8 research outputs found

    Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning

    Full text link
    This paper focuses on how to take advantage of external relational knowledge to improve machine reading comprehension (MRC) with multi-task learning. Most of the traditional methods in MRC assume that the knowledge used to get the correct answer generally exists in the given documents. However, in real-world task, part of knowledge may not be mentioned and machines should be equipped with the ability to leverage external knowledge. In this paper, we integrate relational knowledge into MRC model for commonsense reasoning. Specifically, based on a pre-trained language model (LM). We design two auxiliary relation-aware tasks to predict if there exists any commonsense relation and what is the relation type between two words, in order to better model the interactions between document and candidate answer option. We conduct experiments on two multi-choice benchmark datasets: the SemEval-2018 Task 11 and the Cloze Story Test. The experimental results demonstrate the effectiveness of the proposed method, which achieves superior performance compared with the comparable baselines on both datasets.Comment: Accepted at CIKM'19, 4 page

    Convolutional Spatial Attention Model for Reading Comprehension with Multiple-Choice Questions

    Full text link
    Machine Reading Comprehension (MRC) with multiple-choice questions requires the machine to read given passage and select the correct answer among several candidates. In this paper, we propose a novel approach called Convolutional Spatial Attention (CSA) model which can better handle the MRC with multiple-choice questions. The proposed model could fully extract the mutual information among the passage, question, and the candidates, to form the enriched representations. Furthermore, to merge various attention results, we propose to use convolutional operation to dynamically summarize the attention values within the different size of regions. Experimental results show that the proposed model could give substantial improvements over various state-of-the-art systems on both RACE and SemEval-2018 Task11 datasets.Comment: 8 pages. Accepted as a conference paper at AAAI-19 Technical Trac

    Multi-Perspective Fusion Network for Commonsense Reading Comprehension

    Get PDF
    Commonsense Reading Comprehension (CRC) is a significantly challenging task, aiming at choosing the right answer for the question referring to a narrative passage, which may require commonsense knowledge inference. Most of the existing approaches only fuse the interaction information of choice, passage, and question in a simple combination manner from a \emph{union} perspective, which lacks the comparison information on a deeper level. Instead, we propose a Multi-Perspective Fusion Network (MPFN), extending the single fusion method with multiple perspectives by introducing the \emph{difference} and \emph{similarity} fusion\deleted{along with the \emph{union}}. More comprehensive and accurate information can be captured through the three types of fusion. We design several groups of experiments on MCScript dataset \cite{Ostermann:LREC18:MCScript} to evaluate the effectiveness of the three types of fusion respectively. From the experimental results, we can conclude that the difference fusion is comparable with union fusion, and the similarity fusion needs to be activated by the union fusion. The experimental result also shows that our MPFN model achieves the state-of-the-art with an accuracy of 83.52\% on the official test set
    corecore