9 research outputs found

    SFOLD - a program package for calculating two-body sfermion decays at full one-loop level in the MSSM

    Full text link
    SFOLD (Sfermion Full One Loop Decays) is a Fortran program package for calculating all sfermion two-body decay widths and the corresponding branching ratios at full one-loop level within the MSSM. The package adopts the SUSY Parameter Analysis convention and supports the SUSY Les Houches Accord input and output format. With the SFOLD package we found non-negligible electroweak corrections in bosonic decays of sbottom, stop and stau.Comment: 17 pages, 3 figure

    Heavy Higgs decays into sfermions in the complex MSSM: a full one-loop analysis

    Get PDF
    For the search for additional Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM) as well as for future precision analyses in the Higgs sector a precise knowledge of their decay properties is mandatory. We evaluate all two-body decay modes of the heavy Higgs bosons into sfermions in the MSSM with complex parameters (cMSSM). The evaluation is based on a full one-loop calculation of all decay channels, also including hard QED and QCD radiation. The dependence of the heavy Higgs bosons on the relevant cMSSM parameters is analyzed numerically. We find sizable contributions to many partial decay widths. They are roughly of O(15%) of the tree-level results, but can go up to 30% or higher. The size of the electroweak one-loop corrections can be as large as the QCD corrections. The full one-loop contributions are important for the correct interpretation of heavy Higgs-boson search results at the LHC and, if kinematically allowed, at a future linear e+e- collider. The evaluation of the branching ratios of the heavy Higgs bosons will be implemented into the Fortran code FeynHiggs

    FlexibleDecay: An automated calculator of scalar decay widths

    Full text link
    We present FlexibleDecay, a tool to calculate decays of scalars in a broad class of BSM models. The tool aims for high precision particularly in the case of Higgs boson decays. In the case of scalar and pseudoscalar Higgs boson decays the known higher order SM QED, QCD and EW effects are taken into account where possible. The program works in a modified MSˉ\bar{\text{MS}} scheme that exhibits a decoupling property with respect to heavy BSM physics, with BSM parameters themselves treated in the MSˉ/DRˉ\bar{\text{MS}}/\bar{\text{DR}}-scheme allowing for an easy connection to high scale tests for, e.g., perturbativity and vacuum stability, and the many observable calculations readily available in MSˉ/DRˉ\bar{\text{MS}}/\bar{\text{DR}} programs. Pure BSM effects are taken into account at the leading order, including all one-loop contributions to loop-induced processes. The program is implemented as an extension to FlexibleSUSY, which determines the mass spectrum for arbitrary BSM models, and does not require any extra configuration from the user. We compare our predictions for Higgs decays in the SM, singlet extended SM, type II THDM, CMSSM and MRSSM, as well as for squark decays in the CMSSM against a selection of publicly available tools. The numerical differences between our and other programs are explained. The release of FlexibleDecay officially deprecates the old effective couplings routines in FlexibleSUSY.Comment: 44 pages, 3 figures, 11 tables; version published in CP

    Computing decay rates for new physics theories with FeynRules and MadGraph5/aMC@NLO

    Get PDF
    We present new features of the FeynRules and MadGraph5/aMC@NLO programs for the automatic computation of decay widths that consistently include channels of arbitrary final-state multiplicity. The implementations are generic enough so that they can be used in the framework of any quantum field theory, possibly including higher-dimensional operators. We extend at the same time the conventions of the Universal FeynRules Output (or UFO) format to include decay tables and information on the total widths. We finally provide a set of representative examples of the usage of the new functions of the different codes in the framework of the Standard Model, the Higgs Effective Field Theory, the Strongly Interacting Light Higgs model and the Minimal Supersymmetric Standard Model and compare the results to available literature and programs for validation purposes.Comment: 32 pages, 2 figures. Published versio

    Computing decay rates for new physics theories with FeynRules and MadGraph 5_aMC@NLO

    Get PDF
    We present new features of the FeynRules and MadGraph 5_aMC@NLO programs for the automatic computation of decay widths that consistently include channels of arbitrary final-state multiplicity. The implementations are generic enough so that they can be used in the framework of any quantum field theory, possibly including higher-dimensional operators. We extend at the same time the conventions of the Universal FeynRules Output (or UFO) format to include decay tables and information on the total widths. We finally provide a set of representative examples of the usage of the new functions of the different codes in the framework of the Standard Model, the Higgs Effective Field Theory, the Strongly Interacting Light Higgs model and the Minimal Supersymmetric Standard Model and compare the results to available literature and programs for validation purposes

    Precision tools and models to narrow in on the 750 GeV diphoton resonance

    Get PDF
    The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.Comment: 184 pages, 24 figures; model files available at http://sarah.hepforge.org/Diphoton_Models.tar.gz; v2: added a few clarifications and reference
    corecore