christofides, P. Keevash, D. Kühn and D. Osthus, Finding Hamilton cycles in robustly expanding digraphs, Journal of Graph Algorithms and Applications 16 (2012), 337-360.
[13] D. Christofides, D. Kühn and D. Osthus, Edge-disjoint Hamilton cycles in graphs, J. Combin. Theory B 102 (2012), 1035-1060.
[14] B. Csaba, D. Kühn, A. Lo, D. Osthus and A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjectures II: the bipartite case, preprint.
[15] B. Csaba, D. Kühn, A. Lo, D. Osthus and A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions, preprint.
[16] A. Frieze and M. Krivelevich, On packing Hamilton cycles in ε-regular graphs, J. Combin. Theory B 94 (2005), 159-172.
[17] A. Frieze and M. Krivelevich, On two Hamilton cycle problems in random graphs, Israel Journal of Mathematics 166 (2008), 221-234.
[18] F. Glover and A.P. Punnen, The Travelling Salesman Problem: New Solvable Cases and Linkages with the Development of Approximation Algorithms, Journal of the Operational Research Society 48 (1997), 502-510.
[19] G. Gutin and A. Yeo, TSP tour domination and Hamilton cycle decompositions of regular graphs, Oper. Res. Letters 28 (2001), 107-111.
[20] R. Häggkvist, Hamilton cycles in oriented graphs, Combin. Probab. Comput. 2 (1993), 25-32.
[21] R. Häggkvist and A. Thomason, Oriented Hamilton cycles in oriented graphs, in Combinatorics, Geometry and Probability, Cambridge University Press 1997, 339-353.
[22] B. Jackson, Long paths and cycles in oriented graphs, J. Graph Theory 5 (1981), 145-157.
[23] S. Janson, T. Łuczak and A. Ruciński, Random graphs, Wiley-Interscience, 2000.
[24] P. Keevash, D. Kühn and D. Osthus, An exact minimum degree condition for Hamilton cycles in oriented graphs, J. London Math. Soc. 79 (2009), 144-166.
[25] L. Kelly, D. Kühn and D. Osthus, A Dirac-type result on Hamilton cycles in oriented graphs, Combin. Probab. Comput. 17 (2008), 689-709.
[26] F. Knox, D. Kühn and D. Osthus, Edge-disjoint Hamilton cycles in random graphs, preprint.
[27] J. Komlós, G.N. Sárközy and E. Szemerédi, Blow-up Lemma, Combinatorica 17 (1997), 109123.
[28] J. Komlós, G.N. Sarközy and E. Szemerédi, An algorithmic version of the blow-up lemma, Random Structures Algorithms 12 (1998), 297-312.
[29] J. Kómlos, G.N. Sárközy and E. Szemerédi, Proof of the Seymour conjecture for large graphs, Ann. Combin 2 (1998), 43-60.
[30] M. Krivelevich and W. Samotij, Optimal packings of Hamilton cycles in sparse random graphs, SIAM J. Discrete Mathematics 26 (2012), 964-982.
[31] D. Kühn, J. Lapinskas and D. Osthus, Optimal packings of Hamilton cycles in graphs of high minimum degree, Combinatorics, Probability and Computing, to appear.
[32] D. Kühn, A. Lo, D. Osthus and A. Treglown, Proof of the 1-factorization and Hamilton decomposition conjectures I: the two cliques case, preprint.
[33] D. Kühn, A. Lo, and D. Osthus, Proof of the 1-factorization and Hamilton decomposition conjectures IV: exceptional systems for the two cliques case, preprint.
[34] D. Kühn and D. Osthus, Embedding large subgraphs into dense graphs, in Surveys in Combinatorics (S. Huczynska, J.D. Mitchell and C.M. Roney-Dougal eds.), London Math. Soc. Lecture Notes 365, 137-167, Cambridge University Press, 2009.
[35] D. Kühn and D. Osthus, Hamilton decompositions of regular expanders: applications, preprint.
[36] D. Kühn and D. Osthus, A survey on Hamilton cycles in directed graphs, European J. Combinatorics 33 (2012), 750-766.
[37] D. Kühn, D. Osthus and A. Treglown, Hamiltonian degree sequences in digraphs, J. Combin. Theory B 100 (2010), 367-380.
[38] D. Kühn, D. Osthus and A. Treglown, Hamilton decompositions of regular tournaments, Proc. London Math. Soc. 101 (2010), 303-335.
[39] E. Lucas, Récréations Mathématiques, Vol. 2, Gautheir-Villars, 1892.
[40] J.W. Moon, Topics on tournaments, Holt, Rinehart and Winston, New York, 1968.
[41] C. St. J. A. Nash-Williams, Hamiltonian arcs and circuits, in Recent Trends in Graph Theory, Springer 1971, 197-210.
[42] D. Osthus and K. Staden, Approximate Hamilton decompositions of regular robustly expanding digraphs, preprint.
[43] L. Perkovic and B. Reed, Edge coloring regular graphs of high degree, Discrete Mathematics 165/166 (1997), 567-579.
[44] A. Strivastav and P. Stangier, Algorithmic Chernoff-Hoeffding inequalities in integer programming, Random Structures Algorithms 8 (1996), 27-58.
[45] C. Thomassen, Long cycles in digraphs with constraints on the degrees, in Surveys in Combinatorics (B. Bollobás ed.), London Math. Soc. Lecture Notes 38 (1979), 211-228.
[46] C. Thomassen, Edge-disjoint Hamiltonian paths and cycles in tournaments, Proc. London Math. Soc. 45 (1982), 151-168.
[47] T.W. Tillson, A Hamiltonian decomposition of $K_{2 m}^{*}, 2 m \geq 8$, J. Combin. Theory B 29 (1980), 68-74.
[48] C.Q. Zhang, Every regular tournament has two arc-disjoint Hamilton cycles, J. Qufu Normal College, Special Issue Oper. Research (1980), 70-81.

Daniela Kühn, Deryk Osthus
School of Mathematics
University of Birmingham
Edgbaston
Birmingham
B15 2TT
UK
E-mail addresses: \{d.kuhn, d.osthus\}@bham.ac.uk

