65 research outputs found

    HEJ 2: High energy resummation for hadron colliders

    Get PDF
    We present HEJ 2, a new implementation of the High Energy Jets formalism for high-energy resummation in hadron-collider processes as a flexible Monte Carlo event generator. In combination with a conventional fixed-order event generator, HEJ 2 can be used to obtain greatly improved predictions for a number of phenomenologically important processes by adding all-order logarithmic corrections in . A prime example for such a process is the gluon-fusion production of a Higgs boson in association with widely separated jets, which constitutes the dominant background to Higgs boson production in weak-boson fusion

    Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    Get PDF
    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227 page

    Studies of Quantum Chromodynamics at the LHC

    Full text link
    A successful description of hadron-hadron collision data demands a profound understanding of quantum chromodynamics. Inevitably, the complexity of strong-interaction phenomena requires the use of a large variety of theoretical techniques -- from perturbative cross-section calculations up to the modelling of exclusive hadronic final states. Together with the unprecedented precision of the data provided by the experiments in the first running period of the LHC, a solid foundation of hadron-hadron collision physics at the TeV scale could be established that allowed the discovery of the Higgs boson and that is vital for estimating the background in searches for new phenomena. This chapter on studies of quantum chromodynamics at the LHC is part of a recent book on the results of LHC Run 1 and presents the advances in theoretical methods side-by-side with related key measurements in an integrated approach.Comment: 49 pages, 24 figures, To appear in "The Large Hadron Collider -- Harvest of Run 1", Thomas Sch\"orner-Sadenius (ed.), Springer, 2015 (532 pages, 253 figures; ISBN 978-3-319-15001-7, for more details, see http://www.springer.com/de/book/9783319150000

    High Energy and Soft-Collinear Resummation in QCD for Jet Production at Hadron Colliders

    Get PDF
    In this thesis a detailed discussion of resummation in QCD for high energy perturbative effects (with High Energy Jets or HEJ) and in the soft-collinear regime (with the Pythia parton shower) for processes involving the production of jets at hadron collider experiments. We develop and validate a sophisticated novel prescription (HEJ+Pythia) for merging high energy with soft-collinear resummation, which preserves the logarithmic accuracy of each resummation. Predictions produced by merging the resummation schemes in this way are compared to experimental data for inclusive pp → jj production at the Large Hadron Collider (LHC). Future experimental analyses to disentangle high-energy and soft-collinear effects are suggested. We also extend the HEJ framework and present significant developments in the description of Higgs production, particularly in describing inclusive pp → H + 1j production at hadron colliders, and compare predictions within this framework to LHC data. This presents the first leading-logarithmically accurate HEJ-resummed prediction for an inclusive single-jet process, and represents a significant development in precision descriptions of strong physics in the Higgs sector at large energies

    W Plus Multiple Jets at the LHC with High Energy Jets

    Get PDF
    We study the production of a W boson in association with n hard QCD jets (for n>=2), with a particular emphasis on results relevant for the Large Hadron Collider (7 TeV and 8 TeV). We present predictions for this process from High Energy Jets, a framework for all-order resummation of the dominant contributions from wide-angle QCD emissions. We first compare predictions against recent ATLAS data and then shift focus to observables and regions of phase space where effects beyond NLO are expected to be large.Comment: 19 pages, 9 figure

    Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report

    Full text link
    This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200 page

    Report of the Snowmass 2013 energy frontier QCD working group

    Full text link
    This is the summary report of the energy frontier QCD working group prepared for Snowmass 2013. We review the status of tools, both theoretical and experimental, for understanding the strong interactions at colliders. We attempt to prioritize important directions that future developments should take. Most of the efforts of the QCD working group concentrate on proton-proton colliders, at 14 TeV as planned for the next run of the LHC, and for 33 and 100 TeV, possible energies of the colliders that will be necessary to carry on the physics program started at 14 TeV. We also examine QCD predictions and measurements at lepton-lepton and lepton-hadron colliders, and in particular their ability to improve our knowledge of strong coupling constant and parton distribution functions.Comment: 62 pages, 31 figures, Snowmass community summer study 201

    Non-global logarithms in jet and isolation cone cross sections

    Get PDF
    Starting from a factorization theorem in effective field theory, we derive a parton-shower equation for the resummation of non-global logarithms. We have implemented this shower and interfaced it with a tree-level event generator to obtain an automated framework to resum the leading logarithm of non-global observables in the large-NcN_c limit. Using this setup, we compute gap fractions for dijet processes and isolation cone cross sections relevant for photon production. We compare our results with fixed-order computations and LHC measurements. We find that naive exponentiation is often not adequate, especially when the vetoed region is small, since non-global contributions are enhanced due to their dependence on the veto-region size. Since our parton shower is derived from first principles and based on renormalization-group evolution, it is clear what ingredients will have to be included to perform resummations at subleading logarithmic accuracy in the future.Comment: 39 pages, 13 figures. v2: journal version with new result (4.18) for narrow isolation cone
    • 

    corecore