1,335 research outputs found

    Basis Token Consistency: A Practical Mechanism for Strong Web Cache Consistency

    Full text link
    With web caching and cache-related services like CDNs and edge services playing an increasingly significant role in the modern internet, the problem of the weak consistency and coherence provisions in current web protocols is becoming increasingly significant and drawing the attention of the standards community [LCD01]. Toward this end, we present definitions of consistency and coherence for web-like environments, that is, distributed client-server information systems where the semantics of interactions with resource are more general than the read/write operations found in memory hierarchies and distributed file systems. We then present a brief review of proposed mechanisms which strengthen the consistency of caches in the web, focusing upon their conceptual contributions and their weaknesses in real-world practice. These insights motivate a new mechanism, which we call "Basis Token Consistency" or BTC; when implemented at the server, this mechanism allows any client (independent of the presence and conformity of any intermediaries) to maintain a self-consistent view of the server's state. This is accomplished by annotating responses with additional per-resource application information which allows client caches to recognize the obsolescence of currently cached entities and identify responses from other caches which are already stale in light of what has already been seen. The mechanism requires no deviation from the existing client-server communication model, and does not require servers to maintain any additional per-client state. We discuss how our mechanism could be integrated into a fragment-assembling Content Management System (CMS), and present a simulation-driven performance comparison between the BTC algorithm and the use of the Time-To-Live (TTL) heuristic.National Science Foundation (ANI-9986397, ANI-0095988

    Cache Serializability: Reducing Inconsistency in Edge Transactions

    Full text link
    Read-only caches are widely used in cloud infrastructures to reduce access latency and load on backend databases. Operators view coherent caches as impractical at genuinely large scale and many client-facing caches are updated in an asynchronous manner with best-effort pipelines. Existing solutions that support cache consistency are inapplicable to this scenario since they require a round trip to the database on every cache transaction. Existing incoherent cache technologies are oblivious to transactional data access, even if the backend database supports transactions. We propose T-Cache, a novel caching policy for read-only transactions in which inconsistency is tolerable (won't cause safety violations) but undesirable (has a cost). T-Cache improves cache consistency despite asynchronous and unreliable communication between the cache and the database. We define cache-serializability, a variant of serializability that is suitable for incoherent caches, and prove that with unbounded resources T-Cache implements this new specification. With limited resources, T-Cache allows the system manager to choose a trade-off between performance and consistency. Our evaluation shows that T-Cache detects many inconsistencies with only nominal overhead. We use synthetic workloads to demonstrate the efficacy of T-Cache when data accesses are clustered and its adaptive reaction to workload changes. With workloads based on the real-world topologies, T-Cache detects 43-70% of the inconsistencies and increases the rate of consistent transactions by 33-58%.Comment: Ittay Eyal, Ken Birman, Robbert van Renesse, "Cache Serializability: Reducing Inconsistency in Edge Transactions," Distributed Computing Systems (ICDCS), IEEE 35th International Conference on, June~29 2015--July~2 201

    Strongly Secure and Efficient Data Shuffle On Hardware Enclaves

    Full text link
    Mitigating memory-access attacks on the Intel SGX architecture is an important and open research problem. A natural notion of the mitigation is cache-miss obliviousness which requires the cache-misses emitted during an enclave execution are oblivious to sensitive data. This work realizes the cache-miss obliviousness for the computation of data shuffling. The proposed approach is to software-engineer the oblivious algorithm of Melbourne shuffle on the Intel SGX/TSX architecture, where the Transaction Synchronization eXtension (TSX) is (ab)used to detect the occurrence of cache misses. In the system building, we propose software techniques to prefetch memory data prior to the TSX transaction to defend the physical bus-tapping attacks. Our evaluation based on real implementation shows that our system achieves superior performance and lower transaction abort rate than the related work in the existing literature.Comment: Systex'1

    Theory and Practice of Transactional Method Caching

    Get PDF
    Nowadays, tiered architectures are widely accepted for constructing large scale information systems. In this context application servers often form the bottleneck for a system's efficiency. An application server exposes an object oriented interface consisting of set of methods which are accessed by potentially remote clients. The idea of method caching is to store results of read-only method invocations with respect to the application server's interface on the client side. If the client invokes the same method with the same arguments again, the corresponding result can be taken from the cache without contacting the server. It has been shown that this approach can considerably improve a real world system's efficiency. This paper extends the concept of method caching by addressing the case where clients wrap related method invocations in ACID transactions. Demarcating sequences of method calls in this way is supported by many important application server standards. In this context the paper presents an architecture, a theory and an efficient protocol for maintaining full transactional consistency and in particular serializability when using a method cache on the client side. In order to create a protocol for scheduling cached method results, the paper extends a classical transaction formalism. Based on this extension, a recovery protocol and an optimistic serializability protocol are derived. The latter one differs from traditional transactional cache protocols in many essential ways. An efficiency experiment validates the approach: Using the cache a system's performance and scalability are considerably improved
    • …
    corecore