20,704 research outputs found

    Control of flexible-link manipulators using nonlinear H(infinity) techniques

    Get PDF
    Most engineering systems encountered in practice exhibit significant nonlinear behavior. For control of systems exhibiting nonlinearities, the normal design procedure is to construct a linearized approximation of the process model followed by the application of a linear control methodology. This procedure, however, can yield unsatisfactory performance, especially when the system is highly nonlinear and undergoes large motions, that is, it operates over wide nonlinear dynamical ranges, as is often the case in the problems of attitude control, advanced aircraft control, and the control of robotic manipulators. Furthermore, most systems are seldom completely known and therefore, their mathematical models should include some uncertain parts. The control of an uncertain system is required to be robust with respect to modeling uncertainties. Robust control strives to characterize the uncertainty in the model of the plant and to evaluate the degrees of freedom left to achieve the control task within specified bounds. This dissertation is concerned with the control of a highly complicated and nonlinear system, namely, a flexible-link manipulator. The general procedure taken in this regard is to develop, design and analyze nonlinear H P techniques applied to flexible-link manipulators. For the purpose of robust control of an uncertain model of the flexible-link manipulator two types of modeling are studied. In the first type, uncertainty is due to parameter variations of the manipulator while performing a task or when its configuration is changing. The uncertainties considered in this regard may be L 2 bounded and/or constant. In the second type of modeling, a new look at, the notion of flexibility in robotic manipulators is presented. Based on this interpretation, flexible structures exhibit two kinds of behavior, one of which may be treated as a disturbance acting on the modeled dynamics. For designing the nonlinear H P controller, the approximate polynomial solution of the Hamilton-Jacobi-Isaac (HJI) inequality for a general nonlinear system is derived. Also by exploiting the stability properties of perturbed systems, qualitative behavior of nonlinear H P controllers is considered

    A Stability Analysis for the Acceleration-based Robust Position Control of Robot Manipulators via Disturbance Observer

    Full text link
    This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using Disturbance Observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory tracking control. As the bandwidth of DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise sensitive when they are increased. The proposed stability analysis provides insights regarding the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that non-diagonal elements of the nominal inertia matrix are useful to improve the stability and adjust the trade-off between the robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.Comment: 9 pages, 9 figures, Journa

    Intelligent active force control of a three-link manipulator using fuzzy logic

    Get PDF
    The paper presents a novel approach to estimate the inertia matrix of a robot arm using a fuzzy logic (FL) mechanism in order to trigger the active force control (AFC) strategy. A comprehensive study is performed on a rigid three-link manipulator subjected to a number of external disturbances. The robustness and effectiveness of the proposed control scheme are investigated considering the trajectory track performance of the robotic arm taking into account the application of external disturbances and that the arm is commanded to describe a reference trajectory given a number of initial and operating conditions. The results show that the FL mechanism used in the study successfully computes appropriate estimated inertia matrix value to execute the control action. The proposed scheme exhibits a high degree of robustness and accuracy as the track error is bounded within an acceptable range of value even under the influence of the introduced disturbances

    Modeling and Control of the Automated Radiator Inspection Device

    Get PDF
    Many of the operations performed at the Kennedy Space Center (KSC) are dangerous and repetitive tasks which make them ideal candidates for robotic applications. For one specific application, KSC is currently in the process of designing and constructing a robot called the Automated Radiator Inspection Device (ARID), to inspect the radiator panels on the orbiter. The following aspects of the ARID project are discussed: modeling of the ARID; design of control algorithms; and nonlinear based simulation of the ARID. Recommendations to assist KSC personnel in the successful completion of the ARID project are given

    A nonlinear disturbance observer for robotic manipulators

    Get PDF
    A new nonlinear disturbance observer (NDO) for robotic manipulators is derived in this paper. The global exponential stability of the proposed disturbance observer (DO) is guaranteed by selecting design parameters, which depend on the maximum velocity and physical parameters of robotic manipulators. This new observer overcomes the disadvantages of existing DOs, which are designed or analyzed by linear system techniques. It can be applied in robotic manipulators for various purposes such as friction compensation, independent joint control, sensorless torque control and fault diagnosis. The performance of the proposed observer is demonstrated by the friction estimation and compensation for a two-link robotic manipulator. Both simulation and experimental results show the NDO works well
    corecore