77,908 research outputs found

    HER2 testing in breast cancer: Opportunities and challenges

    Get PDF
    Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results

    HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    Get PDF
    Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group

    Clinical and molecular characterization of HER2 amplified-pancreatic cancer

    Get PDF
    &lt;p&gt;Background: Pancreatic cancer is one of the most lethal and molecularly diverse malignancies. Repurposing of therapeutics that target specific molecular mechanisms in different disease types offers potential for rapid improvements in outcome. Although HER2 amplification occurs in pancreatic cancer, it is inadequately characterized to exploit the potential of anti-HER2 therapies.&lt;/p&gt; &lt;p&gt;Methods: HER2 amplification was detected and further analyzed using multiple genomic sequencing approaches. Standardized reference laboratory assays defined HER2 amplification in a large cohort of patients (n = 469) with pancreatic ductal adenocarcinoma (PDAC).&lt;/p&gt; &lt;p&gt;Results: An amplified inversion event (1 MB) was identified at the HER2 locus in a patient with PDAC. Using standardized laboratory assays, we established diagnostic criteria for HER2 amplification in PDAC, and observed a prevalence of 2%. Clinically, HER2- amplified PDAC was characterized by a lack of liver metastases, and a preponderance of lung and brain metastases. Excluding breast and gastric cancer, the incidence of HER2-amplified cancers in the USA is &#62;22,000 per annum.&lt;/p&gt; &lt;p&gt;Conclusions: HER2 amplification occurs in 2% of PDAC, and has distinct features with implications for clinical practice. The molecular heterogeneity of PDAC implies that even an incidence of 2% represents an attractive target for anti-HER2 therapies, as options for PDAC are limited. Recruiting patients based on HER2 amplification, rather than organ of origin, could make trials of anti-HER2 therapies feasible in less common cancer types.&lt;/p&gt

    Systematic assessment of HER2/neu in gynecologic neoplasms, an institutional experience.

    Get PDF
    BackgroundHER2/neu overexpression and/or amplification has been widely studied in a number of solid tumors, primarily in the breast. In gynecologic neoplasms, determination of HER2/neu status has not been well studied as a predictive biomarker in anti-HER2/neu treatment.MethodsWe systematically evaluated the HER2/neu reactions by immunohistochemistry and fluorescent in situ hybridization in malignant gynecologic neoplasms as experienced in our institution.ResultsThe HER2/neu overexpression or amplification occurred in 8 % of the cancers of the gynecological organs in our series. Majority of the HER2/neu overexpression and/or amplification occurred in clear cell (27 %) and serous (11 %) carcinomas. HER2/neu positivity was also seen in undifferentiated as well as in mixed clear cell and serous carcinomas. Discordant IHC and FISH results (positive by FISH but not IHC) was seen in 2 cases. Majority of the HER2/neu overexpression and/or amplification occurs in the endometrium rather than the ovary. Heterogeneity of the HER2/neu by IHC staining was in &lt; 2 % of the tumors in our series.ConclusionsWe recommend the HER2/neu studies on Müllerian carcinomas of clear cell, serous, and undifferentiated types, particularly when they arise in the endometrium. Since there are some discordant IHC/FISH results, we also propose performing the HER2/neu testing by FISH when the IHC score is less than 3 + 

    Re-evaluation of HER2 status in metastatic breast cancer and tumor-marker guided therapy with vinorelbine and trastuzumab

    Get PDF
    Background: HER2 is overexpressed in 20 - 30% of breast cancers. Compared to chemotherapy alone, chemotherapy with trastuzumab improves clinical outcome in patients with HER2- positive metastatic breast cancer ( MBC). In general, HER2 status in a primary lesion predicts the status of metastases, so that biopsy of metastatic lesions appears unnecessary. Case Report: A 39- year old woman was diagnosed with primary breast cancer in November 2000. Using the method and scoring system of the DAKO Hercep Test, the tumor has shown low HER2 expression ( DAKO score 1+). After failure of several chemotherapy regimens for metastatic disease ( liver, skeletal), the patient underwent CT- guided needle biopsy of the liver which showed HER2 positive adenocarcinoma ( DAKO score 3+). In consequence, the patient was treated with vinorelbine ( 30 mg/ m(2) d1,8,15 q4w) and trastuzumab ( 4 mg/ kg loading dose, 2 mg/ kg weekly). During a treatment period of 4 months imaging results as well as tumor marker kinetics indicated an excellent response with sustained decrease of tumor markers. A retrospective analysis of the HER2 shed antigen in metastatic stage revealed excessively increased serum levels and supports HER2 overexpression observed in liver metastasis. The kinetics of the HER2 shed antigen during therapy for metastatic disease were found to be in phase with the kinetics of CEA and CA15- 3. Conclusion: This case report demonstrates that re- evaluation of the HER2 status may be helpful in single patients not sufficiently responding to treatment of metastatic disease. Determination of HER2 overexpression may be facilitated by a determination of the HER2 shed antigen level in peripheral blood

    Relationship between HER2 expression and efficacy with first-line trastuzumab emtansine compared with trastuzumab plus docetaxel in TDM4450g: a randomized phase II study of patients with previously untreated HER2-positive metastatic breast cancer.

    Get PDF
    IntroductionThe purpose of this study was to retrospectively explore the relationship between human epidermal growth factor receptor 2 (HER2) messenger RNA (mRNA) expression and efficacy in patients receiving trastuzumab plus docetaxel (HT) or trastuzumab emtansine (T-DM1).MethodsPatients with HER2-positive, locally advanced or metastatic breast cancer (MBC) were randomly assigned to HT (n=70) or T-DM1 (n=67). HER2 status was assessed locally using immunohistochemistry or fluorescence in situ hybridization and confirmed retrospectively by central testing. HER2 mRNA expression was assessed using quantitative reverse transcriptase polymerase chain reaction.ResultsHER2 mRNA levels were obtained for 116/137 patients (HT=61; T-DM1=55). Median pretreatment HER2 mRNA was 8.9. The risk of disease progression in the overall population was lower with T-DM1 than with HT (hazard ratio (HR)=0.59; 95% confidence interval (CI) 0.36 to 0.97). This effect was more pronounced in patients with HER2 mRNA≥median (HR=0.39; 95% CI 0.18 to 0.85) versus ConclusionsThis exploratory analysis suggests that while overall, patients with HER2-positive MBC show improved PFS with T-DM1 relative to HT, the effect is enhanced in patients with tumor HER2 mRNA ≥ median.Trial registrationClinicalTrials.gov NCT00679341

    Effectiveness of EGFR/HER2-targeted drugs is influenced by the downstream interaction shifts of PTPIP51 in HER2-amplified breast cancer cells

    Get PDF
    Breast cancer is the most common female cancerous disease and the second most cause of cancer death in women. About 20-30% of these tumors exhibit an amplification of the HER2/ErbB2 receptor, which is coupled to a more aggressive and invasive growth of the cancer cells. Recently developed tyrosine kinase inhibitors and therapeutic antibodies targeting the HER2 receptor improved the overall survival time compared with sole radio- and chemotherapy. Upcoming resistances against the HER2-targeted therapy make a better understanding of the receptor associated downstream pathways an absolute need. In earlier studies, we showed the involvement of Protein Tyrosine Phosphatase Interacting Protein 51 (PTPIP51) in the mitogen-activated protein kinase (MAPK) pathway. The MAPK pathway is one of the most frequently overactivated pathways in HER2-amplified breast cancer cells. This study is aimed to elucidate the effects of four different TKIs on the interactome of PTPIP51, namely with the receptors EGFR and HER2, 14-3-3/Raf1 (MAPK pathway), its regulating enzymes, and the mitochondria-associated interaction partners in HER2 breast cancer cell lines (SK-BR3 and BT474) by using the Duolink proximity ligation assay, immunoblotting and knockdown of PTPIP51. Inhibition of both EGFR and HER2/ErbB2R shifted PTPIP51 into the MAPK pathway, but left the mitochondria-associated interactome of PTPIP51 unattended. Exclusively inhibiting HER2/ErbB2 by Mubritinib did not affect the interaction of PTPIP51 with the MAPK signaling. Selective inhibition of HER2 induced great alterations of mitochondria-associated interactions of PTPIP51, which ultimately led to the most-effective reduction of cell viability of SK-BR3 cells of all tested TKIs. The results clearly reveal the importance of knowing the exact mechanisms of the inhibitors affecting receptor tyrosine kinases in order to develop more efficient anti-HER2-targeted therapies

    Profiling and targeting HER2-positive breast cancer using trastuzumab emtansine.

    Get PDF
    PurposeThis article reviews the mechanism of action of trastuzumab emtansine (T-DM1), existing clinical data relating to its use for human growth factor receptor 2 (HER2)-positive breast cancer, potential pathways of resistance, and ongoing studies evaluating this novel agent.BackgroundThe development of HER2-targeted therapies has dramatically improved clinical outcomes for patients with any stage of HER2-positive breast cancer. Although the positive effect of these treatments cannot be overstated, treatment resistance develops in the vast majority of those diagnosed with stage IV HER2-positive breast cancer. Moreover, HER2-directed therapies are most effective when combined with cytotoxic chemotherapy. The need for chemotherapy leads to significant adverse effects and a clear decrease in quality of life for those dealing with a chronic incurable disease. T-DM1 is a recently developed, novel antibody-drug conjugate in which highly potent maytanisinoid chemotherapy is stably linked to the HER2-targeted monoclonal antibody, trastuzumab.ResultsPreclinical and phase 1-3 clinical data support the significant antitumor activity of T-DM1. Importantly, several randomized studies also now demonstrate its clear superiority in terms of tolerability compared with standard chemotherapy-containing regimens. Its role in the treatment of trastuzumab-resistant metastatic breast cancer has now been established on the basis of the results of two phase 3 randomized studies, EMILIA (An Open-label Study of Trastuzumab Emtansine (T-DM1) vs Capecitabine + Lapatinib in Patients With HER2-positive Locally Advanced or Metastatic Breast Cancer) and TH3RESA (A Study of Trastuzumab Emtansine in Comparison With Treatment of Physician's Choice in Patients With HER2-positive Breast Cancer Who Have Received at Least Two Prior Regimens of HER2-directed Therapy). The most common toxicities seen with T-DM1 are thrombocytopenia and an elevation in liver transaminases. Significant cardiac toxicity has not been demonstrated. Both in vitro cell line-based studies as well as exploratory analyses of archived tumor samples from the clinical trials are seeking to understand potential mechanisms of resistance to T-DM1. Ongoing studies are also evaluating the use of T-DM1 in the first-line metastatic, neoadjuvant, and adjuvant settings, as well as in combination with other targeted therapies.ConclusionT-DM1 represents the first successfully developed antibody drug conjugate for the treatment of HER2-positive advanced breast cancer
    • …
    corecore