15 research outputs found

    Dense H-free graphs are almost (Χ(H)-1)-partite

    Get PDF
    By using the Szemeredi Regularity Lemma, Alon and Sudakov recently extended the classical Andrasfai-Erdos-Sos theorem to cover general graphs. We prove, without using the Regularity Lemma, that the following stronger statement is true. Given any (r+1)-partite graph H whose smallest part has t vertices, there exists a constant C such that for any given ε>0 and sufficiently large n the following is true. Whenever G is an n-vertex graph with minimum degree δ(G)≥(1 − 3/3r−1 + ε)n, either G contains H, or we can delete f(n,H)≤Cn2−1/t edges from G to obtain an r-partite graph. Further, we are able to determine the correct order of magnitude of f(n,H) in terms of the Zarankiewicz extremal function

    Triangle-free subgraphs of random graphs

    Get PDF
    Recently there has been much interest in studying random graph analogues of well known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n,p)G(n,p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n,p)G(n,p) with minimum degree at least (25+o(1))pn\big(\frac{2}{5} + o(1)\big)pn is O(p−1n)\mathcal O(p^{-1}n)-close to bipartite, and each spanning triangle-free subgraph of G(n,p)G(n,p) with minimum degree at least (13+ε)pn(\frac{1}{3}+\varepsilon)pn is O(p−1n)\mathcal O(p^{-1}n)-close to rr-partite for some r=r(ε)r=r(\varepsilon). These are random graph analogues of a result by Andr\'asfai, Erd\H{o}s, and S\'os [Discrete Math. 8 (1974), 205-218], and a result by Thomassen [Combinatorica 22 (2002), 591--596]. We also show that our results are best possible up to a constant factor.Comment: 18 page

    Chromatic thresholds in dense random graphs

    Get PDF
    The chromatic threshold δχ(H,p)\delta_\chi(H,p) of a graph HH with respect to the random graph G(n,p)G(n,p) is the infimum over d>0d > 0 such that the following holds with high probability: the family of HH-free graphs G⊂G(n,p)G \subset G(n,p) with minimum degree δ(G)≥dpn\delta(G) \ge dpn has bounded chromatic number. The study of the parameter δχ(H):=δχ(H,1)\delta_\chi(H) := \delta_\chi(H,1) was initiated in 1973 by Erd\H{o}s and Simonovits, and was recently determined for all graphs HH. In this paper we show that δχ(H,p)=δχ(H)\delta_\chi(H,p) = \delta_\chi(H) for all fixed p∈(0,1)p \in (0,1), but that typically δχ(H,p)≠δχ(H)\delta_\chi(H,p) \ne \delta_\chi(H) if p=o(1)p = o(1). We also make significant progress towards determining δχ(H,p)\delta_\chi(H,p) for all graphs HH in the range p=n−o(1)p = n^{-o(1)}. In sparser random graphs the problem is somewhat more complicated, and is studied in a separate paper.Comment: 36 pages (including appendix), 1 figure; the appendix is copied with minor modifications from arXiv:1108.1746 for a self-contained proof of a technical lemma; accepted to Random Structures and Algorithm

    Minimum degree stability of H-free graphs

    Get PDF
    Given an (r + 1)-chromatic graph H, the fundamental edge stability result of Erdős and Simonovits says that all n-vertex H-free graphs have at most (1 − 1/r + o(1))( n 2 ) edges, and any H-free graph with that many edges can be made r-partite by deleting o(n 2 ) edges. Here we consider a natural variant of this – the minimum degree stability of H-free graphs. In particular, what is the least c such that any n-vertex H-free graph with minimum degree greater than cn can be made r-partite by deleting o(n 2 ) edges? We determine this least value for all 3- chromatic H and for very many non-3-colourable H (all those in which one is commonly interested) as well as bounding it for the remainder. This extends the Andrásfai-Erdős-Sós theorem and work of Alon and Sudako

    Triangle-free subgraphs of random graphs

    Get PDF
    Recently there has been much interest in studying random graph analogues of well known classical results in extremal graph theory. Here we follow this trend and investigate the structure of triangle-free subgraphs of G(n, p) with high minimum degree. We prove that asymptotically almost surely each triangle-free spanning subgraph of G(n, p) with minimum degree at least ( 2 + o(1)lpn is O(p−1 n)-close to bipartite, and each spanning triangle-free subgraph of G(n, p) with minimum degree at least ( 1 + ε)pn is O(p−1 n)-close to r-partite for some r = r(ε). These are random graph analogues of a result by Andrásfai, Erdős and Sós [Discrete Math. 8 (1974), 205–218], and a result by Thomassen [Combinatorica 22 (2002), 591–596]. We also show that our results are best possible up to a constant factor
    corecore