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Université de Strasbourg/CNRS-IN2P3, 23 Rue du Loess, F-67037 Strasbourg, France
eCenter for Cosmology, Particle Physics and Phenomenology, Université Catholique de
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Abstract

We present new features of the FeynRules and MadGraph5 aMC@NLO
programs for the automatic computation of decay widths that consistently in-
clude channels of arbitrary final-state multiplicity. The implementations are
generic enough so that they can be used in the framework of any quantum field
theory, possibly including higher-dimensional operators. We extend at the same
time the conventions of the Universal FeynRules Output (or UFO) format to
include decay tables and information on the total widths. We finally provide a
set of representative examples of the usage of the new functions of the different
codes in the framework of the Standard Model, the Higgs Effective Field Theory,
the Strongly Interacting Light Higgs model and the Minimal Supersymmetric
Standard Model and compare the results to available literature and programs
for validation purposes.
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PROGRAM SUMMARY
Manuscript Title:Computing decay rates for new physics theories with FeynRules
and MadGraph5 aMC@NLO
Authors: Johan Alwall, Claude Duhr, Benjamin Fuks, Olivier Mattelaer, Deniz
Gizem Öztürk, Chia-Hsien Shen
Program Title: MadWidth
Journal Reference:
Catalogue identifier:
Licensing provisions: None.
Programming language: Mathematica & Python.
Computer: Platforms on which Mathematica and Python are available.
Operating system: Operating systems on which Mathematica and Python are
available.
Keywords: Model building, Feynman rules, Monte Carlo simulations.
Classification: 11.1 General, High Energy Physics and Computing.

11.6 Phenomenological and Empirical Models and Theories.
External routines/libraries: FeynRules 2.0 or higher.
MadGraph5 aMC@NLO 2.2 or higher.
Nature of problem: The program is a module for the FeynRules andMadGraph5-
aMC@NLO packages that allows the computation of tree-level decay widths for ar-
bitrary new physics models. The module consists of two parts:

1. A FeynRules part, which allows one to compute analytically all tree-level two-
body decay rates and to output them in the UFO format.

2. A MadGraph5 aMC@NLO part, which allows the numerical computation of
many-body decay rates.

Solution method:

1. For the FeynRules part, the analytic expressions for the three-point vertices
can be squared to obtain analytic formulas for two-body decay rates.

2. For the MadGraph5 aMC@NLO part, MadGraph is used to generate all
Feynman diagrams contributing to the decay, and diagrams that correspond to
cascade decays are removed.

Restrictions: Mathematica version 7 or higher. As the package is a module rely-

ing on FeynRules and MadGraph5 aMC@NLO all restrictions of these packages

apply.

Unusual features: None.

Running time: The computation of the Feynman rules from a Lagrangian, as well

as the computation of the decay rates, varies with the complexity of the model, and

runs from a few seconds to several minutes. See Section 5 of the present manuscript

for more information.
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1. Introduction

The Monte Carlo simulation of new physics models with new massive unsta-
ble particles requires, to be practically useful, the calculation of the total and
partial decay widths for all particles. The higher the number of allowed decay
channels, the more daunting it is to do this by hand. Furthermore, depending
on the mass hierarchy and interactions among the particles, the computation of
two-body decay rates might be insufficient, as higher-multiplicity decays might
be the dominant decay modes for some of the particles. Finally, the decay chan-
nels that are kinematically allowed are highly dependent on the mass spectrum
of the model, so that the decay rates need to be reevaluated for every choice
of the input parameters. As a consequence, the computation of all the partial
widths of all the particles that appear in a model can be a complex task already
at leading order. For this reason, several tools dedicated to the computation of
decay rates in the context of specific beyond the Standard Model theories have
been developed in the past [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], while many
Monte-Carlo event generators are also able to compute partial widths on their
own via a dedicated phase-space integration [15, 16, 17, 18, 19, 20, 21, 22, 23].
The aim of this paper is to present a way to compute automatically, using the
FeynRules [24, 25] and MadGraph5 aMC@NLO [19, 26] frameworks, all
the partial decay widths for large classes of new physics models, in particular
when specific width calculators are not publicly available.

FeynRules is a Mathematica package that allows one to compute the in-
teraction vertices of any high-energy physics model directly from its Lagrangian.
The package contains a set of translation interfaces to export the Feynman rules
to various matrix element generators. The latter often require the widths of all
the particles appearing inside the model to be given explicitly and to be defined
as numerical input parameters. The workflow to obtain an implementation of
a new physics model that can be used for phenomenological studies has so far
been the following1:

1. obtain an implementation of the model into the matrix element genera-
tor of choice (for which an interface to FeynRules exists) where all the
widths are set to some default values.

2. for each choice of the numerical input parameters, run the matrix element
generator to compute the numerical values of the widths, and insert them
back into the model implementation.

While straightforward, it is clear that this process contains a lot of redun-
dant workload. In particular, in many situations the dominant kinematically
allowed decay channels are the two-body decays, which can easily be computed
by squaring three-point vertices and multiplying by the appropriate phase-space
factors. The first main technical advance of this paper is that we present an
extension of the FeynRules package that allows one to compute analytically

1For the sake of generality, we ignore here external width calculators.
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all two-body decay rates, and thus to include their values into the output of the
translation interfaces. Moreover, we have extended the Universal FeynRules
Output format (UFO) [27], which is the standard interface from FeynRules to
MadGraph5 aMC@NLO, GoSam [28] and Herwig++ [17, 29], to include all
these analytic formulas so that they can be used dynamically when generating
a scattering process.

Two-body decays might however be insufficient and three (or even more)-
body decays might be required for a reliable estimation of the total widths of
some of the particles. However, computing all the analytic formulae for an ar-
bitrary mass spectrum is beyond reach. In addition, one has to deal with the
double counting coming from an intermediate propagator going on-shell, which
corresponds to a cascade of two-body decays. Therefore, the second main techni-
cal achievement of this paper is to introduce a new MadGraph5 aMC@NLO
module, dubbed MadWidth, which determines automatically the required final
state multiplicity to reach a given precision on the total width. In addition, it
generates the diagrams without any double counting, estimates the contribution
of each decay channel and selects those that should be integrated numerically.
The inclusion of higher multiplicities may however still be insufficient in cases
where loop-induced decay modes are important or in cases where threshold effect
are large so that their resummation needs to be taken into account.

The paper is organized as follows: In Section 2 we give a short review of the
FeynRules package and we introduce the new functions that can be used to
compute two-body decay rates. In Section 3 we present the extension of the UFO
format to include the information on these two-body decays. In Section 4 we
describe the algorithm implemented in MadWidth to generate all numerically
relevant diagrams associated with N -body decay channels and present how the
code can be used inside the MadGraph5 aMC@NLO framework. Finally,
in Section 5 we validate our implementations by comparing partial widths for
four selected models, namely the Standard Model, the Higgs Effective Field
Theory [30, 31], the Strongly Interacting Light Higgs model [32] and the Minimal
Supersymmetric Standard Model. Our conclusions are presented in Section 6.

2. Automatic computation of two-body decay rates with FeynRules

2.1. The Mathematica package FeynRules

In this section we introduce one of the main actors involved in this work,
the FeynRules package. We start by presenting a short review of the main
functionalities of the package, and we focus on the automatic computation of
decay rates within the FeynRules framework in Section 2.2.

In a nutshell, FeynRules is a Mathematica package that allows one for
the automatic computation of the Feynman rules of a quantum field theory
model directly from its Lagrangian. It can be used with a large variety of
physics models involving fields with spin of at most two [33, 34] and/or super-
fields [35, 36]. The only requirements consist of Lorentz and gauge invariance.
In other words, and more technically speaking, all indices appearing inside a

4



Lagrangian must be correctly contracted. Apart from these restrictions, no fur-
ther assumptions are made on the functional form of the Lagrangian, so that
FeynRules can also be used to compute vertices associated with operators of
dimension greater than four and in the context of any gauge choice.

In addition, FeynRules also contains several translation interfaces that al-
low one to output the Feynman rules into a format readable by various Feynman
diagram generators. Currently, dedicated interfaces exist for CalcHep/Comp-
Hep [37, 38, 15, 16], FeynArts/FormCalc [39, 40, 41, 42, 43], Sherpa [20, 44]
and Whiz-ard/O’Mega [45, 21, 46]. Furthermore, it is also possible to out-
put the model information in the so-called Universal FeynRules Output (UFO)
format, a format for the implementation of beyond the Standard Model theo-
ries into matrix element generators that is not tight to any existing code and
that does not make any a priori assumption on the structure of the interaction
vertices that appear in the model. Finally, FeynRules also comes with spe-
cific computational modules that include, e.g., methods dedicated to superspace
calculations [35] or mass matrix diagonalization [47].

The implementation of a model into FeynRules does not only require to
enter the Lagrangian, but also the definitions of all particles and parameters
that appear inside it. In other words, all symbols that are used to write the
Lagrangian in Mathematica must be properly declared before Feynman rules
may be calculated by FeynRules. The syntax for the declaration of the parti-
cles and parameters is based on the original format for model files of FeynArts,
extended by new options required by FeynRules. For example, the Standard
Model Z-boson can be declared by including in the FeynRules model descrip-
tion,

V[1] == {

ClassName -> Z,

SelfConjugate -> True,

Mass -> {MZ, 91.1876},

Width -> {WZ, 2.4952}

}

This declares a vector field (V[1]) denoted by the symbol Z that is self-conjugate
(i.e., that is equal to its own antiparticle) with a mass MZ of 91.187 GeV and a
width WZ of 2.4952 GeV. At this stage, the numerical value of the width of the
particles must be explicitly given when declaring a new instance of the particle
class2. The widths are, however, in general not independent input parameters
of a model, but related to other parameters of the theory, such as masses and
coupling constants. Any consistent phenomenological analysis therefore requires
the widths of all the particles appearing in a model to be re-evaluated every time
the numerical values of the independent input parameters (consisting of so-called
‘benchmark points’) are changed. This is at odds with the fact that the widths

2If no numerical value is provided through the Width attribute of the particle class, a
default value of 1 GeV is assigned by FeynRules.
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are given as explicit numerical input parameters in a FeynRules model file.
The reason why explicit numerical values need to be specified in a Feyn-

Rules model lies in the interfacing to the matrix element generators. Indeed, as
the only task of FeynRules is the computation of the tree-level Feynman rules
from the Lagrangian, the widths, and even less so their numerical values, are not
directly used at any stage by the code. However, when the Feynman rules are
exported to one of the aforementioned matrix element generators, these codes
often require the widths of the particles to be provided as numerical inputs, thus
requiring the corresponding variables to be defined at the FeynRules level and
the numerical values computed, e.g., by making use of the generator of choice3.
Moreover, calculating all the branching ratios of the model particles may also be
required by tools such as parton shower programs that are further interfaced to
matrix element generators. This has to be repeated for each benchmark point
under consideration, which renders the entire approach highly inefficient as it
involves a lot of redundant workload.

2.2. Functions dedicated to the computation of decay widths

In this section, we describe the new functionalities of the FeynRules pack-
age related to the computation of all two-body decays of a model analytically.
We start by giving a very brief review on two-body decays before presenting the
new user functions implemented into FeynRules.

The leading-order decay rate of a heavy particle of mass M into N particles
of mass mi is given by

Γ =
1

2|M |S

∫
dΦN |M|2 , (1)

where S denotes the phase space symmetry factor, |M|2 the averaged squared
matrix element and dΦN the usual N -body phase-space measure in four dimen-
sions

dΦN = (2π)4 δ(4)

(
P −

N∑
i=1

pi

)
N∏
i=1

d4pi
(2π)3

δ+(p2
i −m2

i )

= (2π)4 δ(4)

(
P −

N∑
i=1

pi

)
N∏
i=1

d3pi
2 (2π)3Ei

.

(2)

In this expression P = (M,~0) stands for the four-momentum of the heavy
decaying particle at rest and pi and Ei are the momenta and energies of the decay
products. The absolute value included in Eq. (1), rather unconventional, comes
from the fact that in certain beyond the Standard Model theories involving
Majorana fermions (e.g., the Minimal Supersymmetric Standard Model), it is

3Some tools offer the possibility to compute the widths of all particles on the fly when
generating the matrix element associated with a given process. In this case, including the
numerical values of the widths at the FeynRules level is not mandatory.
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possible to choose the phases of the fermion fields such that the mass is made
negative.

In the special case of a two-body decay, N = 2, Lorentz invariance implies
that the matrix element can only depend on the masses of the external particles,
and we can write

Γ =

√
λ(M2,m2

1,m
2
2) |M|2

16π S |M |3
, (3)

where the Källén function reads λ(M2,m2
1,m

2
2) = (M2 −m2

1 −m2
2)2 − 4m2

1m
2
2.

The matrix element of a two-body decay only receives contributions from one
single three-point vertex V, and so it can be written as

|M|2 = Va1a2a3`1`2`3
P`1`

′
1

1 P`2`
′
2

2 P`3`
′
3

3 (V∗)a1a2a3`′1`
′
2`
′
3
, (4)

where the color and spin indices of the particle i are denoted by `
(′)
i and ai. In

addition, we have introduced the polarization tensor of the particle i, Pi, which
depends on its spin and its mass. As a consequence, the only dependence on the
model is through the three-point vertex V computed by FeynRules, so that we
have all the necessary ingredients to evaluate the two-body decay widths ana-
lytically. The reason why N -body decays with N > 2 are not considered inside
the FeynRules framework is due to the fact that, on the one hand, the matrix
element does no longer trivially decouple from the phase space and, on the other
hand, the remaining phase-space integration might contain infrared divergences
for massless particles in the final state. Moreover, the double-counting arising
from decay channels of different final-state multiplicities requires a special treat-
ment. The restriction to two-body decays provides in general a good estimate of
the width of the particles. In some cases, it is however important to include at
least three-body decay contributions. We will discuss how such cases are iden-
tified and handled in the context of the MadGraph5 aMC@NLO framework
in Section 4.

Using the vertices provided by FeynRules, it is very easy to evaluate Eq. (4)
analytically and to obtain the analytic results for all two-body decay rates as-
sociated with any new physics model. In the rest of this section we describe
the new functions included in the FeynRules package that allow one to per-
form this task on the example of the Standard Model implementation, which is
included in the distribution of the package.

In order to compute the partial widths of the particles, it is necessary to first
compute the vertices associated with the model in the usual way and to store
them in some variable, e.g.,

vertices = FeynmanRules[ LSM ];

where LSM denotes the variable containing the Standard Model Lagrangian.
Once the vertices have been computed, we can immediately evaluate all two-
body decays by issuing the command

decays = ComputeWidths[ vertices ];
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The function ComputeWidths[] first selects all three-point vertices from the list
vertices that involve at least one massive particle and no ghost field and/or
Goldstone boson. Next, the squared matrix elements are evaluated (in unitary
gauge) using Eq. (4) and the results are stored in a list which contains entries
of the form

{{φ1, φ2, φ3}, Γφ1→φ2 φ3} .

First, we stress that the output of the function ComputeWidths[] contains the
analytic results for the decay rates for all possible cyclic rotations of the exter-
nal particles {φ1, φ2, φ3} with a massive initial state, independently whether a
given decay channel is kinematically allowed. The reason for this is that, while
certain channels might be forbidden/allowed for a chosen set of numerical input
parameters, this might not be the case for all possible choices of the external pa-
rameters. Second, the output of ComputeWidths[] is also stored internally in the
global variable FR$PartialWidth. The use of this global variable will become
clear below. Every time the function ComputeDecays[] is executed, the value of
the global variable is overwritten, unless the option Save of ComputeWidths[]
is set to False (the default is True) and in this case FR$PartialWidth remains
unchanged. Summations over possible internal gauge indices in the analytic
results are not performed, unless for indices related to the fundamental and
adjoint representations of SU(3) in the case where the user employs the con-
ventional symbols for the representation matrices and the corresponding index
names presented in the FeynRules manual (see Section 6.1.5 of Ref. [25]).

While all the partial widths for all decay channels (kinematically allowed
or not) are stored in the variables decays and FR$PartialWidth, FeynRules
contains a set of functions that allows the user to read out directly certain entries
of these lists. For example, issuing the command

PartialWidth[ {φ1, φ2, φ3 }, decays ]

checks, based on the numerical values of the masses defined in the declaration
of the particles, whether the decay φ1 → φ2 φ3 is kinematically allowed, and if
so, returns the corresponding partial width Γφ1→φ2 φ3 . The second argument of
PartialWidth[] is optional and could be omitted. If omitted, the partial widths
stored in the global variable FR$PartialWidth are used by default. Similarly

TotWidth[ φ1, decays ];
BranchingRatio[ {φ1, φ2, φ3}, decays ];

return the analytic results for the total decay rate and the branching ra-
tio, whenever kinematically allowed. Like for PartialWidth[] the second ar-
gument is optional. Furthermore, we stress that the analytic expressions can
easily be evaluated numerically (using the numerical values for the masses and
coupling constants defined in the model) with the built-in FeynRules func-
tion NumericalValue[]. Finally, it can be useful to update the information
included in the original particle declarations by replacing the numerical value
of the widths of all particles by the numerical values obtained with the function
TotWidth, which can be achieved by issuing the command

8



UpdateWidths[ decays ];

where, as usual, the argument decays is optional. After this command has
been issued, the updated numerical results for the widths are employed by the
translation interfaces to matrix element generators.

3. Extension of the UFO format to include decay information

In the previous section we have seen how FeynRules can be used to com-
pute analytically all tree-level two-body decays associated with a beyond the
Standard Model theory, how to update the numerical values for the total widths
inside FeynRules and how to export them to matrix element generators. This
approach does however not yet solve the problem that widths are not indepen-
dent parameters, and so they need to be re-evaluated for every benchmark point.
While it is in principle possible to rerun FeynRules for each parameter set,
this procedure is obviously highly inefficient. In the following, we present an
extension of the UFO format [27] that allows one to include the analytic results
for the two-body decays. Starting from FeynRules 2.0, the UFO interface au-
tomatically includes all two-body decays in the output. It is however possible to
disable this feature by setting the option AddDecays of the WriteUFO[] function
to False (the default being True).

If included, information on the two-body decays is stored into the UFO
format in the file decays.py. The content of this file contains declarations of
instances of the class Decay (defined in object_library.py). Each instance of
this class can be thought of as a collection of analytic formulas for the two-body
partial widths of a given particle. For example, the two-body partial widths of
the Higgs boson in the Standard Model are represented inside decays.py as

Decay H = Decay(name = ’Decay H’,

particle = P.H,

partial widths = {(P.W minus ,P.W plus ):’ΓH→W+W−’,

(P.Z,P.Z):’ΓH→Z Z’,
(P.b,P.b tilde ):’ΓH→b b̄’,
(P.ta minus ,P.ta plus ):’ΓH→τ+ τ−’,

(P.t,P.t tilde ):’ΓH→t t̄’
)

where ΓH→ij schematically represent the analytic formulas for the partial
widths of the Higgs boson. The syntax used to write these analytic formulas
in Python form is identical to the syntax used in the UFO format for defining
internal parameters, and we refer to Ref. [27] for details. Similar to the output
of the ComputeWidths[] function described in Section 2.2, all possible decays
are included, even if kinematically forbidden. In our example4, this implies that
the analytic formula for the decay of a Higgs boson into a top quark pair is also

4We consider the first two generations massless.
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present (even if not kinematically allowed for a light Higgs boson). It is then up
to matrix element generators to filter out at run time the kinematically allowed
channels and to combine them consistently into the total width and branching
ratios for a given particle.

The example of the Higgs is a case where tree-level two-body decays are not
sufficient for an accurate estimation of the width. One must indeed include im-
portant contributions arising both from loop-induced diagrams and from three-
body decays via off-shell effects. While the inclusion of the loop-induced dia-
grams lies beyond the scope of this paper, the next section will describe how
three-body decays can be handled with MadGraph5 aMC@NLO.

4. MadWidth – a MadGraph5 aMC@NLO module to compute decay
widths

MadGraph5 aMC@NLO is a suite of packages related to the computation
of matrix elements [19, 48, 49, 50, 51, 52]. Two of its main usages consist of
cross section computation and event generation at the leading order (via the
MadEvent package [18]) and next-to-leading order (through the MC@NLO
framework [26]) in perturbation theory. In addition to their intrinsic accuracy,
the precision of the results provided by the aforementioned packages is limited
by the precision of the calculations of the numerical values of the model pa-
rameters. In particular, the way in which the widths of the particles have been
obtained plays a non-negligible role. Although the total widths are in general
estimated fairly well if only two-body decays are considered, it is often neces-
sary to include decays to higher-multiplicity final states. In principle, we can
generate all N -body tree-level decay processes directly in MadGraph5 aMC-
@NLO and find the (partial) widths.5 However, in addition to the genuine
N -body decay processes, this also generates cascade decays and radiation from
(n < N)-body decays which can be accounted more efficiently from the parent
lower-multiplicity decays. Also, often only a small subset of higher-multiplicity
final states are relevant for the total width. Both factors hinder a balance be-
tween precision and efficiency using MadGraph5 aMC@NLO alone.

MadWidth has been designed with the purpose to solve this issue. It is
embedded as a module into MadGraph5 aMC@NLO, and allows the user to
compute N -body partial decay widths for arbitrary values of N at tree-level.
Assuming the narrow-width approximation6, the module iteratively builds dia-
grams from lower multiplicities while at the same time carefully removes con-
tributions from cascade decays and radiative processes. We stress that Mad-
Width is not the first publicly available code to compute leading-order decay

5The same can be done with any Monte-Carlo generator with the same limitation.
6Even if those two assumptions are quite generic, there are often particles for which they

are not satisfied, such as the Standard Model Higgs boson that has significant loop-induced
decay modes or particles whose decay modes are threshold enhanced and where therefore
resummation effects are important.
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rates, but MadWidth has been designed to go beyond what is done by exist-
ing tools like CalcHep, Bridge or Herwig++ in several aspects. First, while
CalcHep can evaluate total decay widths on the fly, it only includes contribu-
tions from three-body (four-body) decays only if there is no contribution from
two-body (three-body) decays. Second, while Herwig++ and Bridge are able
to avoid contributions from cascade decays, they are much more limited in the
support of beyond the Standard Model theories than MadWidth, which can
handle, by its very design, any theory for which a UFO implementation exists.

In the remainder of this section we give a brief account of the algorithms
underlying MadWidth. We first explain the algorithm for the diagram gener-
ation in Section 4.1, followed by the algorithm to estimate numerical relevance
of a given channel compared to a total width and for the selection of the proper
set of diagrams for event generation in Sections 4.2 and 4.3. Finally, we intro-
duce how to use the MadWidth module within the MadGraph5 aMC@NLO
framework in Section 4.4.

4.1. The MadWidth algorithm

The MadWidth module works in an iterative fashion. It begins by gener-
ating all two-body decay diagrams, and then iteratively adds extra final state
particles to build up higher-multiplicity diagrams7, until a certain maximal mul-
tiplicity Nmax is reached. Nmax is either provided as an input by the user or
determined dynamically such that a requested numerical precision for the total
decay width is reached (see Section 4.4 for more details). For N -body final
states, all possible diagrams are first generated, including the so-called contact
diagrams that contain a single N -point interaction vertex as well as diagrams
derived from existing n-body decay processes (with n < N). Diagrams corre-
sponding to cascade decay and radiative processes are then removed following
a procedure which is detailed in the remainder of this section.

In a first step, the algorithm removes diagrams corresponding to cascade
decays. Such diagrams contain at least one intermediate on-shell particle, and
they are generated by lower multiplicity processes with one or more subsequent
decays. Such diagrams need to be discarded as their contribution to the total
width is already accounted for by a lower-multiplicity decay. For example,
the decay t → bW+ → b`+ν is a cascade decay. The internal W -boson is
indeed produced on-shell from the t→ bW+ two-body decay, and the W -boson
further decays into a neutrino-lepton system. In contrast, diagrams such as
the one depicted in Fig. 1 are not defined as cascade decay diagrams and their
contribution is thus included into the width calculation. In this case, although
the N -body decay diagram contains an n-body decay subdiagram with n < N
(S1 → S2 S2 in the example of the Fig. 1), the N -body final state can only be
produced if a internal particle (S∗2 in Fig. 1) is off-shell.

7The program identifies stable particles in the very beginning and hence avoids the gener-
ation of their decay diagrams. The identification of the stable particles is based on the mass
spectrum and the particle interactions.
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Figure 1: Example of diagrams describing a schematical decay S1 → S2S∗
2 → S2S3S3. A

cross (tick) on a vertex indicates that the associated decay is kinematically allowed (forbidden)
with all three particles being on-shell. In the left-most diagram, the two-body decay S1 →
S2S2 is assumed to be kinematically viable, tagged as ‘open’, while the process S2 → S3S3

is kinematically forbidden. Hence, this three-body decay mode of the S1 particle must be
mediated by an off-shell internal S∗

2 particle. MadWidth includes this mode as it cannot
be captured by a cascade decay of an S2 particle from a first S1 → S2S2 decay (see the
central diagram), which would have been discarded. In the right-most diagram, S1 → S2S2

is kinematically forbidden so that S2 is forced to be off-shell. In this case, the three-body
decay is possible and cannot be seen as a cascade of two-body decays, thus it is included by
MadWidth.

In order to remove cascade decay diagrams from the width calculation, Mad-
Width tags all diagrams as ‘open’ or ‘closed’ depending on whether or not they
are kinematically allowed, and only evaluates N -body diagrams that belong to
one of the following categories:

1. The N -body decay diagram contains a closed n-body decay diagram with
n < N . This configuration is the one of the most common higher-
multiplicity decay diagrams.

2. The N -body decay diagram contains an open n-body decay diagram with
n < N but the N -body final state can only be produced in the case where
one of the internal particles is off-shell (as in Fig. 1).

3. The N -body decay diagram is a contact diagram (made from a single
N -point interaction vertex).

Each diagram is then tagged as ‘open’ or ‘closed’ and stored for the generation
of higher-multiplicity decays. Diagrams which do not belong to any of the above
categories are negligible in the narrow width approximation and are omitted.

In a second step, the algorithm discards radiative diagrams. Indeed, as
we perform a tree-level (leading order) computation, we do not include any
higher-order contributions and an infrared-finite result can only be obtained
after coherently discarding all real-emission diagrams. We first investigate the
cascade decay topologies and discard any diagram that contains a particle de-
caying into itself. This forbids, for example, the W+ → W+ γ, t → t g and
W+ → W+ Z transitions. Additionally, we must check that contact decay di-
agrams (made of a single N -point interaction vertex) do not correspond to a
radiative configuration. Equivalently, we need to distinguish N -point interac-
tions that emerge by imposing gauge invariance on a n-point interaction vertex
with n < N , as it arises when the derivatives of a non-abelian gauge field are
replaced by full field strength tensors, from a leading-order new physics con-
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tribution. For example the dimension-six operator H†H Gµ
ν Gν

µ gives rise to
both Hgg and Hggg vertices. The second vertex is only necessary to render the
first one gauge invariant, and it does therefore not contribute to the width of
the Higgs boson into three gluons, because it is a higher-order QCD correction
to the H → g g decay. In contrast, if we consider the dimension-eight operator
H†H Gµ

ν Gν
ρGρ

µ, the leading-order h → g g g contribution has to be taken
into account, even at leading-order in QCD. To disentangle those two cases,
we generate all potential diagrams for given initial and final state particles at
a specific order in perturbation theory. If a cascade decay topology is found,
then the contact decay diagram is considered as radiative and discarded. The
definition of the perturbative order of a diagram can be obtained from the UFO
library (see Section 6.1.7 of Ref. [25]).

4.2. Fast estimation of N -body partial widths

In order to avoid exporting all the ‘open’ N -body decay diagrams to Mad-
Event for numerical integration, MadWidth performs a fast estimation of
the contribution of each channel assuming the absence of interference between
diagrams contributing to the same final state, and passes to MadEvent only
the numerically relevant decay modes8. The estimation is based on the formula

Γ =
1

2|M |S

∫
dΦN |M|2 ≈

1

2|M |S
LIPSN (M ;m1, . . . ,mN ) 〈|M|2〉 , (5)

where LIPSN (M ;m1, . . . ,mN ) is the Lorentz-invariant N -body phase-space vol-
ume and 〈|M|2〉 approximates the squared matrix element. In the following we
describe in more detail how we evaluate the approximate decay rates.

We start by discussing the evaluation of the phase space volume. Inserting

1 =

∫
d4QdM2

eff δ(Q
2 −M2

eff) δ(4)

(
Q−

N−1∑
i=1

pi

)
, (6)

into Eq. (2), it is easy to see that (see Fig. 2)

LIPSN (M ;m1, . . . ,mN ) (7)

=

∫ M2
max

M2
min

M.
2
eff

2π
LIPS2(M ;mN ,Meff) LIPSN−1(Meff ;m1, . . . ,mN−1) ,

where the two-body phase-space volume is given by

LIPS2(M ;m1,m2) =

√
λ(M2,m2

1,m
2
2)

8πM2
. (8)

8The interference is only neglected for the estimation of the width. All interference effects
are of course correctly taken into account when computing the results for the partial widths.
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Meff

mN

mN�1

M

Figure 2: Description of the recursive way of the computation of the phase-space volume
factor in Eq. (7). We denote by Meff the effective mass associated with the other N − 1
particles. See ref. [53, 54] for more details.

Since the residual (N − 1)-body phase-space measure is Lorentz invariant, we
can conveniently calculate it in the rest frame of P − pN . The mass of the
effective mother particle (see Fig. 2) is deduced from momentum conservation,

Meff =
√
M2 +m2

N − 2M EN , (9)

where EN is the energy of N th particle in the rest frame of the mother parti-
cle. This quantity Meff ranges from the production threshold of the remaining
N−1 particles (Mmin =

∑N−1
i=1 mi) to a maximum value Mmax = M−mN corre-

sponding to the case where the N th particle is at rest. Finally, we approximate
the exact expression of Eq. (7) by

LIPSN (M ;m1, . . . ,mN ) ≈ cps(M2
max −M2

min)

√
λ(M2,m2

N ,M
2
mean)

16π2M2

× LIPSN−1(Mmean;m1, . . . ,mN−1) ,

(10)

where the average effective mass is defined byMmean ≡ (Mmax +Mmin)/2. Eq. (10)
consists of approximating the integral by the area of a rectangle of height Mmean.
As the integrand vanishes at bothMmax andMmin and LIPSN−1(Meff ;m1, . . . ,mN−1)
vanishes at the production threshold, the constant cps = 0.8 has been added to
refine the estimation. This formula is recursive and the recursion stops by using
the analytic result for the two-body phase space of Eq. (8).

The second ingredient to estimate the decay rate is the average squared
matrix element related to the decay process under consideration. This quantity
is approximated by mimicking the calculation of standard Feynman diagrams
using the dedicated Feynman rules for the propagators and external particles
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Table 1: Simplified Feynman rules for propagators and polarization tensors for
particles of different spins. We generically denote by E, M and Γ the energy,
mass and width of the particle under consideration. Concerning the width,
the algorithm either employs an estimation of the two-body decay width,
if available, or sets Γ to zero, the subtraction of any resonant contribution
allowing one to avoid divergences (see the text for more details). For massive
particles, f(E,M) = 1 + E2/M2, and f(E,M) = 1 for massless particles. Our
implementation ignores massless propagator as those particles are stable.

Spin Propagator Polarization tensor

0
1

(E2 −M2 + iMΓ)
1

1
2

E

(E2 −M2 + iMΓ)
2E

1
1− E2

M2

(E2 −M2 + iMΓ)
f(E,M)

3
2

2
3 (E)(1− E2

M2 )

(E2 −M2 + iMΓ)
2E · f(E,M)

2

(
7
6 −

4
3
E2

M2 + 2
3
E4

M4

)
(E2 −M2 + iMΓ)

f(E,M)2

Table 1:
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given in Table 1. The averaged matrix element square is then given by

〈|M|2〉 =
Ncolor

Ns
×

∣∣∣∣∣∏
int

Propa(E)

∣∣∣∣∣
2

×
∏
ext

P(E) ×
∏
vert

(∑
i

Ci Lorentzi

)2

. (11)

The first factor of this formula includes the average over the initial particle
spin states 1/Ns and the color multiplicity associated with the diagram under
consideration Ncolor. We recall that only color singlets, triplets, sextets and
octets are currently supported by MadGraph5 aMC@NLO.

The second factor in Eq. (11) describes the internal propagators Propa(E)
appearing in the diagram, while the third factor includes a product of the po-
larization tensors P(E) of the external particles. The Feynman rules of Ta-
ble 1 have been chosen such as to reproduce the correct results after a sum-
mation over all polarization and spin states. Moreover, the available kinetic
energy is assumed to be uniformly distributed among the final-state parti-
cles, so that the energy Ei of the ith final-state particle of mass Mi reads
Ei = (M −

∑N
j=1Mj)/N + Mi. The energy associated with an intermediate

propagator is then derived from the energy of the particles which it decays into.
Finally, the last factor of Eq. (11) contains the interaction vertices associated

with the considered diagram. Each vertex is split up into the different Lorentz
structures Lorentzj that it contains, the corresponding coupling constants being
denoted by Cj . The Lorentz structures are further simplified so that they can
be evaluated very efficiently. Each object that does not depend on the momenta
(Dirac matrices, chirality projectors, etc. ) is replaced by the identity while each
object depending on the momenta (pµ, /p, etc. ) is replaced by the energy of the
relevant particle. We have checked that this treatment is a good approximation
also for non-trivial Lorentz structures (such as appearing in new physics models),
form factors as well as for derivative couplings.

The decay diagram estimation method has been validated in the framework
of various models, and especially in the Standard Model and the Minimal Super-
symmetric Standard Model (MSSM). The validation procedure has shown that
the estimator can be safely used to select which decay channels are relevant to
be computed numerically. Representative examples of the validation tests are
presented in Table 2, where we compare the estimation of all partial widths of
the heaviest bottom squark b̃2 to the corresponding exact result derived from a
Bridge-MadEvent-CalcHep comparison in the context of the SPS1a MSSM
benchmark scenario [55]. One can observe that the estimations reproduce, in
all cases, the correct order of magnitude for each channel.

4.3. Estimation of the numerically relevant Feynman diagrams

In Section 4.2, we have presented a method allowing MadWidth to estimate
whether a given decay channel is numerically relevant once the corresponding
Feynman diagrams have been generated. In this section, we present a second
routine dedicated to a rough and quick estimate of the partial width associated
with any decay process prior to diagram generation. This allows MadWidth
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Table 2: Selection of partial decay widths of the heaviest sbottom in the context
of the SPS1a MSSM scenario. We confront the estimations derived by Mad-
Width to the exact results. We only show partial widths larger than 10−7 GeV.

Process Estimation of MadWidth Exact result

[GeV] [GeV]

b̃2 → χ̃−1 t h1 1.89e-03 1.04e-03

b̃2 → χ̃−1 t Z 1.21e-03 1.27e-03

b̃2 →W− t χ̃0
2 9.78e-04 1.36e-03

b̃2 → χ̃−2 bW
+ 5.99e-04 1.88e-03

b̃2 → b Z χ̃0
2 1.60e-04 2.88e-04

b̃2 → ν̄τ t τ̃
−
2 1.42e-04 3.36e-04

b̃2 →W− t χ̃0
1 1.34e-04 3.84e-04

b̃2 → ν̄e t ẽ
−
L 1.31e-04 3.13e-04

b̃2 → ν̄µ t µ̃
−
L 1.31e-04 3.14e-04

b̃2 →W− b χ̃+
1 1.06e-04 2.04e-04

b̃2 → ν̃τ t τ
− 7.52e-05 1.70e-04

b̃2 → ν̃e t e
− 5.21e-05 1.23e-04

b̃2 → ν̃µ t µ
− 5.21e-05 1.23e-04

b̃2 → b Z χ̃0
1 2.20e-05 5.39e-05

b̃2 → b h0 χ̃0
2 1.97e-05 1.33e-05

b̃2 →W− b χ̃+
2 8.53e-06 5.65e-06

b̃2 → b h0 χ̃0
1 2.70e-06 2.19e-06

b̃2 → b̄ b b̃1 1.51e-06 8.58e-07

b̃2 → ν̄τ t τ̃
−
1 7.77e-07 2.09e-06

b̃2 → b Z χ̃0
4 6.86e-07 3.54e-07

b̃2 → b̃∗1 b b 6.37e-07 2.04e-07

b̃2 → b Z χ̃0
3 5.34e-07 3.05e-07

b̃2 → ū u b̃1 2.24e-07 3.48e-07

b̃2 → c̄ c b̃1 2.24e-07 3.48e-07

b̃2 → s̄ s b̃1 1.77e-07 4.50e-07

b̃2 → d̄ d b̃1 1.77e-07 4.50e-07

b̃2 → µ+ µ− b̃1 1.01e-07 1.02e-07

b̃2 → e+ e− b̃1 1.01e-07 1.02e-07

b̃2 → ν̄e νe b̃1 5.39e-08 2.03e-07

b̃2 → ν̄µ νµ b̃1 5.39e-08 2.03e-07

b̃2 → ν̄τ ντ b̃1 5.39e-08 2.03e-07

Table 2:
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to proceed with diagram generation only in cases where the considered decay
mode can yield a non-negligible contribution to the total width.

This new method relies on the derivation of the partial width related to a
kinematically allowed (N+1)-body decay by combining a N -body decay with
the two-body decay of one of the N final-state particles. The average squared
matrix element 〈|M|2〉N+1 is hence derived from the knowledge of the average
squared matrix elements 〈|M|2〉N and 〈|M|2〉i that respectively describe the
1 → N decay of the mother particle (of mass M) and the 1 → 2 decay of the
ith final-state particle (of mass Mi). Calculating 〈|M|2〉N as in Eq. (11) after
approximately fixing the energy of each final-state particle to M/(N + 1), the
squared matrix element 〈|M|2〉N+1 can be written as 9

〈|M|2〉N+1 = 〈|M|2〉N × 〈|M|2〉i ×
|Propa(Ei)|2

Pi(M/(N + 1))Pi(Mi)
, (12)

where one considers one specific value of i (the summation will be performed
below). The last factor of the above formula shows that the external polarization
tensors P2

i (M/(N + 1)) and P2
i (Mi) of the ith particle that are included in the

matrix elements are replaced by a propagator |Propa(Ei)|2. In addition, the
color multiplicity and spin average factor have been neglected.

Since the decay of the ith particle is a two-body decay, the related matrix
element is related to the associated partial width as

Γi =
1

2|Mi|
LIPS2(Mi)× 〈|M|2〉i ≈

1

16π|Mi|
× 〈|M|2〉i , (13)

where LIPS2(Mi) ≈ 1/(8π) is the two-body phase-space volume given in Eq. (8)
evaluated by neglecting, for simplicity, all final-state particle masses.

In order to get an estimate of the N+1-body decay partial width, it is also
necessary to estimate the N+1-body phase space volume given by Eq. (10).
To this aim, we naively assume that (M2

max − M2
min) ≈ (M/2)2 and that√

λ(M2,m2
N ,M

2
mean) ≈ M2. Both of these approximations give the correct

orders of magnitude and allow one, by iterating, to evaluate the phase space
volume as

LIPSN+1(M) ≈ cps ×
(
M

8π

)2

LIPSN (M) ∼

(
cps

(
M

8π

)2
)N−2

× 1

8π
(14)

The estimation of the 1 → N + 1 partial width is then given by combining
Eq. (12), Eq. (13), and Eq. (14),

ΓN+1 ≈ Γ̃N ×
∑
i

cpsΓi
MiM

2

4π

|Propa(Ei)|2

Pi(M0/(N + 1))Pi(Mi)
, (15)

9 As an order of magnitude estimate, we take |Propa(Ei)|2 ≈ 1/(0.5M2)2 for every prop-
agator in 〈|M|2〉N . This also avoids the propagators to be accidentally on-shell.
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where Γ̃N is obtained from the phase space volume computed as in Eq. (14) and
〈|M|2〉N calculated as described previously. Additionally, the summation over
i includes all possible decays of any of the N final-state particles of the 1→ N
process.

This method to estimate whether a given process is relevant has been care-
fully validated in the context of many new physics theories. For illustrative
purposes, we focus on the SPS1a MSSM scenario [55] and present in Table 3
the relative contribution of the three-body decay modes to the total width (com-
puted by neglecting any decay to four particles or more) of all massive particles
of the model. We compare the exact results to those estimated by MadWidth.
This shows that the order of magnitude is either correctly evaluated or over-
estimated, which is conservative since this implies that the diagrams related to
a non-negligible channel are always generated.

4.4. The MadGraph5 aMC@NLO interface to MadWidth

The MadWidth module is fully embedded into the MadGraph5 aMC@-
NLO framework and there are currently two ways to use it. Either MadWidth
is directly called from a MadGraph5 aMC@NLO or MadEvent shell, or
it is instead run on the fly, at the time of event generation or cross section
computation. In all situations, using MadWidth requires a valid UFO model.
In the cases where the file decays.py is available (see Section 3), the analytic
results for two-body decays are directly used by MadWidth. Otherwise, all
partial widths are computed numerically.

The first way to use MadWidth is to call it from a MadGraph5 aMC-
@NLO or MadEvent command interface, respectively initiated via the com-
mands ./bin/mg5 aMC and ./bin/madevent. This method is in particular use-
ful for creating a valid param card.dat. Width calculations are performed by
issuing the command

compute_widths PARTICLE_NAME [OTHER PARTICLE] [OPTIONS]

where PARTICLE NAME refers either the name of a particle or its associated Par-
ticle Data Group (PDG) code. The user can enter more than one particle name
or PDG code, and can also use the keyword all to calculate the width of all
the particles10. The following options are allowed:

• --body decay=value [default: 4.0025]. The code ignores N -body decay
contributions when either N is larger than the integer part of value or
when the estimated error for the total width is lower than the decimal
part of value. In the case where the integer/decimal part of value is set
to zero, the associated condition is ignored. For instance,

--body decay=3 enforces the computation of all two- and three-body
decay channels.

10It is recommended to compute as many widths as possible in one single execution of the
command to reduce the overhead.
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Table 3: Relative contribution of the three-body decays to the total width
of all massive particles in the context of the SPS1a MSSM scenario. We
approximate the total width by neglecting any decay to four particles or
more and confront the estimated results of MadWidth (third column) to the
exact results (second column). The partial widths of three-body decays are
conservatively constrained by our analytical estimation. This shows that the
order of magnitude is either correctly evaluated or over-estimated which is
conservative.

Particle Γ3/(Γ3 + Γ2) Estimation

t 7.06e-09 4.62e-06

Z 5.16e-07 3.46e-04

W+ 0.00e+00 0.00e+00

h0 6.76e-02 1.82e+00

H0 1.55e-03 2.42e-03

A0 1.30e-03 2.13e-03

H+ 2.53e-03 3.99e-03

d̃L 8.19e-03 5.92e-03

d̃R 1.44e-04 9.35e-02

s̃L 8.15e-03 5.92e-03

s̃R 1.44e-04 9.35e-02

b̃1 5.08e-03 1.21e-03

b̃2 1.07e-02 3.83e-02

ũL 9.06e-03 5.46e-03

ũR 1.45e-04 2.38e-02

c̃L 9.08e-03 5.46e-03

c̃R 1.44e-04 2.38e-02

t̃1 2.28e-03 1.89e-03

t̃2 4.74e-03 4.47e-04

ẽ−L 3.77e-05 2.65e-04

ẽ−R 1.63e-11 2.08e-06

µ̃−L 3.80e-05 2.65e-04

µ̃−R 1.65e-11 2.08e-06

τ̃−1 0.00e+00 0.00e+00

τ̃−2 5.99e-04 4.14e-04

ν̃e 1.26e-08 1.01e-04

ν̃µ 1.27e-08 1.01e-04

ν̃τ 3.76e-04 2.44e-04

g̃ 4.94e-04 1.12e-02

χ̃0
2 5.08e-03 9.18e-02

χ̃0
3 1.16e-03 9.88e-03

χ̃0
4 1.34e-03 1.20e-01

χ̃+
1 8.09e-03 7.78e-01

χ̃+
2 1.45e-03 2.93e-02

Table 3:

20



--body decay=0.01 stops width computations when the estimated
error on the total width is lower than 1%.

--body decay=3.01 stops a width computation either when all three-
body decay contributions have been included or when the estimated
error on the total width is lower than 1%.

• --min br=value [default: 0.000625]. If the estimation of the branching
ratio associated with a given decay mode is found below value, the channel
is not integrated numerically and the mode will not appear in the decay
table. If not specified explicitly, value is set to the decimal part of the
body decay parameter divided by four.

• --precision channel=value [default: 0.01]. Required relative precision
on each individual channel when integrated numerically.

• --path=value [default value for MadGraph5 aMC@NLO: path to the
UFO model] [default value for MadEvent: ./Cards/param card.dat].
The path to the param card.dat file to use during the numerical evalua-
tion.

• --output=value [default: overwrite input file]. The path where to store
the new param card.dat file that includes the computed widths.

The second way to use MadWidth is to run it on the fly either through
a MadEvent or a aMC@NLO session. Both programs start by checking
the param card.dat file. If any of the widths is set to the value Auto then
MadWidth is called on the fly (with the default options) to evaluate these
quantities. The param card.dat file is then overwritten before any further
computation. For instance, if the param card.dat file provided to MadEvent
contains the lines

DECAY 6 Auto # WT

DECAY 23 Auto # WZ

DECAY 24 2.047600e+00 # WW

DECAY 25 5.753088e-03 # WH

MadEvent then calls MadWidth to compute the total width and decay ta-
ble of the top quark and the Z-boson, the widths of the W -boson and Higgs
boson remaining unchanged. The original param card.dat file is subsequently
overwritten, the above lines being replaced by

# PDG Width

DECAY 6 1.491472e+00

# BR NDA ID1 ID2 ...

1.000000e+00 2 24 5 # 1.49147214391

# PDG Width

DECAY 23 2.441755e+00

# BR NDA ID1 ID2 ...
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1.523651e-01 2 3 -3 # 0.372038381506

1.523651e-01 2 1 -1 # 0.372038381506

1.507430e-01 2 5 -5 # 0.368077510282

1.188151e-01 2 4 -4 # 0.290117391009

1.188151e-01 2 2 -2 # 0.290117391009

6.793735e-02 2 16 -16 # 0.165886384843

6.793735e-02 2 14 -14 # 0.165886384843

6.793735e-02 2 12 -12 # 0.165886384843

3.438731e-02 2 13 -13 # 0.0839653943458

3.438731e-02 2 11 -11 # 0.0839653943458

3.430994e-02 2 15 -15 # 0.0837764784469

#

# PDG Width

DECAY 24 2.047600e+00

#

# PDG Width

DECAY 25 5.753088e-03

where the corresponding partial widths are given under the form of a comment,
at the end of each line. Since the code returns not only the total widths, but also
all partial widths, the output file is perfectly suitable to be passed to a parton
shower program that can then further decay the unstable particles possibly
present in the hard events.

5. Illustrative examples

As examples of usage of the tools presented in the previous sections, we focus
on two-body and three-body partial width computations and compare, for a set
of specific new physics theories, results provided by FeynRules, MadWidth,
several public tools and analytic formulas available in the literature.

5.1. Two-body decays

In this section, we focus on two-body decay widths and perform various
calculations in the framework of the Standard Model, the Strongly Interacting
Light Higgs (SILH) model [32] and the SPS1a MSSM benchmark scenario [55].
We first compute for each of these models all two-body partial widths with
FeynRules and then numerically compare the results to those returned by the
MadWidth module of MadGraph5 aMC@NLO. Moreover, in the case of
the MSSM, we also confront the FeynRules results to the analytic formulas of
Ref. [56]. Agreement has been found in all cases, which validates our implemen-
tations in particular for theories involving higher dimensional operators (cf. the
SILH model) and those with Majorana fermions (cf. the MSSM). A selection of
numerical results can be found in Table 4, Table 5 and Table 6 for the Standard
Model, the SILH model and the MSSM, respectively.
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Table 4: Selection of partial decay widths in the framework of the Standard
Model, as computed by FeynRules and MadWidth.

Decay mode FeynRules [GeV] MadWidth [GeV]

h→ b b̄ 0.005390 0.005391

h→ τ τ̄ 0.0002587 0.0002587

h→ c c̄ 0.0003967 0.0003967

W+ → e+ νe 0.2225 0.2225

W+ → τ+ ντ 0.2223 0.2224

W+ → u d̄ 0.6336 0.6336

W+ → c s̄ 0.6333 0.6334

W+ → c d̄ 0.03401 0.03402

W+ → u s̄ 0.03403 0.03403

Z → e− e+ 0.08329 0.08329

Z → τ− τ+ 0.0831 0.0831

Z → νe ν̄e 0.1658 0.1659

Z → u ū 0.2841 0.2842

Z → d d̄ 0.3667 0.3667

Z → c c̄ 0.2838 0.2839

Z → b b̄ 0.3627 0.3628

t→ bW+ 1.466 1.467

Table 4:

Table 5: Higgs boson partial decay widths in the framework of the SILH model,
as computed by FeynRules and MadWidth.

Decay mode FeynRules [GeV] MadWidth [GeV]

h→ γγ 6.447 e-10 6.447 e-10

h→ g g 7.523 e-06 7.524 e-06

h→ γ Z 4.026 e-11 4.026 e-11

Table 5:
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Table 6: Selection of partial decay widths in the framework of the SPS1a
MSSM scenario, as computed by FeynRules and MadWidth.

Decay mode FeynRules [GeV] MadWidth [GeV]

χ̃0
4 → χ̃+

1 W
− 0.6451 0.6451

χ̃0
4 → χ̃0

1 Z 0.05567 0.05568

χ̃+
2 → χ̃0

1W
+ 0.1682 0.1683

χ̃+
2 → χ̃+

1 Z 0.5755 0.5756

ũ6 → ũ3 Z 1.39 1.4

Table 6:

5.2. Three-body decays

In this section, we address the calculation of tree-body decay widths and
compare results obtained with MadWidth to those available in the literature.
We first consider the Higgs Effective Field Theory (HEFT) [30, 31] where the
Standard Model Lagrangian is supplemented by an additional dimension-six op-
erator allowing the Higgs boson to directly couple to gluons and photons with
coupling strengths tuned to reproduce the corresponding loop-induced vertices
of the Standard Model11. Next, as a second example, we focus on the MSSM,
which allows us to further test the programs in the case of processes with Ma-
jorana particles.

In Table 7, we present results for Higgs boson decays in the framework of the
HEFT model and compare partial widths calculated by MadWidth to results
returned by SMCalc12. For the sake of completeness, we have included both
two-body and three-body decay channels and found good agreement between
the two programs.

In Table 8, we consider the SPS1a MSSM scenario and compare the results
obtained with the decay.py file generated by FeynRules (that only includes
two-body decay modes), with MadWidth when using all the default option
values described in Section 4.4, with MadWidth by enforcing the calculation of
all three-body decay channels and with Bridge (when including all three-body
decay modes). Agreement below the percent level has been found. Additionally,
this shows that for the SPS1a MSSM scenario, three-body decay contributions
to the total widths are negligible in a very good approximation.

Finally, we compare the speed of MadWidth (using the decay.py file gen-

11We stress that only these dimension-six operators are included, and not the full set of
such operators.

12SMCalc is a program that contains analytical formulæ for all leading-order SM partial
widths. It is available from Ref. [8].
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Table 7: Higgs boson partial decay widths in the framework of the HEFT
model, as computed by MadWidth and by SMCalc.

Decay mode: MadWidth [GeV] SMCalc [GeV]

h→ b b̄ 0.00430 0.00430

h→ cc̄ 0.000496 0.000496

h→ τ τ̄ 0.000259 0.000259

h→ g g 0.000195 0.000195

h→W W ∗ →W f f 0.000771 0.000775

h→ Z Z∗ → Z f f 8.44e-05 8.40e-05

h→ γ γ 9.70e-06 9.731e-06

Table 7:

Table 8: Selection of total decay widths in the framework of the SPS1a MSSM
scenario, as computed from the decay.py file generated by FeynRules (first
column), MadWidth with default option values (second column) and by
enforcing three-body decays (third column) and by Bridge (fourth column).

Particle FeynRules MadWidth MadWidth Bridge

Two-body [GeV] Default [GeV] Three-body [GeV] Three-body [GeV]

χ̃+
1 1.704e-02 1.718e-02 1.718e-02 1.724e-02

χ̃+
2 2.487 2.488 2.488 2.485

H+ 6.788e-01 6.788e-01 6.802e-01 6.780e-01

b̃1 3.736 3.736 3.740 3.731

b̃2 8.016e-01 8.071e-01 8.094e-01 8.100e-01

χ̃0
2 2.078e-02 2.087e-02 2.088e-02 2.082e-02

χ̃0
3 1.916e+00 1.916e+00 1.916e+00 1.914e+00

Table 8:
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Table 9: Time necessary to compute all particle total widths in the context
of the HEFT model and the SPS1a MSSM scenario by making use of the
decay.py file generated by FeynRules only (first column), MadWidth
with all default option values and Bridge by restricting the computation to
two-body decays only (second column) and after including three-body decays
too (fourth column). For the tests, we have employed a machine with a 2.3
GHz Intel Core i7 processor and 16 GB of memory (1600 MHz DDR3).

Model FeynRules Bridge MadWidth Bridge

Two-body Two-body Default Three-body

HEFT model 0.6 s 60s 40s 114 s

SPS1a MSSM scenario 12 s 13min 43s 84 s 1h47

Table 9:

erated by FeynRules) to the one of Bridge and indicate in Table 9 the time
necessary to compute the total widths of all model particles in the context of
both the HEFT model and the SPS1a MSSM scenario. When only the analytic
formulas for the two-body decays (implemented in the decay.py file generated
by FeynRules) are used (first column of the table), MadWidth turns out
to be much faster than Bridge (second column of the table) as no diagram
generation has been required at all for the first case. The time necessary to
generate the decay.py UFO file has however not been included (a few seconds
and minutes for the HEFT model and MSSM, respectively) as this has to be
performed only once for each model. When including three-body decay con-
tributions, one can note the formidable gain in time when using MadWidth
instead of Bridge (last two columns of the table) thanks to the usage of the
fast estimator of MadWidth which allows one to only compute numerically
relevant diagrams.

6. Conclusion

In this paper, we have presented new routines of the FeynRules package
dedicated to the computation of two-body partial widths, so that the latter can
now be calculated automatically and analytically from the knowledge of the
Lagrangian alone. The UFO format has been extended accordingly to include
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all the relevant information. This extension is currently supported by Mad-
Graph5 aMC@NLO, which uses it to calculate particle widths at run-time.
In addition, a new module of MadGraph5 aMC@NLO, named MadWidth,
has been developed with the aim of computing N -body decay widths in full gen-
erality and in an efficient manner (possibly at run-time when using the matrix-
element generator). The MadWidth routines automatically remove all the
subprocesses that are numerically negligible, tune the final-state multiplicity to
reach a given target precision on the total widths and avoid the double-counting
of any channel. All the computations are done at tree level/leading order and
rely on the narrow width approximation. As such, MadWidth cannot be used
to obtain reliable predictions for the widths in cases where higher-order effect are
important. Our codes have been carefully validated against existing older pro-
grams and published results in the literature in the case of the Standard Model,
Higgs Effective Field Theories, the Strongly Interacting Light Higgs model and
the Minimal Supersymmetric Standard Model. The widths obtained by Mad-
Width are accurate enough to be used in any LO Monte-Carlo generator as
long as the narrow width approximation holds.
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