6 research outputs found

    „Die läuft ja cool!“: Kinder in einer Unterrichtsreihe zum Thema Stabschrecken für Insekten und Bionik begeistern

    Get PDF
    Das Arbeiten mit lebenden Stabschrecken im Sachunterricht der Grundschule bietet Schülerinnen und Schülern die Möglichkeit, sich intensiv mit Eigenschaften von Insekten auseinanderzusetzen. Mithilfe dieser Tiere kann zugleich das Prinzip bionischer Erfindungen verdeutlicht und somit dem vielperspektivischen Charakter des Sachunterrichts entsprochen werden. In diesem Beitrag werden neben der Nennung des Anlasses und der Ziele, einer Kurzdarstellung des benötigten Fachwissens zum Thema Insekten und Bionik ausführliche Informationen und Tipps zur achtstündigen Unterrichtsreihe gegeben

    Integrative Biomimetics of Autonomous Hexapedal Locomotion

    Get PDF
    Dürr V, Arena PP, Cruse H, et al. Integrative Biomimetics of Autonomous Hexapedal Locomotion. Frontiers in Neurorobotics. 2019;13: 88.Despite substantial advances in many different fields of neurorobotics in general, and biomimetic robots in particular, a key challenge is the integration of concepts: to collate and combine research on disparate and conceptually disjunct research areas in the neurosciences and engineering sciences. We claim that the development of suitable robotic integration platforms is of particular relevance to make such integration of concepts work in practice. Here, we provide an example for a hexapod robotic integration platform for autonomous locomotion. In a sequence of six focus sections dealing with aspects of intelligent, embodied motor control in insects and multipedal robots—ranging from compliant actuation, distributed proprioception and control of multiple legs, the formation of internal representations to the use of an internal body model—we introduce the walking robot HECTOR as a research platform for integrative biomimetics of hexapedal locomotion. Owing to its 18 highly sensorized, compliant actuators, light-weight exoskeleton, distributed and expandable hardware architecture, and an appropriate dynamic simulation framework, HECTOR offers many opportunities to integrate research effort across biomimetics research on actuation, sensory-motor feedback, inter-leg coordination, and cognitive abilities such as motion planning and learning of its own body size

    HECTOR, a bio-inspired and compliant hexapod robot

    No full text
    Schneider A, Paskarbeit J, Schilling M, Schmitz J. HECTOR, a bio-inspired and compliant hexapod robot. In: Proceedings of the 3rd Conference on Biomimetics and Biohybrid Systems. Living Machines 2014. 2014: 427-430

    HECTOR, A Bio-Inspired and Compliant Hexapod Robot

    No full text

    Multi-modal Skill Memories for Online Learning of Interactive Robot Movement Generation

    Get PDF
    Queißer J. Multi-modal Skill Memories for Online Learning of Interactive Robot Movement Generation. Bielefeld: Universität Bielefeld; 2018.Modern robotic applications pose complex requirements with respect to the adaptation of actions regarding the variability in a given task. Reinforcement learning can optimize for changing conditions, but relearning from scratch is hardly feasible due to the high number of required rollouts. This work proposes a parameterized skill that generalizes to new actions for changing task parameters. The actions are encoded by a meta-learner that provides parameters for task-specific dynamic motion primitives. Experimental evaluation shows that the utilization of parameterized skills for initialization of the optimization process leads to a more effective incremental task learning. A proposed hybrid optimization method combines a fast coarse optimization on a manifold of policy parameters with a fine-grained parameter search in the unrestricted space of actions. It is shown that the developed algorithm reduces the number of required rollouts for adaptation to new task conditions. Further, this work presents a transfer learning approach for adaptation of learned skills to new situations. Application in illustrative toy scenarios, for a 10-DOF planar arm, a humanoid robot point reaching task and parameterized drumming on a pneumatic robot validate the approach. But parameterized skills that are applied on complex robotic systems pose further challenges: the dynamics of the robot and the interaction with the environment introduce model inaccuracies. In particular, high-level skill acquisition on highly compliant robotic systems such as pneumatically driven or soft actuators is hardly feasible. Since learning of the complete dynamics model is not feasible due to the high complexity, this thesis examines two alternative approaches: First, an improvement of the low-level control based on an equilibrium model of the robot. Utilization of an equilibrium model reduces the learning complexity and this thesis evaluates its applicability for control of pneumatic and industrial light-weight robots. Second, an extension of parameterized skills to generalize for forward signals of action primitives that result in an enhanced control quality of complex robotic systems. This thesis argues for a shift in the complexity of learning the full dynamics of the robot to a lower dimensional task-related learning problem. Due to the generalization in relation to the task variability, online learning for complex robots as well as complex scenarios becomes feasible. An experimental evaluation investigates the generalization capabilities of the proposed online learning system for robot motion generation. Evaluation is performed through simulation of a compliant 2-DOF arm and scalability to a complex robotic system is demonstrated for a pneumatically driven humanoid robot with 8-DOF

    Entwurfsraumexploration eng gekoppelter paralleler Rechnerarchitekturen

    Get PDF
    Sievers G. Entwurfsraumexploration eng gekoppelter paralleler Rechnerarchitekturen. Bielefeld: Universität Bielefeld; 2016.Eingebettete mikroelektronische Systeme finden in vielen Bereichen des täglichen Lebens Anwendung. Die Integration von zunehmend mehr Prozessorkernen auf einem einzelnen Mikrochip (On-Chip-Multiprozessor, MPSoC) erlaubt eine Steigerung der Rechenleistung und der Ressourceneffizienz dieser Systeme. In der AG Kognitronik und Sensorik der Universität Bielefeld wird das CoreVA-MPSoC entwickelt, welches ressourceneffiziente VLIW-Prozessorkerne über eine hierarchische Verbindungsstruktur koppelt. Eine enge Kopplung mehrerer Prozessorkerne in einem Cluster ermöglicht hierbei eine breitbandige Kommunikation mit geringer Latenz. Der Hauptbeitrag der vorliegenden Arbeit ist die Entwicklung und Entwurfsraumexploration eines ressourceneffizienten CPU-Clusters für den Einsatz im CoreVA-MPSoC. Eine abstrakte Modellierung der Hardware- und Softwarekomponenten des CPU-Clusters sowie ein hoch automatisierter Entwurfsablauf ermöglichen die schnelle Analyse eines großen Entwurfsraums. Im Rahmen der Entwurfsraumexploration werden verschiedene Topologien, Busstandards und Speicherarchitekturen untersucht. Insbesondere das Zusammenspiel der Hardware-Architektur mit Programmiermodell und Synchronisierung ist evident für eine hohe Ressourceneffizienz und eine gute Ausnutzung der verfügbaren Rechenleistung durch den Anwendungsentwickler. Dazu wird ein an die Hardwarearchitektur angepasstes blockbasiertes Synchronisierungsverfahren vorgestellt. Dieses Verfahren wird von Compilern für die Sprachen StreamIt, C sowie OpenCL verwendet, um Anwendungen auf verschiedenen Konfigurationen des CPU-Clusters abzubilden. Neun repräsentative Streaming-Anwendungen zeigen bei der Abbildung auf einem Cluster mit 16 CPUs eine durchschnittliche Beschleunigung um den Faktor 13,3 gegenüber der Ausführung auf einer CPU. Zudem wird ein eng gekoppelter gemeinsamer L1-Datenspeicher mit mehreren Speicherbänken in den CPU-Cluster integriert, der allen CPUs einen Zugriff mit geringer Latenz erlaubt. Des Weiteren wird die Verwendung verschiedener Instruktionsspeicher und -caches evaluiert sowie der Energiebedarf für Kommunikation und Synchronisierung im CPU-Cluster betrachtet. Es wird in dieser Arbeit gezeigt, dass ein CPU-Cluster mit 16 CPU-Kernen einen guten Kompromiss in Bezug auf den Flächenbedarf der Cluster-Verbindungsstruktur sowie die Leistungsfähigkeit des Clusters darstellt. Ein CPU-Cluster mit 16 2-Slot-VLIW-CPUs und insgesamt 512 kB Speicher besitzt bei einer prototypischen Implementierung in einer 28-nm-FD-SOI-Standardzellenbibliothek einen Flächenbedarf von 2,63 mm². Bei einer Taktfrequenz von 760 MHz liegt die durchschnittliche Leistungsaufnahme bei 440 mW. Eine FPGA-basierte Emulation auf einem Xilinx Virtex-7-FPGA erlaubt die Evaluierung eines CoreVA-MPSoCs mit bis zu 24 CPUs bei einer maximalen Taktfrequenz von bis zu 124 MHz. Als weiteres Anwendungsszenario wird ein CoreVA-MPSoC mit bis zu vier CPUs auf das FPGA des autonomen Miniroboters AMiRo abgebildet
    corecore