34 research outputs found

    Optical MEMS

    Get PDF
    Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense

    MEMS Devices for Circumferential-scanned Optical Coherence Tomography Bio-imaging

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Evaluating the performance of digital micromirror devices for use as programmable slit masks in multi-object spectrometers

    Get PDF
    Multi-object spectrometers are extremely useful astronomical instruments that allow simultaneous spectral observations of large numbers of objects. Studies performed with ground-based multi-object spectrometers (MOSs) in the last four decades helped to place unique constraints on cosmology, large scale structure, galaxy evolution, Galactic structure, and contributed to countless other scientific advances. However, terrestrial MOSs use large discrete components for object selection, which, aside from not transferable to space-based applications, are limited in both minimal slit width and minimal time required accommodate a change of the locations of objects of interest in the field of view. There is a pressing need in remotely addressable and fast-re-configurable slit masks, which would allow for a new class of instruments - spacebased MOS. There are Microelectromechanical System (MEMS) - based technologies under development for use in space-based instrumentation, but currently they are still unreliable, even on the ground. A digital micromirror device (DMD) is a highly capable, extremely reliable, and remotely re-configurable spatial light modulator (SLM) that was originally developed by Texas Instruments Incorporated for projection systems. It is a viable and very promising candidate to serve as slit mask for both terrestrial and space-based MOSs. This work focused on assessing the suitability of DMDs for use as slit masks in space-based astronomical MOSs and developing the necessary calibration procedures and algorithms. Radiation testing to the levels of orbit around the second Lagrangian point (L2) was performed using the accelerated heavy-ion irradiation approach. The DMDs were found to be extremely reliable in such radiation environment, the devices did not experience hard failures and there was no permanent damage. Expected single-event upset (SEU) rate was determined to be about 5.6 micro-mirrors per 24 hours on-orbit for 1-megapixel device. Results of vibration and mechanical shock testing performed according to the National Aeronautics and Space Administration (NASA) General Environmental Verification Standard (GEVS) at NASA Goddard Space Flight Center (GSFC) suggest that commercially available DMDs are mechanically suitable for space-deployment with a very significant safety margin. Series of tests to assess the performance and the behaviour of DMDs in cryogenic temperatures (down to 78 K) were also carried out. There were no failures or malfunctions detected in commercially-available devices. An earlier prototype of a terrestrial DMD-based MOS (Rochester Institute of Technology Multi-Object Spectrometer (RITMOS)) was updated with a newer DMD model, and the performance of the instrument was evaluated. All the experiments performed strongly suggest that DMDs are highly reliable and capable devices that are extremely suitable for use as remotely programmable slit masks in MOS

    Robust free space board-to-board optical interconnect with closed loop MEMS tracking

    Get PDF
    We present a free-space optical interconnect system capable of dynamic closed-loop optical alignment using a microlens scanner with a proportional integral and derivative controller. Electrostatic microlens scanners based on combdrive actuators are designed and characterized with vertical cavity surface emitting lasers (VCSELs) for adaptive optical beam tracking in the midst of mechanical vibration noise. The microlens scanners are fabricated on silicon-on-insulator wafers with a bulk micromachining process using deep reactive ion etching. We demonstrate dynamic optical beam positioning with a 700 Hz bandwidth and a maximum noise reduction of approximately 40 dB. Eye diagrams with a 1 Gb/s modulation rate are presented to demonstrate the improved optical link in the presence of mechanical noise

    MEMS-Based Endoscopic Optical Coherence Tomography

    Get PDF
    Early cancer detection has been playing an important role in reducing cancer mortality. Optical coherence tomography (OCT), due to its micron-scale resolution, has the ability to detect cancerous tissues at their early stages. For internal organs, endoscopic probes are needed as the penetration depth of OCT is about 1–3 mm. MEMS technology has the advantages of fast speed, small size, and low cost, and it has been widely used as the scanning engine in endoscopic OCT probes. Research results have shown great potential for OCT in endoscopic imaging by incorporating MEMS scanning mirrors. Various MEMS-OCT designs are introduced, and their imaging results are reviewed in the paper

    MEMS devices for the control of trapped atomic particles

    Get PDF
    This thesis presents the design and characterisation of novel MEMS scanners, for use in systems involving trapped atomic particles. The scanners are manufactured using multiuser silicon-on-insulator MEMS fabrication processes and use resonant piezoelectric actuation based on aluminium nitride thin films to produce one dimensional scanning at high frequencies, with resonance tuning capabilities of up to 5 kHz. Frequencies of ~100kHz and higher are required to enable for example resonant addressing of trapped atomic particles. This work demonstrates how the 200 μm and 400 μm diameter scanners can produce optical deflection angles upwards of 2° at frequencies from 80 kHz to 400 kHz. It proposes an addressing scheme based on Lissajous scanning to steer laser pulses onto 2D grids at a scale compatible with experiments involving single trapped atoms. It also examines frequency tuning capabilities of the scanners using localized on-chip Joule heating and active cooling ; frequency tuning and synchronization are shown to be critical to the implementation of 2-dimensional scanning with multiple scanners. These features are then demonstrated in a prototype implementation using fluorescing samples as a mock target to evaluate the optical performance of the scanning system. Finally, the thesis describes a proof-of-concept for integration of the scanners in a trapped atoms experiment, in which rubidium atoms trapped inside a magneto-optical trap are selectively pumped into a fluorescing state using a beam steered by the MEMS scanners.This thesis presents the design and characterisation of novel MEMS scanners, for use in systems involving trapped atomic particles. The scanners are manufactured using multiuser silicon-on-insulator MEMS fabrication processes and use resonant piezoelectric actuation based on aluminium nitride thin films to produce one dimensional scanning at high frequencies, with resonance tuning capabilities of up to 5 kHz. Frequencies of ~100kHz and higher are required to enable for example resonant addressing of trapped atomic particles. This work demonstrates how the 200 μm and 400 μm diameter scanners can produce optical deflection angles upwards of 2° at frequencies from 80 kHz to 400 kHz. It proposes an addressing scheme based on Lissajous scanning to steer laser pulses onto 2D grids at a scale compatible with experiments involving single trapped atoms. It also examines frequency tuning capabilities of the scanners using localized on-chip Joule heating and active cooling ; frequency tuning and synchronization are shown to be critical to the implementation of 2-dimensional scanning with multiple scanners. These features are then demonstrated in a prototype implementation using fluorescing samples as a mock target to evaluate the optical performance of the scanning system. Finally, the thesis describes a proof-of-concept for integration of the scanners in a trapped atoms experiment, in which rubidium atoms trapped inside a magneto-optical trap are selectively pumped into a fluorescing state using a beam steered by the MEMS scanners

    MEMS based catheter for endoscopic optical coherence tomography

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Compliant Torsional Micromirrors with Electrostatic Actuation

    Get PDF
    Due to the existence of fabrication tolerance, property drift and structural stiction in MEMS (Micro Electro Mechanical Systems), characterization of their performances through modeling, simulation and testing is essential in research and development. Due to the microscale dimensions, MEMS are more susceptible and sensitive to even minor external or internal variations. Moreover, due to the current limited capability in micro-assembly, most MEMS devices are fabricated as a single integrated micro-mechanical structure composed of two essential parts, namely, mass and spring, even if it may consist of more than one relatively movable part. And in such a scale of dimensions, low resonant micro-structures or compliant MEMS structures are hard to achieve and difficult to survive. Another problem arises from the limited visibility and accessibility necessary for characterization. Both of these issues are thus attempted in this research work. An investigation on micromirrors with various actuations and suspensions is carried out, with more attention on the micromirrors with compliant suspensions, electrostatic actuation and capable of torsional out-of-plane motion due to their distinct advantages such as the low resonance and the low drive voltage. This investigation presents many feasible modeling methods for prediction and analysis, aiming to avoid the costly microfabrication. Furthermore, both linear and nonlinear methods for structure and electrostatics are all included. Thus, static and dynamic performances of the proposed models are formularized and compared with those from FEA (Finite Element Analysis) simulation. The nonlinear modeling methods included in the thesis are Pseudo Rigid Body Model (PRBM) and hybrid PRBM methods for complex framed microstructures consisting of compliant beam members. The micromachining technologies available for the desired micromirrors are reviewed and an SOI wafer based micromachining process is selected for their fabrication. Though the fabrication was executed outside of the institution at that time, the layout designs of the micro-chips for manufacture have included all related rules or factors, and the results have also demonstrated the successful fabrication. Then investigation on non-contact test methods is presented. Laser Doppler Vibrometer (LDV) is utilized for the measurement of dynamic performances of proposed micromirrors. Two kinds of photo-sensing devices (PSDs), namely, the digitized PSD formed by CCD arrays and the analog PSD composed of a monolithic photosensing cell, are used for static test set-ups. An interferometric method using Mirau objective along with microscope is also employed to perform static tests of the selected micromirrors. Comparison of the tested results and their related theoretical results are presented and discussed, leading to a conclusion that the proposed hybrid PRBM model are appropriate for prediction or analysis of compliantly suspended micromirrors including issues arising from fabrication tolerance, structural or other parametric variations
    corecore